DYNAMICS OF THE ATMOSPHERE: A COURSE IN THEORETICAL METEOROLOGY

WILFORD ZDUNKOWSKI and ANDREAS BOTT

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14 pt System $IAT_{FX} 2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

ISBN 0 521 80949 5	hardback
ISBN 0 521 00666 X	paperback

Contents

	Prefac	re	page xv
Part 1	Mathe	ematical tools	1
M1	Algeb	ra of vectors	3
	M1.1	Basic concepts and definitions	3
	M1.2	Reference frames	6
	M1.3	Vector multiplication	7
	M1.4	Reciprocal coordinate systems	15
	M1.5	Vector representations	19
	M1.6	Products of vectors in general coordinate systems	22
	M1.7	Problems	23
M2	Vector	functions	25
	M2.1	Basic definitions and operations	25
	M2.2	Special dyadics	28
	M2.3	Principal-axis transformation of symmetric tensors	32
	M2.4	Invariants of a dyadic	34
	M2.5	Tensor algebra	40
	M2.6	Problems	42
M3	Differe	ential relations	43
	M3.1	Differentiation of extensive functions	43
	M3.2	The Hamilton operator in generalized coordinate	
		systems	48
	M3.3	The spatial derivative of the basis vectors	51
	M3.4	Differential invariants in generalized coordinate systems	53
	M3.5	Additional applications	56
	M3.6	Problems	60
M4	Coord	inate transformations	62
	M4.1	Transformation relations of time-independent	
		coordinate systems	62

viii		Contents	
	M4.2	Transformation relations of time-dependent	
		coordinate systems	67
	M4.3	Problems	73
M5	The m	ethod of covariant differentiation	75
	M5.1	Spatial differentiation of vectors and dyadics	75
	M5.2	Time differentiation of vectors and dyadics	79
	M5.3	The local dyadic of v_P	82
	M5.4	Problems	83
M6	Integra	al operations	84
	M6.1	Curves, surfaces, and volumes in the general q^i system	84
	M6.2	Line integrals, surface integrals, and volume integrals	87
	M6.3	Integral theorems	90
	M6.4	Fluid lines, surfaces, and volumes	94
	M6.5	Time differentiation of fluid integrals	96
	M6.6	The general form of the budget equation	101
	M6.7	Gauss' theorem and the Dirac delta function	104
	M6.8	Solution of Poisson's differential equation	106
	M6.9	Appendix: Remarks on Euclidian and Riemannian	
		spaces	107
	M6.10) Problems	110
M7	Introd	uction to the concepts of nonlinear dynamics	111
	M7.1	One-dimensional flow	111
	M7.2	Two-dimensional flow	116
Part 2	Dynai	mics of the atmosphere	131
1	The la	ws of atmospheric motion	133
	1.1	The equation of absolute motion	133
	1.2	The energy budget in the absolute reference system	136
	1.3	The geographical coordinate system	137
	1.4	The equation of relative motion	146
	1.5	The energy budget of the general relative system	147
	1.6	The decomposition of the equation of motion	150
2	1./	Problems	154
2	Scale a	analysis	157
	2.1	An outline of the method	157
	2.2	Practical formulation of the dimensionless flow	150
	2.2	numbers	159
	2.5	Scale analysis of large-scale irretionless motion	101
	2.4 2.5	The geostrophic wind and the Euler wind	10/
	2.5	The equation of motion on a tangential plane	109
	2.0	Problems	169

		Contents	ix	
3	The	material and the local description of flow	171	
	3.1	The description of Lagrange	171	
	3.2	Lagrange's version of the continuity equation	173	
	3.3	An example of the use of Lagrangian coordinates	175	
	3.4	The local description of Euler	182	
	3.5	Transformation from the Eulerian to the Lagrangian		
		system	186	
	3.6	Problems	187	
4	Atmo	ospheric flow fields	189	
	4.1	The velocity dyadic	189	
	4.2	The deformation of the continuum	193	
	4.3	Individual changes with time of geometric fluid		
		configurations	199	
	4.4	Problems	205	
5	The 1	Navier–Stokes stress tensor	206	
	5.1	The general stress tensor	206	
	5.2	Equilibrium conditions in the stress field	208	
	5.3	Symmetry of the stress tensor	209	
	5.4	The frictional stress tensor and the deformation		
		dyadic	210	
	5.5	Problems	212	
6	The l	Helmholtz theorem	214	
	6.1	The three-dimensional Helmholtz theorem	214	
	6.2	The two-dimensional Helmholtz theorem	216	
	6.3	Problems	217	
7	Kine	matics of two-dimensional flow	218	
	7.1	Atmospheric flow fields	218	
	7.2	Two-dimensional streamlines and normals	222	
	7.3	Streamlines in a drifting coordinate system	225	
	7.4	Problems	228	
8	Natu	Natural coordinates		
	8.1	Introduction	230	
	8.2	Differential definitions of the coordinate lines	232	
	8.3	Metric relationships	235	
	8.4	Blaton's equation	236	
	8.5	Individual and local time derivatives of the velocity	238	
	8.6	Differential invariants	239	
	8.7	The equation of motion for frictionless horizontal flow	242	
	8.8	The gradient wind relation	243	
	8.9	Problems	244	

9	Boun	dary surfaces and boundary conditions	246
	9.1	Introduction	246
	9.2	Differential operations at discontinuity surfaces	247
	9.3	Particle invariance at boundary surfaces, displacement	
		velocities	251
	9.4	The kinematic boundary-surface condition	253
	9.5	The dynamic boundary-surface condition	258
	9.6	The zeroth-order discontinuity surface	259
	9.7	An example of a first-order discontinuity surface	265
	9.8	Problems	267
10	Circu	lation and vorticity theorems	268
	10.1	Ertel's form of the continuity equation	268
	10.2	The baroclinic Weber transformation	271
	10.3	The baroclinic Ertel–Rossby invariant	275
	10.4	Circulation and vorticity theorems for frictionless	
		baroclinic flow	276
	10.5	Circulation and vorticity theorems for frictionless	
		barotropic flow	293
	10.6	Problems	301
11	Turbu	lent systems	302
	11.1	Simple averages and fluctuations	302
	11.2	Weighted averages and fluctuations	304
	11.3	Averaging the individual time derivative and the	
		budget operator	306
	11.4	Integral means	307
	11.5	Budget equations of the turbulent system	310
	11.6	The energy budget of the turbulent system	313
	11.7	Diagnostic and prognostic equations of turbulent	
		systems	315
	11.8	Production of entropy in the microturbulent system	319
	11.9	Problems	324
12	An ex	cursion into spectral turbulence theory	326
	12.1	Fourier Representation of the continuity equation and	
		the equation of motion	326
	12.2	The budget equation for the amplitude of the	
		kinetic energy	331
	12.3	Isotropic conditions, the transition to the continuous	
		wavenumber space	333
	12.4	The Heisenberg spectrum	336
	12.5	Relations for the Heisenberg exchange coefficient	340
	12.6	A prognostic equation for the exchange coefficient	341

	107	Construitine annuales en stearne annue dume	210
	12.7	Concluding remarks on closure procedures	340
12	12.8	Problems	548 240
15	1 ne at	Introduction	249
	12.1	Introduction	250
	13.2	The Monin Obulthey similarity theory of the neutral	550
	15.5	The Monin–Obuknov similarity theory of the neutral	250
	12 /	The Monin Obukhov similarity theory of the dishetic	550
	13.4	Prendtl lavor	367
	12.5	Application of the Propdtl lover theory in numerical	302
	13.5	prognostic models	360
	13.6	The fluxes, the dissipation of energy and the exchange	309
	15.0	coefficients	371
	137	The interface condition at the earth's surface	371
	13.7	The Ekman layer – the classical approach	372
	13.0	The composite Ekman layer	381
	13.0	Ekman numping	388
	13.10	Appendix A: Dimensional analysis	391
	13.11	Appendix R: The mixing length	394
	13.12	Problems	396
14	Wave	motion in the atmosphere	398
	14.1	The representation of waves	398
	14.2	The group velocity	401
	14.3	Perturbation theory	403
	14.4	Pure sound waves	407
	14.5	Sound waves and gravity waves	410
	14.6	Lamb waves	418
	14.7	Lee waves	418
	14.8	Propagation of energy	418
	14.9	External gravity waves	422
	14.10	Internal gravity waves	426
	14.11	Nonlinear waves in the atmosphere	431
	14.12	Problems	434
15	The ba	arotropic model	435
	15.1	The basic assumptions of the barotropic model	435
	15.2	The unfiltered barotropic prediction model	437
	15.3	The filtered barotropic model	450
	15.4	Barotropic instability	452
	15.5	The mechanism of barotropic development	463
	15.6	Appendix	468
	15.7	Problems	470

