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M1

Algebra of vectors

M1.1 Basic concepts and definitions

A scalaris a quantity that is specified by its sign and by its magnitude. Examples
are temperature, the specific volume, and the humidity of the air. Scalars will
be written using Latin or Greek letters sucha®, ..., A,B,...,a,8,.... A
vectorrequires for its complete characterization the specification of magnitude and
direction. Examples are the velocity vector and the force vector. A vector will be
represented by a boldfaced letter suchaal, ..., A, B,.... A unit vectoris a
vector of prescribed direction and of magnitude 1. Employing the unit vegtor

the arbitrary vectoA can be written as

A
A=|Ale, =Ae, = €, = W (M1.2)

Two vectorsA andB are equal if they have the same magnitude and direction
regardless of the position of their initial points,

that is|A| = |B| ande, = ez. Two vectors areollinear if they are parallel
or antiparallel. Three vectors that lie in the same plane are cadipinar. Two
vectors always lie in the same plane since they define the plane. The following
rules are valid:

the commutative law AL+XB=B+A, Ax=cA
the associative law A+B+C)=(A+B)+C, a(BA)=(aB)A
the distributive law (¢ + B)A =aA + BA
(M1.2)
The concept of linear dependence of a set of vec&rs,, ..., ay is closely

connected with the dimensionality of space. The following definition applies: A
set of N vectorsa,, a,, . . ., ay of the same dimension is linearly dependent if there
exists a set of numbeus, oy, . . ., ay, not all of which are zero, such that

a1y + o + - +ayay = 0 (M13)

3



4 Algebra of vectors

Fig. M1.1 Linear vector spaces: (a) one-dimensional, (b) two-dimensional, and (c) three-
dimensional.

If no such numbers exist, the vect@s a., ..., ay are said to be linearly inde-
pendent. To get the geometric meaning of this definition, we consider the vectors
a andb as shown in Figure M1.1(a). We can find a numbe# 0 such that

b=*ka (M1.4a)
By settingk = —a/8 we obtain the symmetrized form
aa+Bb=0 (M1.4b)

Assuming that neithesw nor g is equal to zero then it follows from the above
definition that two collinear vectors are linearly dependent. They define the one-
dimensionallinear vector spaceConsider two noncollinear vectoessandb as
shown in Figure M1.1(b). Every vectarin their plane can be represented by

c=ka+kb or aa+pb+yc=0 (M1.5)

with a suitable choice of the constaitsandk,. Equation (M1.5) defines a two-
dimensional linear vector space. Since not all constan y are zero, this
formula insures that the three vectors in the two-dimensional space are linearly
dependent. Taking three noncoplanar vecimis, andc, we can represent every
vectord in the form

d= kia—+ kzb + k3C (MlG)

in a three-dimensional linear vector space, see Figure M1.1(c). This can be gener-
alized by stating that, in aN-dimensional linear vector space, every vector can be
represented in the form

X=kiay +koa, +---+ kyay (M1.7)

where theay, a,, .. ., ay are linearly independent vectors. Any set of vectors con-
taining more thamV vectors in this space is linearly dependent.



M1.1 Basic concepts and definitions 5

Table M1.1.Extensive quantities of different degrees for the
N-dimensional linear vector space

Extensive Number of Number of
quantity Degree Symbol vectors components
Scalar 0 B 0 NO =
Vector 1 B 1 N?
Dyadic 2 B 2 N2

(a)

Fig. M1.2 Projection of a vectoB onto a vectoA.

We call the set oNV linearly independent vectoss, a,, . . ., ay thebasis vectors
of the N-dimensional linear vector space. The numliers,, .. ., ky appearing in
(M1.7) are themeasure numbemssociated with the basis vectors. The téfm
of the vectox in (M1.7) is thecomponent of this vectam the directiona,.

A vector B may be projected onto the vectér parallel to the direction of a
straight linek as shown in Figure M1.2(a). If the direction of the straight line
not given, we perform an orthogonal projection as shown in part (b) of this figure.
A projection in three-dimensional space requires a plargarallel to which the
projection of the vectdB onto the vectoA can be carried out; see Figure M1.2(c).

