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M1

Algebra of vectors

M1.1 Basic concepts and definitions

A scalar is a quantity that is specified by its sign and by its magnitude. Examples
are temperature, the specific volume, and the humidity of the air. Scalars will
be written using Latin or Greek letters such asa, b, . . ., A,B, . . ., α, β, . . .. A
vectorrequires for its complete characterization the specification of magnitude and
direction. Examples are the velocity vector and the force vector. A vector will be
represented by a boldfaced letter such asa,b, . . ., A,B, . . .. A unit vector is a
vector of prescribed direction and of magnitude 1. Employing the unit vectoreA,
the arbitrary vectorA can be written as

A = |A|eA = AeA =⇒ eA = A
|A| (M1.1)

Two vectorsA andB are equal if they have the same magnitude and direction
regardless of the position of their initial points,

that is |A| = |B| andeA = eB . Two vectors arecollinear if they are parallel
or antiparallel. Three vectors that lie in the same plane are calledcoplanar. Two
vectors always lie in the same plane since they define the plane. The following
rules are valid:

the commutative law: A ± B = B± A, Aα = αA

the associative law: A + (B+ C) = (A + B) +C, α(βA) = (αβ)A

the distributive law: (α + β)A = αA + βA
(M1.2)

The concept of linear dependence of a set of vectorsa1,a2, . . ., aN is closely
connected with the dimensionality of space. The following definition applies: A
set ofN vectorsa1,a2, . . ., aN of the same dimension is linearly dependent if there
exists a set of numbersα1, α2, . . ., αN , not all of which are zero, such that

α1a1 + α2a2 + · · · + αNaN = 0 (M1.3)

3



4 Algebra of vectors

Fig. M1.1 Linear vector spaces: (a) one-dimensional, (b) two-dimensional, and (c) three-
dimensional.

If no such numbers exist, the vectorsa1,a2, . . ., aN are said to be linearly inde-
pendent. To get the geometric meaning of this definition, we consider the vectors
a andb as shown in Figure M1.1(a). We can find a numberk �= 0 such that

b = ka (M1.4a)

By settingk = −α/β we obtain the symmetrized form

αa+ βb = 0 (M1.4b)

Assuming that neitherα nor β is equal to zero then it follows from the above
definition that two collinear vectors are linearly dependent. They define the one-
dimensionallinear vector space. Consider two noncollinear vectorsa andb as
shown in Figure M1.1(b). Every vectorc in their plane can be represented by

c= k1a+ k2b or αa+ βb+ γ c= 0 (M1.5)

with a suitable choice of the constantsk1 andk2. Equation (M1.5) defines a two-
dimensional linear vector space. Since not all constantsα, β, γ are zero, this
formula insures that the three vectors in the two-dimensional space are linearly
dependent. Taking three noncoplanar vectorsa,b, andc, we can represent every
vectord in the form

d = k1a+ k2b+ k3c (M1.6)

in a three-dimensional linear vector space, see Figure M1.1(c). This can be gener-
alized by stating that, in anN -dimensional linear vector space, every vector can be
represented in the form

x = k1a1 + k2a2 + · · · + kNaN (M1.7)

where thea1,a2, . . ., aN are linearly independent vectors. Any set of vectors con-
taining more thanN vectors in this space is linearly dependent.
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Table M1.1.Extensive quantities of different degrees for the
N-dimensional linear vector space

Extensive Number of Number of
quantity Degreev Symbol vectors components

Scalar 0 B 0 N0 = 1
Vector 1 B 1 N1

Dyadic 2 B 2 N2

Fig. M1.2 Projection of a vectorB onto a vectorA.

We call the set ofN linearly independent vectorsa1,a2, . . ., aN thebasis vectors
of theN -dimensional linear vector space. The numbersk1, k2, . . ., kN appearing in
(M1.7) are themeasure numbersassociated with the basis vectors. The termkiai
of the vectorx in (M1.7) is thecomponent of this vectorin the directionai.

A vectorB may be projected onto the vectorA parallel to the direction of a
straight linek as shown in Figure M1.2(a). If the direction of the straight linek is
not given, we perform an orthogonal projection as shown in part (b) of this figure.
A projection in three-dimensional space requires a planeF parallel to which the
projection of the vectorB onto the vectorA can be carried out; see Figure M1.2(c).