16	Rosst	by waves	471
	16.1	One- and two-dimensional Rossby waves	471
	16.2	Three-dimensional Rossby waves	476
	16.3	Normal-mode considerations	479
	16.4	Energy transport by Rossby waves	482
	16.5	The influence of friction on the stationary Rossby wave	483
	16.6	Barotropic equatorial waves	484
	16.7	The principle of geostrophic adjustment	487
	16.8	Appendix	493
	16.9	Problems	494
17	Inertia	al and dynamic stability	495
	17.1	Inertial motion in a horizontally homogeneous	
		pressure field	495
	17.2	Inertial motion in a homogeneous geostrophic wind field	497
	17.3	Inertial motion in a geostrophic shear wind field	498
	17.4	Derivation of the stability criteria in the geostrophic	
		wind field	501
	17.5	Sectorial stability and instability	504
	17.6	Sectorial stability for normal atmospheric conditions	509
	17.7	Sectorial stability and instability with permanent	
		adaptation	510
	17.8	Problems	512
18	The e	quation of motion in general coordinate systems	513
	18.1	Introduction	513
	18.2	The covariant equation of motion in general coordinate	
		systems	514
	18.3	The contravariant equation of motion in general	
		coordinate systems	518
	18.4	The equation of motion in orthogonal coordinate systems	520
	18.5	Lagrange's equation of motion	523
	18.6	Hamilton's equation of motion	527
	18.7	Appendix	530
	18.8	Problems	531
19	The g	eographical coordinate system	532
	19.1	The equation of motion	532
	19.2	Application of Lagrange's equation of motion	536
	19.3	The first metric simplification	538
	19.4	The coordinate simplification	539
	19.5	The continuity equation	540
	19.6	Problems	541

	٠	٠	٠
X	1	1	1
-			

20	The st	ereographic coordinate system	542
	20.1	The stereographic projection	542
	20.2	Metric forms in stereographic coordinates	546
	20.3	The absolute kinetic energy in stereographic coordinates	549
	20.4	The equation of motion in the stereographic	
		Cartesian coordinates	550
	20.5	The equation of motion in stereographic	
		cylindrical coordinates	554
	20.6	The continuity equation	556
	20.7	The equation of motion on the tangential plane	558
	20.8	The equation of motion in Lagrangian enumereation	
		coordinates	559
	20.9	Problems	564
21	Orogra	aphy-following coordinate systems	565
	21.1	The metric of the η system	565
	21.2	The equation of motion in the η system	568
	21.3	The continuity equation in the η system	571
	21.4	Problems	571
22	The st	ereographic system with a generalized vertical coordinate	572
	22.1	The ξ transformation and resulting equations	573
	22.2	The pressure system	577
	22.3	The solution scheme using the pressure system	579
	22.4	The solution to a simplified prediction problem	582
	22.5	The solution scheme with a normalized pressure	
		coordinate	584
	22.6	The solution scheme with potential temperature as	
		vertical coordinate	587
	22.7	Problems	589
23	A quas	si-geostrophic baroclinic model	591
	23.1	Introduction	591
	23.2	The first law of thermodynamics in various forms	592
	23.4	The vorticity and the divergence equation	593
	23.5	The first and second filter conditions	595
	23.6	The geostrophic approximation of the heat equation	597
	23.7	The geostrophic approximation of the vorticity equation	603
	23.8	The ω equation	605
	23.9	The Philipps approximation of the ageostrophic	
		component of the horizontal wind	609
	23.10	Applications of the Philipps wind	614
	23.11	Problems	617

24	A two-level prognostic model, baroclinic instability			
	24.1	Introduction	619	
	24.2	The mathematical development of the two-level model	619	
	24.3	The Phillips quasi-geostrophic two-level circulation model	623	
	24.4	Baroclinic instability	624	
	24.5	Problems	633	
25	An excursion concerning numerical procedures			
	25.1 Numerical stability of the one-dimensional			
		advection equation	634	
	25.2	Application of forward-in-time and central-in-space		
		difference quotients	640	
	25.3	A practical method for the elimination of the weak		
		instability	642	
	25.4	The implicit method	642	
	25.5	The aliasing error and nonlinear instability	645	
	25.6	Problems	648	
26	Modeling of atmospheric flow by spectral techniques			
	26.1	Introduction	649	
	26.2	The basic equations	650	
	26.3	Horizontal discretization	655	
	26.4	Problems	667	
27	Predictability			
	27.1	Derivation and discussion of the Lorenz equations	669	
	27.2	The effect of uncertainties in the initial conditions	681	
	27.3	Limitations of deterministic predictability of the		
		atmosphere	683	
	27.4	Basic equations of the approximate stochastic		
		dynamic method	689	
	27.5	Problems	692	
	Answers to Problems			
	List of frequently used symbols			
	References and bibliography			

M1

Algebra of vectors

M1.1 Basic concepts and definitions

A *scalar* is a quantity that is specified by its sign and by its magnitude. Examples are temperature, the specific volume, and the humidity of the air. Scalars will be written using Latin or Greek letters such as $a, b, ..., A, B, ..., \alpha, \beta, A$ *vector* requires for its complete characterization the specification of magnitude and direction. Examples are the velocity vector and the force vector. A vector will be represented by a boldfaced letter such as $\mathbf{a}, \mathbf{b}, ..., \mathbf{A}, \mathbf{B}, A$ *unit vector* is a vector of prescribed direction and of magnitude 1. Employing the unit vector \mathbf{e}_A , the arbitrary vector \mathbf{A} can be written as

$$\mathbf{A} = |\mathbf{A}| \, \mathbf{e}_A = A \mathbf{e}_A \implies \mathbf{e}_A = \frac{\mathbf{A}}{|\mathbf{A}|} \tag{M1.1}$$

Two vectors **A** and **B** are equal if they have the same magnitude and direction regardless of the position of their initial points,

that is $|\mathbf{A}| = |\mathbf{B}|$ and $\mathbf{e}_A = \mathbf{e}_B$. Two vectors are *collinear* if they are parallel or antiparallel. Three vectors that lie in the same plane are called *coplanar*. Two vectors always lie in the same plane since they define the plane. The following rules are valid:

the commutative law:
the associative law:
the distributive law:

$$\mathbf{A} \pm \mathbf{B} = \mathbf{B} \pm \mathbf{A}, \quad \mathbf{A}\alpha = \alpha \mathbf{A}$$

 $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}, \quad \alpha(\beta \mathbf{A}) = (\alpha\beta)\mathbf{A}$
 $(\alpha + \beta)\mathbf{A} = \alpha \mathbf{A} + \beta \mathbf{A}$
(M1.2)

The concept of linear dependence of a set of vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_N$ is closely connected with the dimensionality of space. The following definition applies: A set of *N* vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_N$ of the same dimension is linearly dependent if there exists a set of numbers $\alpha_1, \alpha_2, ..., \alpha_N$, not all of which are zero, such that

$$\alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \dots + \alpha_N \mathbf{a}_N = 0 \tag{M1.3}$$

Fig. M1.1 Linear vector spaces: (a) one-dimensional, (b) two-dimensional, and (c) three-dimensional.

If no such numbers exist, the vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_N$ are said to be linearly independent. To get the geometric meaning of this definition, we consider the vectors \mathbf{a} and \mathbf{b} as shown in Figure M1.1(a). We can find a number $k \neq 0$ such that

$$\mathbf{b} = k\mathbf{a} \tag{M1.4a}$$

By setting $k = -\alpha/\beta$ we obtain the symmetrized form

$$\alpha \mathbf{a} + \beta \mathbf{b} = 0 \tag{M1.4b}$$

Assuming that neither α nor β is equal to zero then it follows from the above definition that two collinear vectors are linearly dependent. They define the onedimensional *linear vector space*. Consider two noncollinear vectors **a** and **b** as shown in Figure M1.1(b). Every vector **c** in their plane can be represented by

$$\mathbf{c} = k_1 \mathbf{a} + k_2 \mathbf{b}$$
 or $\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = 0$ (M1.5)

with a suitable choice of the constants k_1 and k_2 . Equation (M1.5) defines a twodimensional linear vector space. Since not all constants α , β , γ are zero, this formula insures that the three vectors in the two-dimensional space are linearly dependent. Taking three noncoplanar vectors **a**, **b**, and **c**, we can represent every vector **d** in the form

$$\mathbf{d} = k_1 \mathbf{a} + k_2 \mathbf{b} + k_3 \mathbf{c} \tag{M1.6}$$

in a three-dimensional linear vector space, see Figure M1.1(c). This can be generalized by stating that, in an N-dimensional linear vector space, every vector can be represented in the form

$$\mathbf{x} = k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2 + \dots + k_N \mathbf{a}_N \tag{M1.7}$$

where the $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_N$ are linearly independent vectors. Any set of vectors containing more than N vectors in this space is linearly dependent.

