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M1

Algebra of vectors

M1.1 Basic concepts and definitions

A scalar is a quantity that is specified by its sign and by its magnitude. Examples
are temperature, the specific volume, and the humidity of the air. Scalars will
be written using Latin or Greek letters such as a, b, . . ., A,B, . . ., α, β, . . .. A
vector requires for its complete characterization the specification of magnitude and
direction. Examples are the velocity vector and the force vector. A vector will be
represented by a boldfaced letter such as a,b, . . ., A,B, . . .. A unit vector is a
vector of prescribed direction and of magnitude 1. Employing the unit vector eA,
the arbitrary vector A can be written as

A = |A| eA = AeA =⇒ eA = A
|A| (M1.1)

Two vectors A and B are equal if they have the same magnitude and direction
regardless of the position of their initial points,

that is |A| = |B| and eA = eB . Two vectors are collinear if they are parallel
or antiparallel. Three vectors that lie in the same plane are called coplanar. Two
vectors always lie in the same plane since they define the plane. The following
rules are valid:

the commutative law : A ± B = B± A, Aα = αA

the associative law : A+ (B+ C) = (A + B) +C, α(βA) = (αβ)A

the distributive law : (α + β)A = αA+ βA
(M1.2)

The concept of linear dependence of a set of vectors a1, a2, . . ., aN is closely
connected with the dimensionality of space. The following definition applies: A
set of N vectors a1, a2, . . ., aN of the same dimension is linearly dependent if there
exists a set of numbers α1, α2, . . ., αN , not all of which are zero, such that

α1a1 + α2a2 + · · · + αNaN = 0 (M1.3)
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4 Algebra of vectors

Fig. M1.1 Linear vector spaces: (a) one-dimensional, (b) two-dimensional, and (c) three-
dimensional.

If no such numbers exist, the vectors a1, a2, . . ., aN are said to be linearly inde-
pendent. To get the geometric meaning of this definition, we consider the vectors
a and b as shown in Figure M1.1(a). We can find a number k �= 0 such that

b = ka (M1.4a)

By setting k = −α/β we obtain the symmetrized form

αa + βb = 0 (M1.4b)

Assuming that neither α nor β is equal to zero then it follows from the above
definition that two collinear vectors are linearly dependent. They define the one-
dimensional linear vector space. Consider two noncollinear vectors a and b as
shown in Figure M1.1(b). Every vector c in their plane can be represented by

c = k1a + k2b or αa + βb+ γ c = 0 (M1.5)

with a suitable choice of the constants k1 and k2. Equation (M1.5) defines a two-
dimensional linear vector space. Since not all constants α, β, γ are zero, this
formula insures that the three vectors in the two-dimensional space are linearly
dependent. Taking three noncoplanar vectors a,b, and c, we can represent every
vector d in the form

d = k1a + k2b+ k3c (M1.6)

in a three-dimensional linear vector space, see Figure M1.1(c). This can be gener-
alized by stating that, in anN -dimensional linear vector space, every vector can be
represented in the form

x = k1a1 + k2a2 + · · · + kNaN (M1.7)

where the a1, a2, . . ., aN are linearly independent vectors. Any set of vectors con-
taining more than N vectors in this space is linearly dependent.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521809495 - Dynamics of the Atmosphere: A Course in Theoretical Meteorology
Wilford Zdunkowski and Andreas Bott
Excerpt
More information

http://www.cambridge.org/0521809495
http://www.cambridge.org
http://www.cambridge.org


M1.1 Basic concepts and definitions 5

Table M1.1. Extensive quantities of different degrees for the
N-dimensional linear vector space

Extensive Number of Number of
quantity Degree v Symbol vectors components

Scalar 0 B 0 N0 = 1
Vector 1 B 1 N1

Dyadic 2 B 2 N2

Fig. M1.2 Projection of a vector B onto a vector A.

We call the set ofN linearly independent vectors a1, a2, . . ., aN the basis vectors
of the N -dimensional linear vector space. The numbers k1, k2, . . ., kN appearing in
(M1.7) are the measure numbers associated with the basis vectors. The term kiai
of the vector x in (M1.7) is the component of this vector in the direction ai .