In vector analysis aextensive quantityf degreev is defined as a homogeneous
sum of general products of vectors (with no dot or cross between the vectors). The
number of vectors in a product determines the degree of the extensive quantity.
This definition may seem strange to begin with, but it will be familiar soon. Thus, a
scalar is an extensive quantity of degree zero, and a vector is an extensive quantity of
degree one. An extensive quantity of degree two is callyghbalic Every dyadids
may be represented as the sum of three or rdpagls B = p,P; + p.P> + p3Ps +
--.. Either theantecedentp; or the consequent®; may be arbitrarily assigned
as long as they are linearly independent. Our practical work will be restricted to
extensive quantities of degree two or less. Extensive quantities of degree three and
four also appear in the highly specialized literature. Table M1.1 gives a list of
extensive quantities used in our work. Thus, in the three-dimensional linear vector
space withV = 3, a vector consists of three and a dyadic of nine components.
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Fig. M1.3 The general vector bastg, gz, 3 of the three-dimensional space.

M1.2 Reference frames

The representation of a vector in component form depends on the choice of a
particular coordinate system. general vector basisit a given point in three-
dimensional space is defined by three arbitrary linearly independent basis vectors
d:, 92, 03 Spanning the space. In general, the basis vectors are neither orthogonal
nor unit vectors; they may also vary in space and in time.

Consider a position vectarextending from an arbitrary origin to a poiftin
space. An arbitrary vectd extending fromP is defined by the three basis vectors
g:;,i = 1,2, 3, existing atP at timer, as shown in Figure M1.3 for an oblique
coordinate system. Hence, the vectomay be written as

3
A = Alqy + A% + A% = Z Afqy (M1.8)
k=1

where it should be observed that the so-cadléfthe measure numbers', A2, A3
carry superscripts, and the basis vectpts),, qs carry subscripts. This type of no-
tation is used in th&icci calculuswhich is the tensor calculus for nonorthonormal
coordinate systems. Furthermore, it should be noted that there must be an equal
number of upper and lower indices.

Formula (M1.8) can be written more briefly with the help of the famiarstein
summation conventiormhich omits the summation sign:

A = A'q; + A%, + A%gs = A", (M1.9)

We will agree on the following notation: Whenever an index (subscript or super-
scriptym, n, p, q,r, s, t, is repeated in a term, we are to sum over that index from 1
to 3, ormore generally t&y . In contrast to the summation indicesn, p, g, r, s, t,

the letters, j, k, I are considered to be “free” indices that are used to enumerate
equations. Note that summation is not implied even if the free indices occur twice
in a term or even more often.
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A special case of the general vector basis isthgesian vector basigpresented
by the three orthogonal unit vectdrt$, k, or, more convenientlyy, i», i;. Each of
these three unit vectors has the same direction at all points of space. However, in
rotating coordinate systems these unit vectors also depend on time. The arbitrary
vectorA may be represented by

| A= Ail +Aj+AK _;4 i, = A, . (ML.10)
with A, =A'=A;, A, =A’=A, A =A"=A;
In the Cartesian coordinate space there is no need to distinguish between upper and
lower indices so that (M1.10) may be written in different ways. We will return to
this point later.

Finally, we wish to define thposition vector. In a Cartesian coordinate system
we may simply write

r=xi+yj+zk = x"i, = x,i, (M1.11)

In an oblique coordinate system, provided that the same basis exists everywhere in
space, we may write the general form

r =q'th + 49, + ¢°ds = ¢"q, (M1.12)

where theg' are the measure numbers corresponding to the basis vegtdrise
form (M1.12) is also valid along the radius in a spherical coordinate system since
the basis vectors do not change along this direction.

A different situation arises in case of curvilinear coordinate lines since the
orientations of the basis vectors change with position. This is evident, for example,
on considering the coordinate lines (lines of equal latitude and longitude) on the
surface of a nonrotating sphere. In case of curvilinear coordinate lines the position
vectorr has to be replaced by the differential expression= dq" q,. Later we
will discuss this topic in the required detalil.