In vector analysis anextensive quantityof degreeν is defined as a homogeneous
sum of general products of vectors (with no dot or cross between the vectors). The
number of vectors in a product determines the degree of the extensive quantity.
This definition may seem strange to begin with, but it will be familiar soon. Thus, a
scalar is anextensivequantity of degreezero, anda vector is anextensivequantity of
degree one. An extensive quantity of degree two is called adyadic. Every dyadicB
may be represented as the sumof three or moredyads.B = p1P1 + p2P2 + p3P3 +
· · ·. Either theantecedentspi or theconsequentsPi may be arbitrarily assigned
as long as they are linearly independent. Our practical work will be restricted to
extensive quantities of degree two or less. Extensive quantities of degree three and
four also appear in the highly specialized literature. Table M1.1 gives a list of
extensive quantities used in our work. Thus, in the three-dimensional linear vector
space withN = 3, a vector consists of three and a dyadic of nine components.
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Fig. M1.3 The general vector basisq1,q2,q3 of the three-dimensional space.

M1.2 Reference frames

The representation of a vector in component form depends on the choice of a
particular coordinate system. Ageneral vector basisat a given point in three-
dimensional space is defined by three arbitrary linearly independent basis vectors
q1,q2,q3 spanning the space. In general, the basis vectors are neither orthogonal
nor unit vectors; they may also vary in space and in time.

Consider a position vectorr extending from an arbitrary origin to a pointP in
space. An arbitrary vectorA extending fromP is defined by the three basis vectors
qi , i = 1,2,3, existing atP at time t, as shown in Figure M1.3 for an oblique
coordinate system. Hence, the vectorA may be written as

A = A1q1 + A2q2 +A3q3 =
3∑
k=1

Akqk (M1.8)

where it should be observed that the so-calledaffine measure numbersA1, A2, A3

carry superscripts, and the basis vectorsq1,q2,q3 carry subscripts. This type of no-
tation is used in theRicci calculus, which is the tensor calculus for nonorthonormal
coordinate systems. Furthermore, it should be noted that there must be an equal
number of upper and lower indices.

Formula (M1.8) can bewritten more briefly with the help of the familiarEinstein
summation conventionwhich omits the summation sign:

A = A1q1 +A2q2 +A3q3 = Anqn (M1.9)

We will agree on the following notation: Whenever an index (subscript or super-
script)m,n, p, q, r, s, t , is repeated in a term, we are to sum over that index from 1
to 3, ormore generally toN . In contrast to the summation indicesm,n, p, q, r, s, t,
the lettersi, j, k, l are considered to be “free” indices that are used to enumerate
equations. Note that summation is not implied even if the free indices occur twice
in a term or even more often.
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Aspecial caseof thegeneral vector basis is theCartesianvector basisrepresented
by the three orthogonal unit vectorsi, j , k, or, more conveniently,i1, i2, i3. Each of
these three unit vectors has the same direction at all points of space. However, in
rotating coordinate systems these unit vectors also depend on time. The arbitrary
vectorA may be represented by

A = Ax i + Ay j +Azk = Anin = Anin
with Ax = A1 = A1, Ay = A2 = A2, Az = A3 = A3

(M1.10)

In the Cartesian coordinate space there is no need to distinguish between upper and
lower indices so that (M1.10) may be written in different ways. We will return to
this point later.

Finally, we wish to define theposition vectorr . In a Cartesian coordinate system
we may simply write

r = xi + yj + zk = xnin = xnin (M1.11)

In an oblique coordinate system, provided that the same basis exists everywhere in
space, we may write the general form

r = q1q1 + q2q2 + q3q3 = qnqn (M1.12)

where theqi are the measure numbers corresponding to the basis vectorsqi. The
form (M1.12) is also valid along the radius in a spherical coordinate system since
the basis vectors do not change along this direction.

A different situation arises in case of curvilinear coordinate lines since the
orientations of the basis vectors changewith position. This is evident, for example,
on considering the coordinate lines (lines of equal latitude and longitude) on the
surface of a nonrotating sphere. In case of curvilinear coordinate lines the position
vectorr has to be replaced by the differential expressiondr = dqn qn. Later we
will discuss this topic in the required detail.