Extensive quantity	Degree v	Symbol	Number of vectors	Number of components
Scalar	0	B	0	$N^{0} = 1$
Dyadic	1 2	B	2	$\frac{N}{N^2}$

 Table M1.1. Extensive quantities of different degrees for the

 N-dimensional linear vector space

Fig. M1.2 Projection of a vector **B** onto a vector **A**.

We call the set of N linearly independent vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_N$ the basis vectors of the N-dimensional linear vector space. The numbers $k_1, k_2, ..., k_N$ appearing in (M1.7) are the measure numbers associated with the basis vectors. The term $k_i \mathbf{a}_i$ of the vector \mathbf{x} in (M1.7) is the component of this vector in the direction \mathbf{a}_i .

A vector **B** may be projected onto the vector **A** parallel to the direction of a straight line k as shown in Figure M1.2(a). If the direction of the straight line k is not given, we perform an orthogonal projection as shown in part (b) of this figure. A projection in three-dimensional space requires a plane F parallel to which the projection of the vector **B** onto the vector **A** can be carried out; see Figure M1.2(c).

In vector analysis an *extensive quantity* of degree v is defined as a homogeneous sum of general products of vectors (with no dot or cross between the vectors). The number of vectors in a product determines the degree of the extensive quantity. This definition may seem strange to begin with, but it will be familiar soon. Thus, a scalar is an extensive quantity of degree zero, and a vector is an extensive quantity of degree one. An extensive quantity of degree two is called a *dyadic*. Every dyadic \mathbb{B} may be represented as the sum of three or more *dyads*. $\mathbb{B} = \mathbf{p}_1 \mathbf{P}_1 + \mathbf{p}_2 \mathbf{P}_2 + \mathbf{p}_3 \mathbf{P}_3 + \cdots$. Either the *antecedents* \mathbf{p}_i or the *consequents* \mathbf{P}_i may be arbitrarily assigned as long as they are linearly independent. Our practical work will be restricted to extensive quantities of degree two or less. Extensive quantities of degree three and four also appear in the highly specialized literature. Table M1.1 gives a list of extensive quantities used in our work. Thus, in the three-dimensional linear vector space with N = 3, a vector consists of three and a dyadic of nine components.

Fig. M1.3 The general vector basis q_1 , q_2 , q_3 of the three-dimensional space.

M1.2 Reference frames

The representation of a vector in component form depends on the choice of a particular coordinate system. A *general vector basis* at a given point in threedimensional space is defined by three arbitrary linearly independent basis vectors $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ spanning the space. In general, the basis vectors are neither orthogonal nor unit vectors; they may also vary in space and in time.

Consider a position vector **r** extending from an arbitrary origin to a point *P* in space. An arbitrary vector **A** extending from *P* is defined by the three basis vectors \mathbf{q}_i , i = 1, 2, 3, existing at *P* at time *t*, as shown in Figure M1.3 for an oblique coordinate system. Hence, the vector **A** may be written as

$$\mathbf{A} = A^{1}\mathbf{q}_{1} + A^{2}\mathbf{q}_{2} + A^{3}\mathbf{q}_{3} = \sum_{k=1}^{3} A^{k}\mathbf{q}_{k}$$
(M1.8)

where it should be observed that the so-called *affine measure numbers* A^1 , A^2 , A^3 carry superscripts, and the basis vectors \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 carry subscripts. This type of notation is used in the *Ricci calculus*, which is the tensor calculus for nonorthonormal coordinate systems. Furthermore, it should be noted that there must be an equal number of upper and lower indices.

Formula (M1.8) can be written more briefly with the help of the familiar *Einstein summation convention* which omits the summation sign:

$$\mathbf{A} = A^1 \mathbf{q}_1 + A^2 \mathbf{q}_2 + A^3 \mathbf{q}_3 = A^n \mathbf{q}_n \tag{M1.9}$$

We will agree on the following notation: Whenever an index (subscript or superscript) m, n, p, q, r, s, t, is repeated in a term, we are to sum over that index from 1 to 3, or more generally to N. In contrast to the summation indices m, n, p, q, r, s, t, the letters i, j, k, l are considered to be "free" indices that are used to enumerate equations. Note that summation is not implied even if the free indices occur twice in a term or even more often. A special case of the general vector basis is the *Cartesian vector basis* represented by the three orthogonal unit vectors \mathbf{i} , \mathbf{j} , \mathbf{k} , or, more conveniently, \mathbf{i}_1 , \mathbf{i}_2 , \mathbf{i}_3 . Each of these three unit vectors has the same direction at all points of space. However, in rotating coordinate systems these unit vectors also depend on time. The arbitrary vector \mathbf{A} may be represented by

$$\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k} = A^n \mathbf{i}_n = A_n \mathbf{i}_n$$

with $A_x = A^1 = A_1$, $A_y = A^2 = A_2$, $A_z = A^3 = A_3$ (M1.10)

In the Cartesian coordinate space there is no need to distinguish between upper and lower indices so that (M1.10) may be written in different ways. We will return to this point later.

Finally, we wish to define the *position vector* \mathbf{r} . In a Cartesian coordinate system we may simply write

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = x^n\mathbf{i}_n = x_n\mathbf{i}_n \tag{M1.11}$$

In an oblique coordinate system, provided that the same basis exists everywhere in space, we may write the general form

$$\mathbf{r} = q^1 \mathbf{q}_1 + q^2 \mathbf{q}_2 + q^3 \mathbf{q}_3 = q^n \mathbf{q}_n \tag{M1.12}$$

where the q^i are the measure numbers corresponding to the basis vectors \mathbf{q}_i . The form (M1.12) is also valid along the radius in a spherical coordinate system since the basis vectors do not change along this direction.

A different situation arises in case of curvilinear coordinate lines since the orientations of the basis vectors change with position. This is evident, for example, on considering the coordinate lines (lines of equal latitude and longitude) on the surface of a nonrotating sphere. In case of curvilinear coordinate lines the position vector \mathbf{r} has to be replaced by the differential expression $d\mathbf{r} = dq^n \mathbf{q}_n$. Later we will discuss this topic in the required detail.

M1.3 Vector multiplication

M1.3.1 The scalar product of two vectors

By definition, the coordinate-free form of the scalar product is given by

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos(\mathbf{A}, \mathbf{B}) \tag{M1.13}$$

Fig. M1.4 Geometric interpretation of the scalar product.

If the vectors **A** and **B** are orthogonal the expression $cos(\mathbf{A}, \mathbf{B}) = 0$ so that the scalar product vanishes. The following rules involving the scalar product are valid:

the commutative law: $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$ the associative law: $(k\mathbf{A}) \cdot \mathbf{B} = k(\mathbf{A} \cdot \mathbf{B}) = k\mathbf{A} \cdot \mathbf{B}$ the distributive law: $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$

Moreover, we recognize that the scalar product, also known as the dot product or inner product, may be represented by the orthogonal projections

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}'||\mathbf{B}|, \qquad \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}||\mathbf{B}'| \tag{M1.15}$$

whereby the vector \mathbf{A}' is the projection of \mathbf{A} on \mathbf{B} , and \mathbf{B}' is the projection of \mathbf{B} on \mathbf{A} ; see Figure M1.4.