M1.3 Vector multiplication
M1.3.1 The scalar product of two vectors

By definition, the coordinate-free form of the scalar product is given by

A -B = |A||B| cos@, B) (M1.13)
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A B
Fig. M1.4 Geometric interpretation of thecalar product.

If the vectorsA andB are orthogonal the expression cAsB) = 0 so that the
scalar product vanishes. The following rules involving the scalar product are valid:
the commutative law A-B=B-A
the associative law (kA)-B=k(A-B)=kA-B (M1.14)
the distributive law A-B+C)=A-B+A-C

Moreover, we recognize that the scalar product, also known as the dot product or
inner product, may be represented by the orthogonal projections

A-B=|A'|B], A-B=|A|B (M1.15)

whereby the vectod\’ is the projection oA on B, andB’ is the projection o8 on
A; see Figure M1.4.
The component notation of the scalar product yields

A.B = A'B'q;-qy + A*B%qy- 02 + A'B30;:- Q3
+ A’B'0p- Q1 4+ A*B?02- G2 + A’B%02- Qs (M1.16)
+ A®BYqs- q1 + A®B%qs- g, + A°B30;- g5

Thus, in general the scalar product results in nine terms. Utilizing the Einstein
summation convention we obtain the compact notation

A-B = A"q, - B"Q, = A"B"Cy - O, = A"B" g, (M1.17)

The quantityg;; is known as the covariantetric fundamental quantitgpresenting

an element of a covariant tensor of rank two or order two. This tensor is called
the metric tensoror thefundamental tensofThe expression “covariant” will be
described later. Sinag -q; = q;-0;, we have the identity

8ij = &ji (M1.18)
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On substituting forA, B the unit vectors of the Cartesian coordinate system, we
find the well-known orthogonality conditions for the Cartesian unit vectors
i-j=0, i-k=0, j-k=0 (M1.19)

or the normalization conditions

i-i=1, j-i=1, k-k=1 (M1.20)
For the special case of Cartesian coordinates, from (M1.16) we, therefore, obtain
for the scalar product
A-B=AB,+A,B,+ A,B, (M1.21)
Whenthe basis vectorg, k are oriented along the ( y, z)-axes, the coordinates
of their terminal points are given by
i (1,0,0), i+ (0,1,0), k: (0,0,1) (M1.22)

This expression is the Euclidian three-dimensional space or the space of ordinary
human life. On generalizing to thé-dimensional space we obtain

e: (1,0,...0), e (0,1,..,0, ... e (00,...1)
(M1.23)

This equation is known as the Cartesian reference frame oNtldémensional
Euclidian space. In this space the generalized form of the position veistgiven

by
r=x'e +x%e+---+xVey (M1.24)

The length or the magnitude of the vectads also known as thEuclidian norm

I = VT =2+ @22+ + (xV)? (M1.25)

M1.3.2 The vector product of two vectors

In coordinate-free or invariant notation the vector product of two vectors is defined
by
A x B =C=|A||B|sin(A, B) e: (M1.26)

The unit vectore- is perpendicular to the plane defined by the vectorsndB.
The direction of the vectdC is defined in such a way that the vectésB, andC
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A
Fig. M1.5 Geometric interpretation of the vector or cross product.

form aright-handed system. The magnitud€a$ equal to the arel of a parallel-
ogram defined by the vectofsandB as shown in Figure M1.5. Interchanging the
vectorsA andB givesA x B = —B x A. This follows immediately from (M1.26)
since the unit vectog: now points in the opposite direction.