M1.3 Vector multiplication

M1.3.1 The scalar product of two vectors

By definition, the coordinate-free form of the scalar product is given by

A · B = |A| |B| cos(A,B) (M1.13)
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Fig. M1.4 Geometric interpretation of thescalar product.

If the vectorsA andB are orthogonal the expression cos(A,B) = 0 so that the
scalar product vanishes. The following rules involving the scalar product are valid:

the commutative law: A · B = B · A
the associative law: (kA) · B = k(A · B) = kA · B
the distributive law: A · (B+ C) = A · B+ A · C

(M1.14)

Moreover, we recognize that the scalar product, also known as the dot product or
inner product, may be represented by the orthogonal projections

A · B = |A ′||B|, A · B = |A||B′| (M1.15)

whereby the vectorA ′ is the projection ofA onB, andB′ is the projection ofB on
A; see Figure M1.4.

The component notation of the scalar product yields

A · B = A1B1q1· q1 + A1B2q1· q2 +A1B3q1· q3
+A2B1q2· q1 +A2B2q2· q2 +A2B3q2· q3
+A3B1q3· q1 +A3B2q3· q2 +A3B3q3· q3

(M1.16)

Thus, in general the scalar product results in nine terms. Utilizing the Einstein
summation convention we obtain the compact notation

A · B = Amqm · Bnqn = AmBnqm · qn = AmBngmn (M1.17)

The quantitygij is knownas the covariantmetric fundamental quantityrepresenting
an element of a covariant tensor of rank two or order two. This tensor is called
themetric tensoror the fundamental tensor. The expression “covariant” will be
described later. Sinceqi ·qj = qj ·qi we have the identity

gij = gji (M1.18)
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On substituting forA,B the unit vectors of the Cartesian coordinate system, we
find the well-known orthogonality conditions for the Cartesian unit vectors

i · j = 0, i · k = 0, j · k = 0 (M1.19)

or the normalization conditions

i · i = 1, j · j = 1, k · k = 1 (M1.20)

For the special case of Cartesian coordinates, from (M1.16) we, therefore, obtain
for the scalar product

A · B = AxBx +AyBy +AzBz (M1.21)

When thebasis vectorsi, j , k areorientedalong the (x, y, z)-axes, the coordinates
of their terminal points are given by

i : (1,0,0), j : (0,1,0), k : (0,0,1) (M1.22)

This expression is the Euclidian three-dimensional space or the space of ordinary
human life. On generalizing to theN -dimensional space we obtain

e1: (1,0, . . .,0), e2: (0,1, . . .,0), . . . eN: (0,0, . . .,1)

(M1.23)

This equation is known as the Cartesian reference frame of theN -dimensional
Euclidian space. In this space the generalized form of the position vectorr is given
by

r = x1e1 + x2e2 + · · · + xNeN (M1.24)

The length or the magnitude of the vectorr is also known as theEuclidian norm

|r | = √
r ·r =

√
(x1)2 + (x2)2 + · · · + (xN )2 (M1.25)

M1.3.2 The vector product of two vectors

In coordinate-free or invariant notation the vector product of two vectors is defined
by

A × B = C = |A| |B| sin(A,B) eC (M1.26)

The unit vectoreC is perpendicular to the plane defined by the vectorsA andB.
The direction of the vectorC is defined in such a way that the vectorsA, B, andC
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Fig. M1.5 Geometric interpretation of the vector or cross product.

form a right-handed system. Themagnitude ofC is equal to the areaF of a parallel-
ogram defined by the vectorsA andB as shown in Figure M1.5. Interchanging the
vectorsA andB givesA × B = −B× A. This follows immediately from (M1.26)
since the unit vectoreC now points in the opposite direction.