The component notation of the scalar product yields

$$\mathbf{A} \cdot \mathbf{B} = A^{1}B^{1}\mathbf{q}_{1} \cdot \mathbf{q}_{1} + A^{1}B^{2}\mathbf{q}_{1} \cdot \mathbf{q}_{2} + A^{1}B^{3}\mathbf{q}_{1} \cdot \mathbf{q}_{3}$$

+ $A^{2}B^{1}\mathbf{q}_{2} \cdot \mathbf{q}_{1} + A^{2}B^{2}\mathbf{q}_{2} \cdot \mathbf{q}_{2} + A^{2}B^{3}\mathbf{q}_{2} \cdot \mathbf{q}_{3}$
+ $A^{3}B^{1}\mathbf{q}_{3} \cdot \mathbf{q}_{1} + A^{3}B^{2}\mathbf{q}_{3} \cdot \mathbf{q}_{2} + A^{3}B^{3}\mathbf{q}_{3} \cdot \mathbf{q}_{3}$ (M1.16)

Thus, in general the scalar product results in nine terms. Utilizing the Einstein summation convention we obtain the compact notation

$$\mathbf{A} \cdot \mathbf{B} = A^m \mathbf{q}_m \cdot B^n \mathbf{q}_n = A^m B^n \mathbf{q}_m \cdot \mathbf{q}_n = A^m B^n g_{mn}$$
(M1.17)

The quantity g_{ij} is known as the covariant *metric fundamental quantity* representing an element of a covariant tensor of rank two or order two. This tensor is called the *metric tensor* or the *fundamental tensor*. The expression "covariant" will be described later. Since $\mathbf{q}_i \cdot \mathbf{q}_j = \mathbf{q}_j \cdot \mathbf{q}_i$ we have the identity

$$g_{ij} = g_{ji} \tag{M1.18}$$

On substituting for \mathbf{A} , \mathbf{B} the unit vectors of the Cartesian coordinate system, we find the well-known orthogonality conditions for the Cartesian unit vectors

$$\mathbf{i} \cdot \mathbf{j} = 0, \qquad \mathbf{i} \cdot \mathbf{k} = 0, \qquad \mathbf{j} \cdot \mathbf{k} = 0$$
 (M1.19)

or the normalization conditions

$$\mathbf{i} \cdot \mathbf{i} = 1, \qquad \mathbf{j} \cdot \mathbf{j} = 1, \qquad \mathbf{k} \cdot \mathbf{k} = 1$$
 (M1.20)

For the special case of Cartesian coordinates, from (M1.16) we, therefore, obtain for the scalar product

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z \tag{M1.21}$$

When the basis vectors **i**, **j**, **k** are oriented along the (x, y, z)-axes, the coordinates of their terminal points are given by

i: (1, 0, 0), j: (0, 1, 0), k: (0, 0, 1) (M1.22)

This expression is the Euclidian three-dimensional space or the space of ordinary human life. On generalizing to the N-dimensional space we obtain

$$\mathbf{e}_1$$
: (1, 0, ..., 0), \mathbf{e}_2 : (0, 1, ..., 0), ... \mathbf{e}_N : (0, 0, ..., 1)
(M1.23)

This equation is known as the Cartesian reference frame of the *N*-dimensional Euclidian space. In this space the generalized form of the position vector \mathbf{r} is given by

$$\mathbf{r} = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + \dots + x^N \mathbf{e}_N \tag{M1.24}$$

The length or the magnitude of the vector **r** is also known as the *Euclidian norm*

$$|\mathbf{r}| = \sqrt{\mathbf{r} \cdot \mathbf{r}} = \sqrt{(x^1)^2 + (x^2)^2 + \dots + (x^N)^2}$$
 (M1.25)

M1.3.2 The vector product of two vectors

In coordinate-free or invariant notation the vector product of two vectors is defined by

$$\mathbf{A} \times \mathbf{B} = \mathbf{C} = |\mathbf{A}| |\mathbf{B}| \sin(\mathbf{A}, \mathbf{B}) \mathbf{e}_{C}$$
(M1.26)

The unit vector \mathbf{e}_C is perpendicular to the plane defined by the vectors \mathbf{A} and \mathbf{B} . The direction of the vector \mathbf{C} is defined in such a way that the vectors \mathbf{A} , \mathbf{B} , and \mathbf{C}

Fig. M1.5 Geometric interpretation of the vector or cross product.

form a right-handed system. The magnitude of **C** is equal to the area *F* of a parallelogram defined by the vectors **A** and **B** as shown in Figure M1.5. Interchanging the vectors **A** and **B** gives $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$. This follows immediately from (M1.26) since the unit vector \mathbf{e}_{C} now points in the opposite direction.

The following vector statements are valid:

$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$$

(kA) × B = A × (kB) = kA × B
A × B = -B × A (M1.27)

The component representation of the vector product yields

$$\mathbf{A} \times \mathbf{B} = A^{m} \mathbf{q}_{m} \times B^{n} \mathbf{q}_{n} = \begin{vmatrix} \mathbf{q}_{2} \times \mathbf{q}_{3} & \mathbf{q}_{3} \times \mathbf{q}_{1} & \mathbf{q}_{1} \times \mathbf{q}_{2} \\ A^{1} & A^{2} & A^{3} \\ B^{1} & B^{2} & B^{3} \end{vmatrix}$$
(M1.28)

By utilizing Cartesian coordinates we obtain the well-known relation

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$
(M1.29)

M1.3.3 The dyadic representation, the general product of two vectors

The general or *dyadic product* of two vectors **A** and **B** is given by

$$\Phi = \mathbf{A}\mathbf{B} = (A^{1}\mathbf{q}_{1} + A^{2}\mathbf{q}_{2} + A^{3}\mathbf{q}_{3})(B^{1}\mathbf{q}_{1} + B^{2}\mathbf{q}_{2} + B^{3}\mathbf{q}_{3})$$
(M1.30)

It is seen that the vectors are not separated by a dot or a cross. At first glance this type of vector product seems strange. However, the advantage of this notation will

Fig. M1.6 Geometric representation of the scalar triple product.

become apparent later. On performing the dyadic multiplication we obtain

$$\Phi = \mathbf{A}\mathbf{B} = A^{1}B^{1}\mathbf{q}_{1}\mathbf{q}_{1} + A^{1}B^{2}\mathbf{q}_{1}\mathbf{q}_{2} + A^{1}B^{3}\mathbf{q}_{1}\mathbf{q}_{3}$$

+ $A^{2}B^{1}\mathbf{q}_{2}\mathbf{q}_{1} + A^{2}B^{2}\mathbf{q}_{2}\mathbf{q}_{2} + A^{2}B^{3}\mathbf{q}_{2}\mathbf{q}_{3}$
+ $A^{3}B^{1}\mathbf{q}_{3}\mathbf{q}_{1} + A^{3}B^{2}\mathbf{q}_{3}\mathbf{q}_{2} + A^{3}B^{3}\mathbf{q}_{3}\mathbf{q}_{3}$ (M1.31)

In carrying out the general multiplication, we must be careful not to change the position of the basis vectors. The following statements are valid:

$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}, \qquad \mathbf{A}\mathbf{B} \neq \mathbf{B}\mathbf{A}$$
 (M1.32)

M1.3.4 The scalar triple product

The scalar triple product, sometimes also called the box product, is defined by

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = [\mathbf{A}, \mathbf{B}, \mathbf{C}] \tag{M1.33}$$

The absolute value of the scalar triple product measures the volume of the parallelepiped having the three vectors **A**, **B**, **C** as adjacent edges, see Figure M1.6. The height *h* of the parallelepiped is found by projecting the vector **A** onto the cross product $\mathbf{B} \times \mathbf{C}$. If the volume vanishes then the three vectors are coplanar. This situation will occur whenever a vector appears twice in the scalar triple product. It is apparent that, in the scalar triple product, any cyclic permutation of the factors leaves the value of the scalar triple product unchanged. A permutation that reverses the original cyclic order changes the sign of the product:

$$[A, B, C] = [B, C, A] = [C, A, B]$$

[A, B, C] = -[B, A, C] = -[A, C, B] (M1.34)

From these observations we may conclude that, in any scalar triple product, the dot and the cross can be interchanged without changing the magnitude and the sign of the scalar triple product

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C} \tag{M1.35}$$

For the general vector basis the coordinate representation of the scalar triple product yields

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (A^1 \mathbf{q}_1 + A^2 \mathbf{q}_2 + A^3 \mathbf{q}_3) \cdot \begin{vmatrix} \mathbf{q}_2 \times \mathbf{q}_3 & \mathbf{q}_3 \times \mathbf{q}_1 & \mathbf{q}_1 \times \mathbf{q}_2 \\ B^1 & B^2 & B^3 \\ C^1 & C^2 & C^3 \end{vmatrix}$$
(M1.36)

It is customary to assign the symbol \sqrt{g} to the scalar triple product of the basis vectors:

$$\sqrt{g} = \mathbf{q}_1 \cdot \mathbf{q}_2 \times \mathbf{q}_3 \tag{M1.37}$$

It is regrettable that the symbol g is also assigned to the acceleration due to gravity, but confusion is unlikely to occur. By combining equations (M1.36) and (M1.37) we obtain the following important form of the scalar triple product:

$$[\mathbf{A}, \mathbf{B}, \mathbf{C}] = \sqrt{g} \begin{vmatrix} A^{1} & A^{2} & A^{3} \\ B^{1} & B^{2} & B^{3} \\ C^{1} & C^{2} & C^{3} \end{vmatrix}$$
(M1.38)

For the basis vectors of the Cartesian system we obtain from (M1.37)

$$\sqrt{g} = \mathbf{i} \cdot (\mathbf{j} \times \mathbf{k}) = 1 \tag{M1.39}$$

so that in the Cartesian coordinate system (M1.38) reduces to

$$[\mathbf{A}, \mathbf{B}, \mathbf{C}] = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$
(M1.40)

In this expression, according to equation (M1.10), the components A^1 , A^2 , A^3 , etc. have been written as A_x , A_y , A_z .