The following vector statements are valid:

AxB+C)=AxB+AxC
(kA) x B=A x (kB) =kA x B (M1.27)
AxB=-BxA

The component representation of the vector product yields

O2xXQs Qs x0O1 01Xx0Q
A xB=A"q, x B"Q, = Al A2 A3 (M1.28)

B! B? B®

By utilizing Cartesian coordinates we obtain the well-known relation

i ] k
AxB=|4, A, A (M1.29)
B, B, B,

M1.3.3 The dyadic representation, the general product of two vectors

The general odyadic producbf two vectorsA andB is given by
® = AB = (A'qy + A%z + A%qs)(B a1 + B2 + B°qy) (M1.30)

It is seen that the vectors are not separated by a dot or a cross. At first glance this
type of vector product seems strange. However, the advantage of this notation will
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k /AC / / /

F
B
Fig. M1.6 Geometric representation of the scalar triple product.

become apparent later. On performing the dyadic multiplication we obtain

® = AB = A'B'0:q; + A'B*q102 + A'B010;
+ A%B'q,q; + A?B20,0, + A2B%0203 (M1.31)
+ A®Bqs0: + A®B%030; + A’B%0s0;

In carrying out the general multiplication, we must be careful not to change the
position of the basis vectors. The following statements are valid:

(A+B)C=AC+BC, AB=#BA (M1.32)

M1.3.4 The scalar triple product

The scalar triple product, sometimes also called the box product, is defined by
A-(B x C)=[A,B,C] (M1.33)

The absolute value of the scalar triple product measures the volume of the paral-
lelepiped having the three vectdksB, C as adjacent edges, see Figure M1.6. The
height/ of the parallelepiped is found by projecting the vecdoonto the cross
productB x C. If the volume vanishes then the three vectors are coplanar. This
situation will occur whenever a vector appears twice in the scalar triple product. It
is apparent that, in the scalar triple product, any cyclic permutation of the factors
leaves the value of the scalar triple product unchanged. A permutation that reverses
the original cyclic order changes the sign of the product:

[A,B,C] =[B, C,A] = [C,A,B]

(M1.34)
[A,B,C] = —[B,A,C] = —[A, C, B]
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From these observations we may conclude that, in any scalar triple product, the
dot and the cross can be interchanged without changing the magnitude and the sign
of the scalar triple product

A-BxC)=(AxB)-C (M1.35)
For the general vector basis the coordinate representation of the scalar triple

product yields

J2 X0z Q3 X (1 (1 XxX0Q2
A-(B x C) = (A'q1+A%q,+A4%s) | Bt B2 B3 (M1.36)

(o C? c?

It is customary to assign the symbgfg to the scalar triple product of the basis
vectors:

V8=01-0z2 X Q3 (M1.37)

Itis regrettable that the symbglis also assigned to the acceleration due to gravity,
but confusion is unlikely to occur. By combining equations (M1.36) and (M1.37)
we obtain the following important form of the scalar triple product:

Al A2 A°
[A.B.C]=¢| B* B? B® (M1.38)
ct c* ¢

For the basis vectors of the Cartesian system we obtain from (M1.37)
Je=i-( xk)y=1 (M1.39)

so that in the Cartesian coordinate system (M1.38) reduces to

A, Ay, A
[A.B,Cl=| B, B, B. (M1.40)
c, C, C,

In this expression, according to equation (M1.10), the componéhtd?, A3,
etc. have been written as,, A, A..
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Without proof we accept the formula

A-A A.-B A.C
[A,B,C’=|B.A B.-B B.C (M1.41)
C-A C.-B C-C

which is known as th&ram determinantThe proof, however, will be given later.
Application of this important formula gives

) Ji-d1 Oa1-d2 Oa1-0s 811 812 813

2

[01, 02, A3 = (V&) = Q- 01 U2 Oz o Os| = |8a 822 &o3| = I8l
Os- 01 d3-02 03-0s 831 832 833

(M1.42)

which involves all elements;; of the metric tensor. Comparison of (M1.37) and
(M1.42) yields the important statement

d1- (02 x g3) = /g = Vgl (M1.43)

so that the scalar triple product involving the general basis veqiog, g; can
easily be evaluated. This will be done in some detail when we consider various
coordinate systems. Owing to (M1.43)g is called thefunctional determinandf

the system.