The following vector statements are valid:

A × (B+ C) = A × B+ A × C

(kA) × B = A × (kB) = kA × B

A × B = −B× A

(M1.27)

The component representation of the vector product yields

A × B = Amqm × Bnqn =

∣∣∣∣∣∣∣∣∣

q2 × q3 q3 × q1 q1 × q2
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
(M1.28)

By utilizing Cartesian coordinates we obtain the well-known relation

A × B =

∣∣∣∣∣∣∣∣∣

i j k

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣∣
(M1.29)

M1.3.3 The dyadic representation, the general product of two vectors

The general ordyadic productof two vectorsA andB is given by

! = AB = (A1q1 + A2q2 +A3q3)(B1q1 + B2q2 + B3q3) (M1.30)

It is seen that the vectors are not separated by a dot or a cross. At first glance this
type of vector product seems strange. However, the advantage of this notation will
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Fig. M1.6 Geometric representation of the scalar triple product.

become apparent later. On performing the dyadic multiplication we obtain

! = AB = A1B1q1q1 + A1B2q1q2 +A1B3q1q3
+ A2B1q2q1 +A2B2q2q2 +A2B3q2q3
+ A3B1q3q1 +A3B2q3q2 +A3B3q3q3

(M1.31)

In carrying out the general multiplication, we must be careful not to change the
position of the basis vectors. The following statements are valid:

(A + B)C = AC + BC, AB �= BA (M1.32)

M1.3.4 The scalar triple product

The scalar triple product, sometimes also called the box product, is defined by

A · (B × C) = [A,B,C] (M1.33)

The absolute value of the scalar triple product measures the volume of the paral-
lelepiped having the three vectorsA, B,C as adjacent edges, see Figure M1.6. The
heighth of the parallelepiped is found by projecting the vectorA onto the cross
productB × C. If the volume vanishes then the three vectors are coplanar. This
situation will occur whenever a vector appears twice in the scalar triple product. It
is apparent that, in the scalar triple product, any cyclic permutation of the factors
leaves the value of the scalar triple product unchanged. A permutation that reverses
the original cyclic order changes the sign of the product:

[A,B,C] = [B,C,A] = [C,A,B]

[A,B,C] = −[B,A,C] = −[A,C,B]
(M1.34)
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From these observations we may conclude that, in any scalar triple product, the
dot and the cross can be interchangedwithout changing themagnitude and the sign
of the scalar triple product

A · (B × C) = (A × B) ·C (M1.35)

For the general vector basis the coordinate representation of the scalar triple
product yields

A· (B×C) = (A1q1+A2q2+A3q3) ·

∣∣∣∣∣∣∣∣∣

q2 × q3 q3 × q1 q1 × q2
B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
(M1.36)

It is customary to assign the symbol
√
g to the scalar triple product of the basis

vectors: √
g = q1 · q2 × q3 (M1.37)

It is regrettable that the symbolg is also assigned to the acceleration due to gravity,
but confusion is unlikely to occur. By combining equations (M1.36) and (M1.37)
we obtain the following important form of the scalar triple product:

[A,B,C] = √
g

∣∣∣∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
(M1.38)

For the basis vectors of the Cartesian system we obtain from (M1.37)

√
g = i · (j × k) = 1 (M1.39)

so that in the Cartesian coordinate system (M1.38) reduces to

[A,B,C] =

∣∣∣∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣∣∣∣
(M1.40)

In this expression, according to equation (M1.10), the componentsA1, A2, A3,

etc. have been written asAx,Ay,Az.
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Without proof we accept the formula

[A,B,C]2 =

∣∣∣∣∣∣∣∣∣

A · A A · B A ·C
B · A B · B B · C
C · A C · B C ·C

∣∣∣∣∣∣∣∣∣
(M1.41)

which is known as theGram determinant. The proof, however, will be given later.
Application of this important formula gives

[q1,q2,q3]2 = (√
g
)2 =

∣∣∣∣∣∣∣∣∣

q1 · q1 q1 · q2 q1 · q3
q2 · q1 q2 · q2 q2 · q3
q3 · q1 q3 · q2 q3 · q3

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣∣∣∣
= |gij |

(M1.42)

which involves all elementsgij of the metric tensor. Comparison of (M1.37) and
(M1.42) yields the important statement

q1 · (q2 × q3) = √
g = √|gij | (M1.43)

so that the scalar triple product involving the general basis vectorsq1,q2,q3 can
easily be evaluated. This will be done in some detail when we consider various
coordinate systems. Owing to (M1.43),

√
g is called thefunctional determinantof

the system.