Without proof we accept the formula

$$[\mathbf{A}, \mathbf{B}, \mathbf{C}]^{2} = \begin{vmatrix} \mathbf{A} \cdot \mathbf{A} & \mathbf{A} \cdot \mathbf{B} & \mathbf{A} \cdot \mathbf{C} \\ \mathbf{B} \cdot \mathbf{A} & \mathbf{B} \cdot \mathbf{B} & \mathbf{B} \cdot \mathbf{C} \\ \mathbf{C} \cdot \mathbf{A} & \mathbf{C} \cdot \mathbf{B} & \mathbf{C} \cdot \mathbf{C} \end{vmatrix}$$
(M1.41)

which is known as the *Gram determinant*. The proof, however, will be given later. Application of this important formula gives

$$\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right]^{2} = \left(\sqrt{g}\right)^{2} = \begin{vmatrix} \mathbf{q}_{1} \cdot \mathbf{q}_{1} & \mathbf{q}_{1} \cdot \mathbf{q}_{2} & \mathbf{q}_{1} \cdot \mathbf{q}_{3} \\ \mathbf{q}_{2} \cdot \mathbf{q}_{1} & \mathbf{q}_{2} \cdot \mathbf{q}_{2} & \mathbf{q}_{2} \cdot \mathbf{q}_{3} \\ \mathbf{q}_{3} \cdot \mathbf{q}_{1} & \mathbf{q}_{3} \cdot \mathbf{q}_{2} & \mathbf{q}_{3} \cdot \mathbf{q}_{3} \end{vmatrix} = \begin{vmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{vmatrix} = |g_{ij}|$$
(M1.42)

which involves all elements g_{ij} of the metric tensor. Comparison of (M1.37) and (M1.42) yields the important statement

$$\mathbf{q}_1 \cdot (\mathbf{q}_2 \times \mathbf{q}_3) = \sqrt{g} = \sqrt{|g_{ij}|} \tag{M1.43}$$

so that the scalar triple product involving the general basis vectors \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 can easily be evaluated. This will be done in some detail when we consider various coordinate systems. Owing to (M1.43), \sqrt{g} is called the *functional determinant* of the system.

M1.3.5 The vectorial triple product

At this point it will be sufficient to state the extremely important formula

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$$
(M1.44)

which is also known as the *Grassmann rule*. It should be noted that, without the parentheses, the meaning of (M1.44) is not unique. The proof of this equation will be given later with the help of the so-called reciprocal coordinate system.

M1.3.6 The scalar product of a vector with a dyadic

On performing the scalar product of a vector with a dyadic we see that the commutative law is not valid:

$$\mathbf{D} = \mathbf{A} \cdot (\mathbf{B}\mathbf{C}) = (\mathbf{A} \cdot \mathbf{B})\mathbf{C}, \qquad \mathbf{E} = (\mathbf{B}\mathbf{C}) \cdot \mathbf{A} = \mathbf{B}(\mathbf{C} \cdot \mathbf{A}) \tag{M1.45}$$

Whereas in the first expression the vectors **D** and **C** are collinear, in the second expression the direction of **E** is along the vector **B** so that $\mathbf{D} \neq \mathbf{E}$.

M1.3.7 Products involving four vectors

Let us consider the expression $(A \times B) \cdot (C \times D)$. Defining the vector $F = C \times D$ we obtain the scalar triple product

 $(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{F} = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{F}) = \mathbf{A} \cdot [\mathbf{B} \times (\mathbf{C} \times \mathbf{D})] \quad (M1.46)$

This equation results from interchanging the dot and the cross and by replacing the vector \mathbf{F} by its definition. Application of the Grassmann rule (M1.44) yields

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = \mathbf{A} \cdot [(\mathbf{B} \cdot \mathbf{D})\mathbf{C} - (\mathbf{B} \cdot \mathbf{C})\mathbf{D}] = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$$
(M1.47)

so that equation (M1.46) can be written as

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = \begin{vmatrix} \mathbf{A} \cdot \mathbf{C} & \mathbf{A} \cdot \mathbf{D} \\ \mathbf{B} \cdot \mathbf{C} & \mathbf{B} \cdot \mathbf{D} \end{vmatrix}$$
(M1.48)

The vector product of four vectors may be evaluated with the help of the Grassmann rule:

$$(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = (\mathbf{F} \cdot \mathbf{D})\mathbf{C} - (\mathbf{F} \cdot \mathbf{C})\mathbf{D}$$
 with $\mathbf{F} = \mathbf{A} \times \mathbf{B}$ (M1.49)

On replacing \mathbf{F} by its definition and using the rules of the scalar triple product, we find the following useful expression:

$$(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = [\mathbf{A}, \mathbf{B}, \mathbf{D}]\mathbf{C} - [\mathbf{A}, \mathbf{B}, \mathbf{C}]\mathbf{D}$$
(M1.50)

M1.4 Reciprocal coordinate systems

As will be seen shortly, operations with the so-called reciprocal basis systems result in particularly convenient mathematical expressions. Let us consider two basis systems. One of these is defined by the three linearly independent basis vectors \mathbf{q}_i , i = 1, 2, 3, and the other one by the linearly independent basis vectors \mathbf{q}^i , i = 1, 2, 3. To have reciprocality for the basis vectors the following relation must be valid:

$$\mathbf{q}_i \cdot \mathbf{q}^k = \mathbf{q}^k \cdot \mathbf{q}_i = \delta_i^k \quad \text{with} \quad \delta_i^k = \begin{cases} 0 & i \neq k \\ 1 & i = k \end{cases}$$
(M1.51)

where δ_i^k is the Kronecker-delta symbol. Reciprocal systems are also called *contragredient systems*. As is customary, the system represented by basis vectors with the lower index is called *covariant* while the system employing basis vectors with an upper index is called *contravariant*. Therefore, \mathbf{q}_i and \mathbf{q}^i are called *covariant* and *contravariant basis vectors*, respectively.

Consider for example in (M1.51) the case i = k = 1. While the scalar product $\mathbf{q}_1 \cdot \mathbf{q}^1 = 1$ may be viewed as a normalization condition for the two systems, the scalar products $\mathbf{q}_1 \cdot \mathbf{q}^2 = 0$ and $\mathbf{q}_1 \cdot \mathbf{q}^3 = 0$ are conditions of orthogonality. Thus, \mathbf{q}_1 is perpendicular to \mathbf{q}^2 and to \mathbf{q}^3 so that we may write

$$\mathbf{q}_1 = C(\mathbf{q}^2 \times \mathbf{q}^3) \tag{M1.52a}$$

where C is a factor of proportionality. On substituting this expression into the normalization condition we obtain for C

$$\mathbf{q}^1 \cdot \mathbf{q}_1 = C \mathbf{q}^1 \cdot (\mathbf{q}^2 \times \mathbf{q}^3) = 1 \implies C = \frac{1}{\mathbf{q}^1 \cdot (\mathbf{q}^2 \times \mathbf{q}^3)}$$
 (M1.52b)

so that (M1.52a) yields

$$\mathbf{q}_1 = \frac{\mathbf{q}^2 \times \mathbf{q}^3}{[\mathbf{q}^1, \mathbf{q}^2, \mathbf{q}^3]}$$
(M1.52c)

We may repeat this exercise with \mathbf{q}_2 and \mathbf{q}_3 and find the general expression

$$\mathbf{q}_i = \frac{\mathbf{q}^j \times \mathbf{q}^k}{[\mathbf{q}^1, \mathbf{q}^2, \mathbf{q}^3]}$$
(M1.53)

with *i*, *j*, *k* in cyclic order. Similarly we may write for \mathbf{q}^1 , with *D* as the proportionality constant,

$$\mathbf{q}^{1} = D(\mathbf{q}_{2} \times \mathbf{q}_{3}), \quad \mathbf{q}_{1} \cdot \mathbf{q}^{1} = D\mathbf{q}_{1} \cdot (\mathbf{q}_{2} \times \mathbf{q}_{3}) = 1 \implies \mathbf{q}^{1} = \frac{\mathbf{q}_{2} \times \mathbf{q}_{3}}{[\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}]} \quad (M1.54)$$

Thus, the general expression is

$$\mathbf{q}^{i} = \frac{\mathbf{q}_{j} \times \mathbf{q}_{k}}{[\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}]} \tag{M1.55}$$

with i, j, k in cyclic order. Equations (M1.53) and (M1.55) give the explicit expressions relating the basis vectors of the two reciprocal systems.