M1.3.5 The vectorial triple product

At this point it will be sufficient to state the extremely important formula

Ax(BxC)=(A-C)B—(A-B)C (M1.44)

which is also known as th&rassmann rulelt should be noted that, without the
parentheses, the meaning of (M1.44) is not unique. The proof of this equation will
be given later with the help of the so-called reciprocal coordinate system.
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M1.3.6 The scalar product of a vector with a dyadic

On performing the scalar product of a vector with a dyadic we see that the com-
mutative law is not valid:

D=A-(BC)=(A-B)C, E=(BC)-A=B(C-A) (M1.45)

Whereas in the first expression the vectbrand C are collinear, in the second
expression the direction & is along the vectoB so thatD # E.

M1.3.7 Products involving four vectors

Let us consider the expressioh & B) - (C x D). Defining the vectoF = C x D
we obtain the scalar triple product

(AxB)- (CxD)=(AxB)-F=A-(BxF)=A-[Bx(CxD)] (M1.46)

This equation results from interchanging the dot and the cross and by replacing the
vectorF by its definition. Application of the Grassmann rule (M1.44) yields

(AxB)-(CxD)=A-[(B-D)C—-(B-C)Dl]=(A-C)B-D)—(A-D)B-C)
(M1.47)
so that equation (M1.46) can be written as

A-C A-D
B-D

(A x B)-(C x D) = (M1.48)

The vector product of four vectors may be evaluated with the help of the Grass-
mann rule:

(AxB)x(CxD)=(F-D)IC—(F-C)D with F=AxB (M1.49)

On replacing- by its definition and using the rules of the scalar triple product, we
find the following useful expression:

(A x B) x (C x D) = [A, B,D]C — [A, B, C]D (M1.50)
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M1.4 Reciprocal coordinate systems

As will be seen shortly, operations with the so-called reciprocal basis systems
result in particularly convenient mathematical expressions. Let us consider two
basis systems. One of these is defined by the three linearly independent basis
vectorsg;, i = 1, 2, 3, and the other one by the linearly independent basis vectors
g',i = 1,2, 3. To have reciprocality for the basis vectors the following relation
must be valid:

P S S T k_ [0 i#k
q-o =q-q =5 with s={7 177 (M1.51)

wheres! is the Kronecker-delta symbol. Reciprocal systems are also aztied
tragredient systemg\s is customary, the system represented by basis vectors with
the lower index is calledovariantwhile the system employing basis vectors with
an upper index is calledontravariant Thereforeg;, andq’ are calledcovariant
andcontravariant basis vectorsespectively.

Consider for example in (M1.51) the caise- k = 1. While the scalar product
g: - g* = 1 may be viewed as a normalization condition for the two systems, the
scalar productg;- g?> = 0 andg;- g® = 0 are conditions of orthogonality. Thu,
is perpendicular tg? and tog?® so that we may write

q: = C(q% x g°) (M1.52a)

where C is a factor of proportionality. On substituting this expression into the
normalization condition we obtain far

1
1. — 1 (42 3 — _
g-u=Cq - xq)=1= C FRNCENTD) (M1.52b)
so that (M1.52a) yields
_9*x g’
M1.52¢
N ol o gl ( )

We may repeat this exercise witla andqs; and find the general expression

o/ x o

M1.53
[0, 02, 9] ( )

d=c——=

with i, j, k in cyclic order. Similarly we may write foq®, with D as the propor-
tionality constant,

0z X Q3

— (M1.54
[ql’ QZ, q3] ( )

q' = D(U2x03), Org" = Dqi- (O2x0s) =1 = ' =
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Thus, the general expression is

d; X Qk

T 0w o 0al

(M1.55)

with i, j, k in cyclic order. Equations (M1.53) and (M1.55) give the explicit ex-
pressions relating the basis vectors of the two reciprocal systems.

Let us consider the special case of the Cartesian coordinate system with basis
vectorsiy, i», i3. Application of (M1.55) shows that = i; since [y, i», i3] = 1, so
that in the Cartesian coordinate system there is no difference between covariantand
contravariant basis vectors. This is the reason why we have witten A;, i =
1,2,3in(M1.10).