M1.3.5 The vectorial triple product

At this point it will be sufficient to state the extremely important formula

A × (B× C) = (A · C)B− (A · B)C (M1.44)

which is also known as theGrassmann rule. It should be noted that, without the
parentheses, the meaning of (M1.44) is not unique. The proof of this equation will
be given later with the help of the so-called reciprocal coordinate system.
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M1.3.6 The scalar product of a vector with a dyadic

On performing the scalar product of a vector with a dyadic we see that the com-
mutative law is not valid:

D = A · (BC) = (A · B)C, E = (BC) · A = B(C · A) (M1.45)

Whereas in the first expression the vectorsD andC are collinear, in the second
expression the direction ofE is along the vectorB so thatD �= E.

M1.3.7 Products involving four vectors

Let us consider the expression (A × B) · (C× D). Defining the vectorF = C×D
we obtain the scalar triple product

(A × B) · (C× D) = (A × B) · F = A · (B× F) = A · [B× (C× D)] (M1.46)

This equation results from interchanging the dot and the cross and by replacing the
vectorF by its definition. Application of the Grassmann rule (M1.44) yields

(A × B) · (C×D) = A · [(B ·D)C− (B · C)D] = (A · C)(B ·D) − (A ·D)(B ·C)
(M1.47)

so that equation (M1.46) can be written as

(A × B) · (C× D) =
∣∣∣∣∣∣
A · C A ·D
B · C B · D

∣∣∣∣∣∣ (M1.48)

The vector product of four vectors may be evaluated with the help of the Grass-
mann rule:

(A × B) × (C× D) = (F ·D)C− (F · C)D with F = A × B (M1.49)

On replacingF by its definition and using the rules of the scalar triple product, we
find the following useful expression:

(A × B) × (C× D) = [A,B,D]C − [A,B,C]D (M1.50)
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M1.4 Reciprocal coordinate systems

As will be seen shortly, operations with the so-called reciprocal basis systems
result in particularly convenient mathematical expressions. Let us consider two
basis systems. One of these is defined by the three linearly independent basis
vectorsqi , i = 1,2,3, and the other one by the linearly independent basis vectors
qi , i = 1,2,3. To have reciprocality for the basis vectors the following relation
must be valid:

qi · qk = qk · qi = δki with δki =
{
0 i �= k
1 i = k

(M1.51)

whereδki is the Kronecker-delta symbol. Reciprocal systems are also calledcon-
tragredient systems. As is customary, the system represented by basis vectors with
the lower index is calledcovariantwhile the system employing basis vectors with
an upper index is calledcontravariant. Therefore,qi andqi are calledcovariant
andcontravariant basis vectors, respectively.

Consider for example in (M1.51) the casei = k = 1. While the scalar product
q1 · q1 = 1 may be viewed as a normalization condition for the two systems, the
scalar productsq1· q2 = 0 andq1· q3 = 0 are conditions of orthogonality. Thus,q1
is perpendicular toq2 and toq3 so that we may write

q1 = C(q2 × q3) (M1.52a)

whereC is a factor of proportionality. On substituting this expression into the
normalization condition we obtain forC

q1 · q1 = Cq1 · (q2 × q3) = 1 =⇒ C = 1

q1 · (q2 × q3)
(M1.52b)

so that (M1.52a) yields

q1 = q2 × q3

[q1,q2,q3]
(M1.52c)

We may repeat this exercise withq2 andq3 and find the general expression

qi = qj × qk

[q1,q2,q3]
(M1.53)

with i, j, k in cyclic order. Similarly we may write forq1, with D as the propor-
tionality constant,

q1 = D(q2×q3), q1·q1 = Dq1· (q2×q3) = 1 =⇒ q1 = q2 × q3
[q1,q2,q3]

(M1.54)
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Thus, the general expression is

qi = qj × qk
[q1,q2,q3]

(M1.55)

with i, j, k in cyclic order. Equations (M1.53) and (M1.55) give the explicit ex-
pressions relating the basis vectors of the two reciprocal systems.

Let us consider the special case of the Cartesian coordinate system with basis
vectorsi1, i2, i3. Application of (M1.55) shows thatij = ij since [i1, i2, i3] = 1, so
that in the Cartesian coordinate system there is no difference between covariant and
contravariant basis vectors. This is the reason why we have writtenAi = Ai, i =
1,2,3 in (M1.10).