Let us consider the special case of the Cartesian coordinate system with basis vectors \mathbf{i}_1 , \mathbf{i}_2 , \mathbf{i}_3 . Application of (M1.55) shows that $\mathbf{i}^j = \mathbf{i}_j$ since $[\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3] = 1$, so that in the Cartesian coordinate system there is no difference between covariant and contravariant basis vectors. This is the reason why we have written $A^i = A_i$, i = 1, 2, 3 in (M1.10).

Now we return to equation (M1.43). By replacing the covariant basis vector \mathbf{q}_1 with the help of (M1.52c) and utilizing (M1.48) we find

$$\mathbf{q}_{1} \cdot (\mathbf{q}_{2} \times \mathbf{q}_{3}) = \frac{(\mathbf{q}^{2} \times \mathbf{q}^{3}) \cdot (\mathbf{q}_{2} \times \mathbf{q}_{3})}{[\mathbf{q}^{1}, \mathbf{q}^{2}, \mathbf{q}^{3}]}$$

$$= \frac{1}{[\mathbf{q}^{1}, \mathbf{q}^{2}, \mathbf{q}^{3}]} \begin{vmatrix} \mathbf{q}^{2} \cdot \mathbf{q}_{2} & \mathbf{q}^{2} \cdot \mathbf{q}_{3} \\ \mathbf{q}^{3} \cdot \mathbf{q}_{2} & \mathbf{q}^{3} \cdot \mathbf{q}_{3} \end{vmatrix} = \frac{1}{[\mathbf{q}^{1}, \mathbf{q}^{2}, \mathbf{q}^{3}]}$$
(M1.56)

From (M1.51) it follows that the value of the determinant in (M1.56) is equal to 1. Since $\mathbf{q}_1 \cdot (\mathbf{q}_2 \times \mathbf{q}_3) = \sqrt{g}$ we immediately find

$$[\mathbf{q}^1, \mathbf{q}^2, \mathbf{q}^3] = \frac{1}{\sqrt{g}}$$
(M1.57)

Thus, the introduction of the contravariant basis vectors shows that (M1.43) and (M1.57) are inverse relations.

Often it is desirable to work with unit vectors having the same directions as the selected three linearly independent basis vectors. The desired relationships are

$$\mathbf{e}_i = \frac{\mathbf{q}_i}{|\mathbf{q}_i|} = \frac{\mathbf{q}_i}{\sqrt{\mathbf{q}_i \cdot \mathbf{q}_i}} = \frac{\mathbf{q}_i}{\sqrt{g_{ii}}}, \qquad \mathbf{e}^i = \frac{\mathbf{q}^i}{|\mathbf{q}^i|} = \frac{\mathbf{q}^i}{\sqrt{\mathbf{q}^i \cdot \mathbf{q}^i}} = \frac{\mathbf{q}^i}{\sqrt{g^{ii}}} \qquad (M1.58)$$

While the scalar product of the covariant basis vectors $\mathbf{q}_i \cdot \mathbf{q}_j = g_{ij}$ defines the elements of the *covariant metric tensor*, the *contravariant metric tensor* is defined by the elements $\mathbf{q}^i \cdot \mathbf{q}^j = g^{ij}$, and we have

$$\mathbf{q}^i \cdot \mathbf{q}^j = \mathbf{q}^j \cdot \mathbf{q}^i = g^{ij} = g^{ji}$$
(M1.59)

Owing to the symmetry relations $g_{ij} = g_{ji}$ and $g^{ij} = g^{ji}$ each metric tensor is completely specified by six elements.

Some special cases follow directly from the definition (M1.13) of the scalar product. In case of an orthonormal system, such as the Cartesian coordinate system, we have

$$g_{ij} = g_{ji} = g^{ij} = g^{ji} = \delta_i^j$$
 (M1.60)

As will be shown later, for any orthogonal system the following equation applies:

$$g_{ii}g^{ii} = 1$$
 (M1.61)

While in the Cartesian coordinate system the metric fundamental quantities are either 0 or 1, we cannot give any information about the g_{ij} or g^{ij} unless the coordinate system is specified. This will be done later when we consider various physical situations.

In the following we will give examples of the efficient use of reciprocal systems. Work is defined by the scalar product $dA = \mathbf{K} \cdot d\mathbf{r}$, where **K** is the force and $d\mathbf{r}$ is the path increment. In the Cartesian system we obtain a particularly simple result:

$$\mathbf{K} \cdot d\mathbf{r} = (K_x \mathbf{i} + K_y \mathbf{j} + K_z \mathbf{k}) \cdot (dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k}) = K_x dx + K_y dy + K_z dz$$
(M1.62)

consisting of three work contributions in the directions of the three coordinate axes. For specific applications it may be necessary, however, to employ more general coordinate systems. Let us consider, for example, an oblique coordinate system with contravariant components and covariant basis vectors of \mathbf{K} and $d\mathbf{r}$. In this case work will be expressed by

$$\mathbf{K} \cdot d\mathbf{r} = (K^1 \mathbf{q}_1 + K^2 \mathbf{q}_2 + K^3 \mathbf{q}_3) \cdot (dq^1 \mathbf{q}_1 + dq^2 \mathbf{q}_2 + dq^3 \mathbf{q}_3)$$

= $K^m dq^n \mathbf{q}_m \cdot \mathbf{q}_n = K^m dq^n g_{mn}$ (M1.63)

Expansion of this expression results in nine components in contrast to only three components of the Cartesian coordinate system. A great deal of simplification is achieved by employing reciprocal systems for the force and the path increment. As in the case of the Cartesian system, work can then be expressed by using only three terms:

$$\mathbf{K} \cdot d\mathbf{r} = (K_1 \mathbf{q}^1 + K_2 \mathbf{q}^2 + K_3 \mathbf{q}^3) \cdot (dq^1 \mathbf{q}_1 + dq^2 \mathbf{q}_2 + dq^3 \mathbf{q}_3)$$

= $K_m dq^n \mathbf{q}^m \cdot \mathbf{q}_n = K_m dq^n \delta_n^m = K_1 dq^1 + K_2 dq^2 + K_3 dq^3$ (M1.64a)

or

18

$$\mathbf{K} \cdot d\mathbf{r} = (K^{1}\mathbf{q}_{1} + K^{2}\mathbf{q}_{2} + K^{3}\mathbf{q}_{3}) \cdot (dq_{1}\mathbf{q}^{1} + dq_{2}\mathbf{q}^{2} + dq_{3}\mathbf{q}^{3})$$

= $K^{m} dq_{n}\mathbf{q}_{m} \cdot \mathbf{q}^{n} = K^{m} dq_{n}\delta_{m}^{n} = K^{1} dq_{1} + K^{2} dq_{2} + K^{3} dq_{3}$ (M1.64b)

Finally, utilizing reciprocal coordinate systems, it is easy to give the proof of the Grassmann rule (M1.44). Let us consider the expression $\mathbf{D} = \mathbf{A} \times (\mathbf{B} \times \mathbf{C})$. According to the definition (M1.26) of the vector product, \mathbf{D} is perpendicular to \mathbf{A} and to ($\mathbf{B} \times \mathbf{C}$). Therefore, \mathbf{D} must lie in the plane defined by the vectors \mathbf{B} and \mathbf{C} so that we may write