Now we return to equation (M1.43). By replacing the covariant basis vegtor
with the help of (M1.52c) and utilizing (M1.48) we find

(0% x g%) - (g2 % Q)
[a%, 92, 7]

di- (02 x g3) =
(M1.56)
_ 1 P9 9-q|__ 1
[0 | ®.q, ®-qs| [9%0%07

From (M1.51) it follows that the value of the determinant in (M1.56) is equal to 1.
Sinceq; - (g2 x 03) = /g we immediately find

1 42 3_i
[q,q,q]—\/g (M1.57)

Thus, the introduction of the contravariant basis vectors shows that (M1.43) and
(M1.57) are inverse relations.

Often it is desirable to work with unit vectors having the same directions as the
selected three linearly independent basis vectors. The desired relationships are

_% __ 9 G o — q _ q _4a
ol VO a4 8 'l Jg-q /g"
While the scalar product of the covariant basis veatprsq; = g;; defines the

elements of theovariant metric tensgithecontravariant metric tensas defined
by the elementg’ - ¢/ = g/, and we have

€

(M1.58)

q-g=q-q=g'=g (M1.59)
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Owing to the symmetry relationg;; = g;; andg” = g/' each metric tensor is
completely specified by six elements.

Some special cases follow directly from the definition (M1.13) of the scalar
product. In case of an orthonormal system, such as the Cartesian coordinate system,
we have

gi=gi=8"=¢" =9 (M1.60)
As will be shown later, for any orthogonal system the following equation applies:
gig" =1 (M1.61)

While in the Cartesian coordinate system the metric fundamental quantities are
either 0 or 1, we cannot give any information about gaeor g unless the
coordinate system is specified. This will be done later when we consider various
physical situations.

In the following we will give examples of the efficient use of reciprocal systems.
Work is defined by the scalar produtA = K - dr, whereK is the force andr is
the path increment. In the Cartesian system we obtain a particularly simple result:

K.dr =(Ki + K,j + KK)-(dxi+dyj+dzk)=K,dx + K,dy + K.dz
(M1.62)

consisting of three work contributions in the directions of the three coordinate axes.
For specific applications it may be necessary, however, to employ more general
coordinate systems. Let us consider, for example, an oblique coordinate system
with contravariant components and covariant basis vectorks ahddr. In this

case work will be expressed by

K- dr = (K'0y+ K?0z + K°03) - (dg 'y + dq°02 + dq°qs) (M1.63)
= Km dqn qm : qn = Km dqn 8mn '
Expansion of this expression results in nine components in contrast to only three
components of the Cartesian coordinate system. A great deal of simplification is
achieved by employing reciprocal systems for the force and the path increment.
As in the case of the Cartesian system, work can then be expressed by using only
three terms:

K -dr = (Kiq' + K»0° + K30°%) - (dq' 91 + dg* Az + dg° q3)
=K,dq"q"-q, =K, dq"§" = Kldq1 + szq2 + Kgdq3

n

(M1.64a)
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or

K-dr = (K'q: + K*02 + K°03) - (dq19" + dg2 9 + dg3 9°)

N 5 3 (M1.64hb)
=K"dq,0,-9" =K"dq,d, = K dq1+ K°dqg, + K°dg3

Finally, utilizing reciprocal coordinate systems, it is easy to give the proof of
the Grassmann rule (M1.44). Let us consider the expre€ienA x (B x C).
According to the definition (M1.26) of the vector produbtis perpendicular té\
and to 8 x C). ThereforeD must lie in the plane defined by the vect@&sndC
so that we may write

Ax(BxC)=AB+ uC (M1.65)

where) andu are unknown scalars to be determined. To make use of the properties
of the reciprocal system, we first &&= g, andC = q,. These two vectors define a
plane oblique coordinate system. To complete the system we assume that the vector
gz is a unit vector orthogonal to the plane spannedbsindg,. Thus, we have