Now we return to equation (M1.43). By replacing the covariant basis vectorq1
with the help of (M1.52c) and utilizing (M1.48) we find

q1 · (q2 × q3) = (q2 × q3) · (q2 × q3)
[q1,q2,q3]

= 1

[q1,q2,q3]

∣∣∣∣∣∣
q2 · q2 q2 · q3
q3 · q2 q3 · q3

∣∣∣∣∣∣ = 1

[q1,q2,q3]

(M1.56)

From (M1.51) it follows that the value of the determinant in (M1.56) is equal to 1.
Sinceq1 · (q2 × q3) = √

g we immediately find

[q1,q2,q3] = 1√
g

(M1.57)

Thus, the introduction of the contravariant basis vectors shows that (M1.43) and
(M1.57) are inverse relations.

Often it is desirable to work with unit vectors having the same directions as the
selected three linearly independent basis vectors. The desired relationships are

ei = qi
|qi| = qi√

qi · qi = qi√
gii
, ei = qi

|qi| = qi√
qi · qi = qi√

gii
(M1.58)

While the scalar product of the covariant basis vectorsqi · qj = gij defines the
elements of thecovariant metric tensor, thecontravariant metric tensoris defined
by the elementsqi · qj = gij , and we have

qi · qj = qj · qi = gij = gji (M1.59)
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Owing to the symmetry relationsgij = gji andgij = gji each metric tensor is
completely specified by six elements.

Some special cases follow directly from the definition (M1.13) of the scalar
product. In case of an orthonormal system, such as the Cartesian coordinate system,
we have

gij = gji = gij = gji = δ
j

i (M1.60)

As will be shown later, for any orthogonal system the following equation applies:

giig
ii = 1 (M1.61)

While in the Cartesian coordinate system the metric fundamental quantities are
either 0 or 1, we cannot give any information about thegij or gij unless the
coordinate system is specified. This will be done later when we consider various
physical situations.

In the following we will give examples of the efficient use of reciprocal systems.
Work is defined by the scalar productdA = K · dr , whereK is the force anddr is
the path increment. In the Cartesian system we obtain a particularly simple result:

K ·dr = (Kx i + Ky j + Kzk) · (dx i + dy j + dz k) = Kx dx + Ky dy + Kz dz

(M1.62)

consisting of three work contributions in the directions of the three coordinate axes.
For specific applications it may be necessary, however, to employ more general
coordinate systems. Let us consider, for example, an oblique coordinate system
with contravariant components and covariant basis vectors ofK anddr . In this
case work will be expressed by

K · dr = (K1q1 +K2q2 +K3q3) · (dq1q1 + dq2q2 + dq3q3)

= Km dqn qm · qn = Km dqn gmn
(M1.63)

Expansion of this expression results in nine components in contrast to only three
components of the Cartesian coordinate system. A great deal of simplification is
achieved by employing reciprocal systems for the force and the path increment.
As in the case of the Cartesian system, work can then be expressed by using only
three terms:

K · dr = (K1q1 +K2q2 +K3q3) · (dq1 q1 + dq2 q2 + dq3 q3)

= Km dq
n qm · qn = Km dq

n δmn = K1 dq
1 +K2 dq

2 +K3 dq
3

(M1.64a)
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or

K · dr = (K1q1 +K2q2 +K3q3) · (dq1 q1 + dq2q2 + dq3 q3)

= Km dqn qm · qn = Km dqn δ
n
m = K1 dq1 +K2 dq2 +K3 dq3

(M1.64b)

Finally, utilizing reciprocal coordinate systems, it is easy to give the proof of
the Grassmann rule (M1.44). Let us consider the expressionD = A × (B × C).
According to the definition (M1.26) of the vector product,D is perpendicular toA
and to (B× C). Therefore,D must lie in the plane defined by the vectorsB andC
so that we may write

A × (B×C) = λB+ µC (M1.65)

whereλ andµ are unknown scalars to be determined. Tomake use of the properties
of the reciprocal system,we first setB = q1 andC = q2. These two vectors define a
plane oblique coordinate system. To complete the systemwe assume that the vector
q3 is a unit vector orthogonal to the plane spanned byq1 andq2. Thus, we have

B = q1, C = q2, e3 = q1 × q2
|q1 × q2| (M1.66)

and

q1 · (q2 × e3) = e3 · (q1 × q2) = e3 · e3 |q1 × q2| = |q1 × q2| (M1.67)