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \lambda \mathbf{B} + \mu \mathbf{C} \tag{M1.65}$$

where λ and μ are unknown scalars to be determined. To make use of the properties of the reciprocal system, we first set $\mathbf{B} = \mathbf{q}_1$ and $\mathbf{C} = \mathbf{q}_2$. These two vectors define a plane oblique coordinate system. To complete the system we assume that the vector \mathbf{q}_3 is a unit vector orthogonal to the plane spanned by \mathbf{q}_1 and \mathbf{q}_2 . Thus, we have

$$\mathbf{B} = \mathbf{q}_1, \qquad \mathbf{C} = \mathbf{q}_2, \qquad \mathbf{e}_3 = \frac{\mathbf{q}_1 \times \mathbf{q}_2}{|\mathbf{q}_1 \times \mathbf{q}_2|} \tag{M1.66}$$

and

$$\mathbf{q}_1 \cdot (\mathbf{q}_2 \times \mathbf{e}_3) = \mathbf{e}_3 \cdot (\mathbf{q}_1 \times \mathbf{q}_2) = \mathbf{e}_3 \cdot \mathbf{e}_3 |\mathbf{q}_1 \times \mathbf{q}_2| = |\mathbf{q}_1 \times \mathbf{q}_2| \qquad (M1.67)$$

According to (M1.55), the coordinate system which is reciprocal to the $(\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3)$ system is given by

$$\mathbf{q}^{1} = \frac{\mathbf{q}_{2} \times \mathbf{e}_{3}}{|\mathbf{q}_{1} \times \mathbf{q}_{2}|}, \qquad \mathbf{q}^{2} = \frac{\mathbf{e}_{3} \times \mathbf{q}_{1}}{|\mathbf{q}_{1} \times \mathbf{q}_{2}|}, \qquad \mathbf{e}^{3} = \frac{\mathbf{q}_{1} \times \mathbf{q}_{2}}{|\mathbf{q}_{1} \times \mathbf{q}_{2}|} = \mathbf{e}_{3}$$
 (M1.68)

The determination of λ and μ follows from scalar multiplication of $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \times (\mathbf{q}_1 \times \mathbf{q}_2) = \lambda \mathbf{q}_1 + \mu \mathbf{q}_2$ by the reciprocal basis vectors \mathbf{q}^1 and \mathbf{q}^2 :

$$\lambda = \begin{bmatrix} \mathbf{A} \times (\mathbf{q}_1 \times \mathbf{q}_2) \end{bmatrix} \cdot \mathbf{q}^1 = \mathbf{A} \times (\mathbf{q}_1 \times \mathbf{q}_2) \cdot \frac{(\mathbf{q}_2 \times \mathbf{e}_3)}{|\mathbf{q}_1 \times \mathbf{q}_2|}$$

= $(\mathbf{A} \times \mathbf{e}_3) \cdot (\mathbf{q}_2 \times \mathbf{e}_3) = \mathbf{A} \cdot \mathbf{q}_2 = \mathbf{A} \cdot \mathbf{C}$ (M1.69a)

Analogously we obtain

$$\mu = \left[\mathbf{A} \times (\mathbf{q}_1 \times \mathbf{q}_2) \right] \cdot \mathbf{q}^2 = (\mathbf{A} \times \mathbf{e}_3) \cdot (\mathbf{e}_3 \times \mathbf{q}_1) = -\mathbf{A} \cdot \mathbf{q}_1 = -\mathbf{A} \cdot \mathbf{B} \quad (M1.69b)$$

Substitution of λ and μ into (M1.65) gives the final result

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$$
(M1.70)

M1.5 Vector representations

The vector **A** may be represented with the help of the covariant basis vectors \mathbf{q}_i or \mathbf{e}_i and the contravariant basis vectors \mathbf{q}^i or \mathbf{e}^i as

$$\mathbf{A} = A^m \mathbf{q}_m = A_m \mathbf{q}^m = \mathring{A}^m \mathbf{e}_m = \mathring{A}_m \mathbf{e}^m \qquad (M1.71)$$

The invariant character of **A** is recognized by virtue of the fact that we have the same number of upper and lower indices. In addition to the *contravariant* and *covariant* measure numbers A^i and A_i of the basis vectors \mathbf{q}_i and \mathbf{q}^i we have also introduced the *physical measure numbers* A^i and A_i of the unit vectors \mathbf{e}_i and \mathbf{e}^i . In general the contravariant and covariant measure numbers do not have uniform dimensions. This becomes obvious on considering, for example, the spherical coordinate system which is defined by two angles, which are measured in degrees, and the radius of the sphere, which is measured in units of length. Physical measure numbers, however, are uniformly dimensioned. They represent the lengths of the components of a vector in the directions of the basis vectors. The formal definitions of the physical measure numbers are

$$\mathring{A}^{i} = A^{i} |\mathbf{q}_{i}| = A^{i} \sqrt{g_{ii}}, \qquad \mathring{A}_{i} = A_{i} |\mathbf{q}^{i}| = A_{i} \sqrt{g^{ii}}$$
(M1.72)

Now we will show what consequences arise by interpreting the measure numbers vectorially. Scalar multiplication of $\mathbf{A} = A^n \mathbf{q}_n$ by the reciprocal basis vector \mathbf{q}^i yields for A^i

$$\mathbf{A} \cdot \mathbf{q}^{i} = A^{m} \mathbf{q}_{m} \cdot \mathbf{q}^{i} = A^{m} \delta_{m}^{i} = A^{i}$$
(M1.73)

so that

$$\mathbf{A} = A^m \mathbf{q}_m = \mathbf{A} \cdot \mathbf{q}^m \mathbf{q}_m \tag{M1.74}$$

This expression leads to the introduction to the *unit dyadic* \mathbb{E} ,

$$\mathbb{E} = \mathbf{q}^m \mathbf{q}_m \tag{M1.75a}$$

This very special dyadic or unit tensor of rank two has the same degree of importance in tensor analysis as the unit vector in vector analysis. The unit dyadic \mathbb{E} is indispensable and will accompany our work from now on. In the Cartesian coordinate system the unit dyadic is given by

$$\mathbb{E} = \mathbf{i}\mathbf{i} + \mathbf{j}\mathbf{j} + \mathbf{k}\mathbf{k} = \mathbf{i}_1\mathbf{i}_1 + \mathbf{i}_2\mathbf{i}_2 + \mathbf{i}_3\mathbf{i}_3 \tag{M1.75b}$$

We repeat the above procedure by representing the vector **A** as $\mathbf{A} = A_m \mathbf{q}^m$. Scalar multiplication by \mathbf{q}_i results in

$$\mathbf{A} \cdot \mathbf{q}_i = A_m \mathbf{q}^m \cdot \mathbf{q}_i = A_i \tag{M1.76}$$

and the equivalent definition of the unit dyadic \mathbb{E}

$$\mathbf{A} = A_m \mathbf{q}^m = \mathbf{A} \cdot \mathbf{q}_m \mathbf{q}^m \implies \mathbb{E} = \mathbf{q}_m \mathbf{q}^m \qquad (M1.77)$$

Of particular interest is the scalar product of two unit dyadics:

$$\mathbb{E} \cdot \mathbb{E} = \mathbf{q}^m \mathbf{q}_m \cdot \mathbf{q}^n \mathbf{q}_n = \mathbf{q}^m \delta_m^n \mathbf{q}_n = \mathbf{q}^m \mathbf{q}_m = \mathbb{E}$$

$$\mathbb{E} \cdot \mathbb{E} = \mathbf{q}_m \mathbf{q}^m \cdot \mathbf{q}_n \mathbf{q}^n = \mathbf{q}_m \delta_n^m \mathbf{q}^n = \mathbf{q}_m \mathbf{q}^m = \mathbb{E}$$
 (M1.78)

From these expressions we obtain additional representations of the unit dyadic that involve the metric fundamental quantities g_{ij} and g^{ij} :

$$\mathbb{E} \cdot \mathbb{E} = \mathbf{q}^m \mathbf{q}_m \cdot \mathbf{q}_n \mathbf{q}^n = g_{mn} \mathbf{q}^m \mathbf{q}^n = \mathbf{q}_m \mathbf{q}^m \cdot \mathbf{q}^n \mathbf{q}_n = g^{mn} \mathbf{q}_m \mathbf{q}_n \qquad (M1.79)$$