X
B =0, C =0, %_u

— M1.66
|1 X 2| ( )

and

0:- (02 x €) =6€3- (01 X 02) = €3- 63|01 X Q2| = |Q1 X O (M1.67)

According to (M1.55), the coordinate system which is reciprocal todheit, qs)
system is given by

1 Q2X83 2 & X & — Q1 X 02 _ e (M1.68)

a _|Q1XQ2|’ a _|Q1XQ2|’ _|Q1XQ2|_

The determination of andu follows from scalar multiplication oA x (B x C) =
A x (0 x 02) = AQ: + g by the reciprocal basis vectogs andg?:

b= [Ax (@ x 6] -0 = A x (0 x 4) - 22

101 X 02 (M1.69a)
=(Axe) (2xe)=A-2=A-C
Analogously we obtain
p=[Ax(xq)] 9*=(Axe) (&xq)=—A-qs=—A-B (M1.69b)
Substitution ofl. andu into (M1.65) gives the final result

Ax(BxC)=(A-C)B— (A -B)C (M1.70)
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M1.5 Vector representations

The vectorA may be represented with the help of the covariant basis vegtars
e and the contravariant basis vectgfor € as

A= A"Q, = A,q" = A6, = A,&" (M1.71)

The invariant character &f is recognized by virtue of the fact that we have the same
number of upper and lower indices. In addition to toatravariantandcovariant
measure number$’ andA, of the basis vectorg; andg’ we have also introduced

the physical measure number€ and A; of the unit vectorg, ande'. In general

the contravariant and covariant measure numbers do not have uniform dimensions.
This becomes obvious on considering, for example, the spherical coordinate system
which is defined by two angles, which are measured in degrees, and the radius of the
sphere, which is measured in units of length. Physical measure numbers, however,
are uniformly dimensioned. They represent the lengths of the components of a
vector in the directions of the basis vectors. The formal definitions of the physical
measure numbers are

A= Allgl = A'VEr, A= Ald| = An/g (M1.72)

Now we will show what consequences arise by interpreting the measure numbers
vectorially. Scalar multiplication oA = A"q, by the reciprocal basis vectof
yields for A’

A-q =A"q,-q = A"§ = A (M1.73)

so that
A=A"0,=A -q"0n (M1.74)

This expression leads to the introduction to timét dyadickE,
E=0q"q, (M1.75a)

This very special dyadic or unit tensor of rank two has the same degree of im-
portance in tensor analysis as the unit vector in vector analysis. The unit dyadic
E is indispensable and will accompany our work from now on. In the Cartesian

coordinate system the unit dyadic is given by

E=ii +jj + KK = iai1 4 isiz + isis (M1.75b)

We repeat the above procedure by representing the vaces A = A,.q".
Scalar multiplication byy; results in

A-g=A,9"0 = A (M1.76)
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and the equivalent definition of the unit dyadic
A=A,9"=A-0,9" = E=0q,q9" (M1.77)
Of particular interest is the scalar product of two unit dyadics:

E-FE = qmqm qnqn — qus,l;qn — qmqm —F

m n me~n m (M178)
]EE:qmq qnq ZQmS,,q :qmq =E

From these expressions we obtain additional representations of the unit dyadic that
involve the metric fundamental quantitigs andg"’:

E-E=9"qy-9.9" = &u9"9" = d,9"- 9"d, = g""0»0n (M1.79)

Againitshould be carefully observed that each expression contains an equal number
of subscripts and superscripts to stress the invariant character of the unit dyadic.
We collect the important results involving the unit dyadic as

E= qmqm = qumqn = qmqm = 5,'1"qu|” = gmnqmqn = gmnqmqn (M180)

Scalar multiplication off in two of the forms of (M1.80) wittg; results in

E-qg; =(9,9") - 0 = 96" =0;

m~n men m (M181)
= (gmnq q ) Ui = &mnd 8,‘ = gin(

Hence, we see immediately that

U = gimd" (M1.82)

This very useful expression is known as tlagsing rule for the index of the basis
vectorg,. Analogously we multiply the unit dyadic iy to obtain

E-q =(9"dm)-d =0 =(¢"9uds) - d' = &"qa (M1.83)

and thus

q =g"0n (M1.84)

which is known as thdowering rule for the index of the contravariant basis
vectorq'.