According to (M1.55), the coordinate system which is reciprocal to the (q1,q2,q3)
system is given by

q1 = q2 × e3
|q1 × q2| , q2 = e3 × q1

|q1 × q2| , e3 = q1 × q2
|q1 × q2| = e3 (M1.68)

The determination ofλ andµ follows from scalar multiplication ofA× (B×C) =
A × (q1 × q2) = λq1 + µq2 by the reciprocal basis vectorsq1 andq2:

λ = [
A × (q1 × q2)

] · q1 = A × (q1 × q2) · (q2 × e3)
|q1 × q2|

= (A × e3) · (q2 × e3) = A · q2 = A · C
(M1.69a)

Analogously we obtain

µ = [
A × (q1 × q2)

] · q2 = (A × e3) · (e3 × q1) = −A · q1 = −A ·B (M1.69b)

Substitution ofλ andµ into (M1.65) gives the final result

A × (B× C) = (A · C)B− (A · B)C (M1.70)
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M1.5 Vector representations

The vectorA may be represented with the help of the covariant basis vectorsqi or
ei and the contravariant basis vectorsqi or ei as

A = Amqm = Amqm = A
* mem = A

*

mem (M1.71)

The invariant character ofA is recognizedby virtue of the fact thatwe have the same
number of upper and lower indices. In addition to thecontravariantandcovariant
measure numbersAi andAi of the basis vectorsqi andqi we have also introduced
thephysical measure numbersA

*
i andA

*

i of the unit vectorsei andei. In general
the contravariant and covariant measure numbers do not have uniform dimensions.
This becomesobviouson considering, for example, the spherical coordinate system
which is definedby two angles, which aremeasured in degrees, and the radius of the
sphere, which is measured in units of length. Physical measure numbers, however,
are uniformly dimensioned. They represent the lengths of the components of a
vector in the directions of the basis vectors. The formal definitions of the physical
measure numbers are

A
* i = Ai |qi| = Ai√gii, A

*

i = Ai |qi| = Ai

√
gii (M1.72)

Nowwewill showwhat consequencesarise by interpreting themeasure numbers
vectorially. Scalar multiplication ofA = Anqn by the reciprocal basis vectorqi

yields forAi

A · qi = Amqm · qi = Amδim = Ai (M1.73)

so that
A = Amqm = A · qmqm (M1.74)

This expression leads to the introduction to theunit dyadicE,

E = qmqm (M1.75a)

This very special dyadic or unit tensor of rank two has the same degree of im-
portance in tensor analysis as the unit vector in vector analysis. The unit dyadic
E is indispensable and will accompany our work from now on. In the Cartesian
coordinate system the unit dyadic is given by

E = ii + jj + kk = i1i1 + i2i2 + i3i3 (M1.75b)

We repeat the above procedure by representing the vectorA asA = Amqm.
Scalar multiplication byqi results in

A · qi = Amqm · qi = Ai (M1.76)
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and the equivalent definition of the unit dyadicE

A = Amqm = A · qmqm =⇒ E = qmqm (M1.77)

Of particular interest is the scalar product of two unit dyadics:

E · E = qmqm · qnqn = qmδnmqn = qmqm = E

E · E = qmqm · qnqn = qmδmn q
n = qmqm = E

(M1.78)

From these expressions we obtain additional representations of the unit dyadic that
involve the metric fundamental quantitiesgij andgij :

E · E = qmqm · qnqn = gmnqmqn = qmqm · qnqn = gmnqmqn (M1.79)

Again it should be carefully observed that eachexpression containsanequal number
of subscripts and superscripts to stress the invariant character of the unit dyadic.
We collect the important results involving the unit dyadic as

E = qmqm = δnmq
mqn = qmqm = δmn qmq

n = gmnqmqn = gmnqmqn (M1.80)

Scalar multiplication ofE in two of the forms of (M1.80) withqi results in

E · qi = (qmqm) · qi = qmδmi = qi
= (gmnqmqn) · qi = gmnqmδni = gimqm

(M1.81)

Hence, we see immediately that

qi = gimqm (M1.82)

This very useful expression is known as theraising rule for the index of the basis
vectorqi. Analogously we multiply the unit dyadic byqi to obtain

E · qi = (qmqm) · qi = qi = (gmnqmqn) · qi = gimqm (M1.83)

and thus
qi = gimqm (M1.84)

which is known as thelowering rule for the index of the contravariant basis
vectorqi.