Again it should be carefully observed that each expression contains an equal number of subscripts and superscripts to stress the invariant character of the unit dyadic. We collect the important results involving the unit dyadic as

$$\mathbb{E} = \mathbf{q}^m \mathbf{q}_m = \delta_m^n \mathbf{q}^m \mathbf{q}_n = \mathbf{q}_m \mathbf{q}^m = \delta_n^m \mathbf{q}_m \mathbf{q}^n = g_{mn} \mathbf{q}^m \mathbf{q}^n = g^{mn} \mathbf{q}_m \mathbf{q}_n \qquad (M1.80)$$

Scalar multiplication of \mathbb{E} in two of the forms of (M1.80) with \mathbf{q}_i results in

$$\mathbb{E} \cdot \mathbf{q}_{i} = (\mathbf{q}_{m}\mathbf{q}^{m}) \cdot \mathbf{q}_{i} = \mathbf{q}_{m}\delta_{i}^{m} = \mathbf{q}_{i}$$

= $(g_{mn}\mathbf{q}^{m}\mathbf{q}^{n}) \cdot \mathbf{q}_{i} = g_{mn}\mathbf{q}^{m}\delta_{i}^{n} = g_{im}\mathbf{q}^{m}$ (M1.81)

Hence, we see immediately that

$$\mathbf{q}_i = g_{im} \mathbf{q}^m \tag{M1.82}$$

This very useful expression is known as the *raising rule* for the index of the basis vector \mathbf{q}_i . Analogously we multiply the unit dyadic by \mathbf{q}^i to obtain

$$\mathbb{E} \cdot \mathbf{q}^{i} = (\mathbf{q}^{m} \mathbf{q}_{m}) \cdot \mathbf{q}^{i} = \mathbf{q}^{i} = (g^{mn} \mathbf{q}_{m} \mathbf{q}_{n}) \cdot \mathbf{q}^{i} = g^{im} \mathbf{q}_{m}$$
(M1.83)

and thus

$$\mathbf{q}^i = g^{im} \mathbf{q}_m \tag{M1.84}$$

which is known as the *lowering rule* for the index of the contravariant basis vector \mathbf{q}^{i} .

With the help of the unit dyadic we are in a position to find additional important rules of tensor analysis. In order to avoid confusion, it is often necessary to replace a letter representing a summation index by another letter so that the letter representing a summation does not occur more often than twice. If the replacement is done properly, the meaning of any mathematical expression will not change. Let us consider the expression

$$\mathbb{E} = \mathbf{q}_r \mathbf{q}^r = g_{rm} g^{rn} \mathbf{q}^m \mathbf{q}_n = \delta_m^n \mathbf{q}^m \mathbf{q}_n \qquad (M1.85)$$

Application of (M1.82) and (M1.84) gives the expression to the right of the second equality sign. For comparison purposes we have also added one of the forms of (M1.80) as the final expression in (M1.85). It should be carefully observed that the summation indices m, n, r occur twice only.

To take full advantage of the reciprocal systems we perform a scalar multiplication first by the contravariant basis vector \mathbf{q}^i and then by the covariant basis vector \mathbf{q}_i , yielding

$$(\mathbb{E} \cdot \mathbf{q}^{i}) \cdot \mathbf{q}_{j} = g_{rm} g^{rn} \delta_{n}^{i} \delta_{j}^{m} = \delta_{m}^{n} \delta_{n}^{i} \delta_{j}^{m}$$
(M1.86)

from which it follows immediately that

$$g_{rj}g^{ri} = \delta^i_j \tag{M1.87a}$$

By interchanging i and j, observing the symmetry of the fundamental quantities, we find

$$g_{ir}g^{rj} = \delta_i^j$$
 or $(g_{ij})(g^{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies (g_{ij}) = (g^{ij})^{-1}$ (M1.87b)

Hence, the matrices (g_{ij}) and (g^{ij}) are inverse to each other. Owing to the symmetry properties of the metric fundamental quantities, i.e. $g_{ij} = g_{ji}$ and $g^{ij} = g^{ji}$, we need six elements only to specify either metric tensor. In case of an orthogonal system $g_{ij} = 0$, $g^{ij} = 0$ for $i \neq j$ so that (M1.87a) reduces to

$$g_{ii}g^{ii} = 1 \tag{M1.88}$$

thus verifying equation (M1.61). At this point we must recall the rule that we do not sum over repeated free indices i, j, k, l.

Next we wish to show that, in an orthonormal system, there is no difference between contravariant and covariant basis vectors. The proof is very simple:

$$\mathbf{e}_{i} = \frac{\mathbf{q}_{i}}{\sqrt{g_{ii}}} = \frac{g_{in}}{\sqrt{g_{ii}}} \mathbf{q}^{n} = \sqrt{g_{ii}} \mathbf{q}^{i} = \frac{\mathbf{q}^{i}}{\sqrt{g^{ii}}} = \mathbf{e}^{i}$$
(M1.89)

Here use of the raising rule has been made. With the help of (M1.89) it is easy to show that there is no difference between contravariant and covariant physical measure numbers. Utilizing (M1.71) we find

$$\mathbf{A} \cdot \mathbf{e}^{i} = \mathbf{A} \cdot \mathbf{e}_{i} \implies \mathring{A}^{n} \mathbf{e}_{n} \cdot \mathbf{e}^{i} = \mathring{A}_{n} \mathbf{e}^{n} \cdot \mathbf{e}_{i} \implies \mathring{A}^{i} = \mathring{A}_{i} \qquad (M1.90)$$

M1.6 Products of vectors in general coordinate systems

There are various ways to express the dyadic product of vector \mathbf{A} with vector \mathbf{B} by employing covariant and contravariant basis vectors:

$$\mathbf{AB} = A^m B^n \mathbf{q}_m \mathbf{q}_n = A_m B_n \mathbf{q}^m \mathbf{q}^n = A_m B^n \mathbf{q}^m \mathbf{q}_n = A^m B_n \mathbf{q}_m \mathbf{q}^n \qquad (M1.91)$$

This yields four possibilities for formulating the scalar product $\mathbf{A} \cdot \mathbf{B}$:

$$\mathbf{A} \cdot \mathbf{B} = A^m B^n \mathbf{q}_m \cdot \mathbf{q}_n = A^m B^n g_{mn} = A_m B_n \mathbf{q}^m \cdot \mathbf{q}^n = A_m B_n g^{mn}$$

= $A_m B^n \mathbf{q}^m \cdot \mathbf{q}_n = A_m B^m = A^m B_n \mathbf{q}_m \cdot \mathbf{q}^n = A^m B_m$ (M1.92)

¹ The last two forms with mixed basis vectors (covariant and contravariant) are more convenient since the sums involve the evaluation of only three terms. In contrast, nine terms are required for the first two forms since they involve the metric fundamental quantities.

There are two useful forms in which to express the vector product $\mathbf{A} \times \mathbf{B}$. From the basic definition (M1.28) and the properties of the reciprocal systems (M1.55) we obtain

$$\mathbf{A} \times \mathbf{B} = A^m \mathbf{q}_m \times B^n \mathbf{q}_n = \sqrt{g} \begin{vmatrix} \mathbf{q}^1 & \mathbf{q}^2 & \mathbf{q}^3 \\ A^1 & A^2 & A^3 \\ B^1 & B^2 & B^3 \end{vmatrix}$$
(M1.93)

where all measure numbers are of the contravariant type. If it is desirable to express the vector product in terms of covariant measure numbers we use (M1.53) and (M1.57). Thus, we find

$$\mathbf{A} \times \mathbf{B} = A_m \mathbf{q}^m \times B_n \mathbf{q}^n = \frac{1}{\sqrt{g}} \begin{vmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$
(M1.94)

ı.

The two forms involving mixed basis vectors are not used, in general.

On performing the scalar triple product operation (M1.33) we find

$$[\mathbf{A}, \mathbf{B}, \mathbf{C}] = A^{m} \mathbf{q}_{m} \cdot (B^{n} \mathbf{q}_{n} \times C^{r} \mathbf{q}_{r})$$

$$= A^{m} \sqrt{g} \mathbf{q}_{m} \cdot \begin{vmatrix} \mathbf{q}^{1} & \mathbf{q}^{2} & \mathbf{q}^{3} \\ B^{1} & B^{2} & B^{3} \\ C^{1} & C^{2} & C^{3} \end{vmatrix} = \sqrt{g} \begin{vmatrix} A^{1} & A^{2} & A^{3} \\ B^{1} & B^{2} & B^{3} \\ C^{1} & C^{2} & C^{3} \end{vmatrix}$$
(M1.95)

¹ For the scalar product $\mathbf{A} \cdot \mathbf{A}$ we usually write \mathbf{A}^2 .