With the help of the unit dyadic we are in a position to find additional important
rules of tensor analysis. In order to avoid confusion, it is often necessary to replace a
letter representing a summation index by another letter so that the letter representing
a summation does not occur more often than twice. If the replacement is done
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properly, the meaning of any mathematical expression will not change. Let us
consider the expression

]E = qrqr = grmgmqmqn = Sll;qmqn (M185)

Application of (M1.82) and (M1.84) gives the expression to the right of the second
equality sign. For comparison purposes we have also added one of the forms of
(M1.80) as the final expressionin (M1.85). It should be carefully observed that the
summation indicesz, n, » occur twice only.

To take full advantage of the reciprocal systems we perform a scalar multiplica-
tion first by the contravariant basis vectprand then by the covariant basis vector
q;, yielding

(E-0)- 0 = g 88" = 5,5;8" (M1.86)

from which it follows immediately that
88" =4 (M1.87a)

By interchanging andj, observing the symmetry of the fundamental quantities,
we find

1 0 0
g8’ =8 o (@@)eN=]l0 1 o = (g;)=(")" (ML.87Db)
0 0 1

Hence, the matriceg{) and ¢"/) are inverse to each other. Owing to the symmetry
properties of the metric fundamental quantities, g:¢.= g, andg’ = g//, we

need six elements only to specify either metric tensor. In case of an orthogonal
systemg;; = 0, g = Ofori # j so that (M1.87a) reduces to

gig' =1 (M1.88)

thus verifying equation (M1.61). At this point we must recall the rule that we do
not sum over repeated free indideg, &, .

Next we wish to show that, in an orthonormal system, there is no difference
between contravariant and covariant basis vectors. The proof is very simple:

qi _ 8in qi

V/ 8ii «/ 8ii v 8&"
Here use of the raising rule has been made. With the help of (M1.89) it is easy
to show that there is no difference between contravariant and covariant physical

measure numbers. Utilizing (M1.71) we find

A€ =A.e — A'e,-€ =A,&.6 — A = A, (M1.90)
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M1.6 Products of vectors in general coordinate systems

There are various ways to express the dyadic product of v&citdth vectorB by
employing covariant and contravariant basis vectors:

AB = A"B"Q,0, = A,B,.9"q" = A,B"q"q, = A" B,q4,q" (M1.91)
This yields four possibilities for formulating the scalar prod&ctB:

A . B — AW[BI‘lqm . qn — Al‘ﬂBngmn — AmBnql‘ﬂ. qn — AmBngml‘l

(M1.92)
= AmBnqm' a. = AmBm = AmBnqm' qn = AmBm

! The last two forms with mixed basis vectors (covariant and contravariant) are
more convenient since the sums involve the evaluation of only three terms. In
contrast, nine terms are required for the first two forms since they involve the
metric fundamental quantities.

There are two useful forms in which to express the vector proéluctB. From
the basic definition (M1.28) and the properties of the reciprocal systems (M1.55)
we obtain

1 2 3

a 9 q
A xB=A"Q, x B"d, =.g| A A2 A3 (M1.93)
B B?> B

where all measure numbers are of the contravariant type. If it is desirable to
express the vector product in terms of covariant measure numbers we use (M1.53)
and (M1.57). Thus, we find

1 |9 G G
AxB=A,9" x B,q" = 7§ AL Ay Aj (M1.94)
B, B, B

The two forms involving mixed basis vectors are not used, in general.
On performing the scalar triple product operation (M1.33) we find

[A, B, C] = Amqm' (Bnqn X err)

1 2 3 1 2 3

i @ a d AT AT AT (i1.95)
=A"/gq.-| B* B2 B3|=4%&|B' B2 3
ct ¢ ¢? ct c?* ¢®

1 For the scalar produdt - A we usually writeA2.