With the help of the unit dyadic we are in a position to find additional important
rules of tensor analysis. In order to avoid confusion, it is often necessary to replace a
letter representing a summation index by another letter so that the letter representing
a summation does not occur more often than twice. If the replacement is done
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properly, the meaning of any mathematical expression will not change. Let us
consider the expression

E = qrqr = grmg
rnqmqn = δnmq

mqn (M1.85)

Application of (M1.82) and (M1.84) gives the expression to the right of the second
equality sign. For comparison purposes we have also added one of the forms of
(M1.80) as the final expression in (M1.85). It should be carefully observed that the
summation indicesm,n, r occur twice only.

To take full advantage of the reciprocal systems we perform a scalar multiplica-
tion first by the contravariant basis vectorqi and then by the covariant basis vector
qj , yielding

(E · qi) · qj = grmg
rnδinδ

m
j = δnmδ

i
nδ
m
j (M1.86)

from which it follows immediately that

grjg
ri = δij (M1.87a)

By interchangingi andj , observing the symmetry of the fundamental quantities,
we find

girg
rj = δ

j

i or (gij )(g
ij ) =




1 0 0

0 1 0

0 0 1


 =⇒ (gij ) = (gij )−1 (M1.87b)

Hence, thematrices (gij ) and (gij ) are inverse to each other. Owing to the symmetry
properties of the metric fundamental quantities, i.e.gij = gji andgij = gji , we
need six elements only to specify either metric tensor. In case of an orthogonal
systemgij = 0, gij = 0 for i �= j so that (M1.87a) reduces to

giig
ii = 1 (M1.88)

thus verifying equation (M1.61). At this point we must recall the rule that we do
not sum over repeated free indicesi, j, k, l.

Next we wish to show that, in an orthonormal system, there is no difference
between contravariant and covariant basis vectors. The proof is very simple:

ei = qi√
gii

= gin√
gii
qn = √

giiqi = qi√
gii

= ei (M1.89)

Here use of the raising rule has been made. With the help of (M1.89) it is easy
to show that there is no difference between contravariant and covariant physical
measure numbers. Utilizing (M1.71) we find

A · ei = A · ei =⇒ A
* nen · ei = A

*

nen · ei =⇒ A
* i = A

*

i (M1.90)
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M1.6 Products of vectors in general coordinate systems

There are various ways to express the dyadic product of vectorA with vectorB by
employing covariant and contravariant basis vectors:

AB = AmBnqmqn = AmBnqmqn = AmB
nqmqn = AmBnqmqn (M1.91)

This yields four possibilities for formulating the scalar productA · B:
A · B = AmBnqm · qn = AmBngmn = AmBnqm · qn = AmBng

mn

= AmB
nqm · qn = AmB

m = AmBnqm · qn = AmBm
(M1.92)

1 The last two forms with mixed basis vectors (covariant and contravariant) are
more convenient since the sums involve the evaluation of only three terms. In
contrast, nine terms are required for the first two forms since they involve the
metric fundamental quantities.

There are two useful forms in which to express the vector productA × B. From
the basic definition (M1.28) and the properties of the reciprocal systems (M1.55)
we obtain

A × B = Amqm × Bnqn = √
g

∣∣∣∣∣∣∣∣∣

q1 q2 q3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
(M1.93)

where all measure numbers are of the contravariant type. If it is desirable to
express the vector product in terms of covariant measure numbers we use (M1.53)
and (M1.57). Thus, we find

A × B = Amqm × Bnqn = 1√
g

∣∣∣∣∣∣∣∣∣

q1 q2 q3
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
(M1.94)

The two forms involving mixed basis vectors are not used, in general.
On performing the scalar triple product operation (M1.33) we find

[A,B,C] = Amqm · (Bnqn × Crqr)

= Am√
gqm ·

∣∣∣∣∣∣∣∣∣

q1 q2 q3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
= √

g

∣∣∣∣∣∣∣∣∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
(M1.95)

1 For the scalar productA ·A we usually writeA2.