A vector B may be projected onto the vector A parallel to the direction of a
straight line k as shown in Figure M1.2(a). If the direction of the straight line k is
not given, we perform an orthogonal projection as shown in part (b) of this figure.
A projection in three-dimensional space requires a plane F parallel to which the
projection of the vectorB onto the vectorA can be carried out; see Figure M1.2(c).

In vector analysis an extensive quantity of degree ν is defined as a homogeneous
sum of general products of vectors (with no dot or cross between the vectors). The
number of vectors in a product determines the degree of the extensive quantity.
This definition may seem strange to begin with, but it will be familiar soon. Thus, a
scalar is an extensive quantity of degree zero, and a vector is an extensivequantity of
degree one. An extensive quantity of degree two is called a dyadic. Every dyadic B

may be represented as the sum of three or more dyads.B = p1P1 + p2P2 + p3P3 +
· · ·. Either the antecedents pi or the consequents Pi may be arbitrarily assigned
as long as they are linearly independent. Our practical work will be restricted to
extensive quantities of degree two or less. Extensive quantities of degree three and
four also appear in the highly specialized literature. Table M1.1 gives a list of
extensive quantities used in our work. Thus, in the three-dimensional linear vector
space with N = 3, a vector consists of three and a dyadic of nine components.
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6 Algebra of vectors

Fig. M1.3 The general vector basis q1,q2,q3 of the three-dimensional space.

M1.2 Reference frames

The representation of a vector in component form depends on the choice of a
particular coordinate system. A general vector basis at a given point in three-
dimensional space is defined by three arbitrary linearly independent basis vectors
q1,q2,q3 spanning the space. In general, the basis vectors are neither orthogonal
nor unit vectors; they may also vary in space and in time.

Consider a position vector r extending from an arbitrary origin to a point P in
space. An arbitrary vectorA extending from P is defined by the three basis vectors
qi , i = 1, 2, 3, existing at P at time t , as shown in Figure M1.3 for an oblique
coordinate system. Hence, the vector A may be written as

A = A1q1 + A2q2 +A3q3 =
3∑
k=1

Akqk (M1.8)

where it should be observed that the so-called affine measure numbers A1, A2, A3

carry superscripts, and the basis vectors q1,q2,q3 carry subscripts. This type of no-
tation is used in the Ricci calculus, which is the tensor calculus for nonorthonormal
coordinate systems. Furthermore, it should be noted that there must be an equal
number of upper and lower indices.

Formula (M1.8) can be written more briefly with the help of the familiar Einstein
summation convention which omits the summation sign:

A = A1q1 +A2q2 +A3q3 = Anqn (M1.9)

We will agree on the following notation: Whenever an index (subscript or super-
script)m,n, p, q, r, s, t , is repeated in a term, we are to sum over that index from 1
to 3, or more generally toN . In contrast to the summation indicesm,n, p, q, r, s, t,
the letters i, j, k, l are considered to be “free” indices that are used to enumerate
equations. Note that summation is not implied even if the free indices occur twice
in a term or even more often.
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M1.3 Vector multiplication 7

A special case of the general vector basis is theCartesian vector basis represented
by the three orthogonal unit vectors i, j,k, or, more conveniently, i1, i2, i3. Each of
these three unit vectors has the same direction at all points of space. However, in
rotating coordinate systems these unit vectors also depend on time. The arbitrary
vector A may be represented by

A = Ax i+ Ayj +Azk = Anin = Anin
with Ax = A1 = A1, Ay = A2 = A2, Az = A3 = A3

(M1.10)

In the Cartesian coordinate space there is no need to distinguish between upper and
lower indices so that (M1.10) may be written in different ways. We will return to
this point later.

Finally, we wish to define the position vector r. In a Cartesian coordinate system
we may simply write

r = xi+ yj + zk = xnin = xnin (M1.11)

In an oblique coordinate system, provided that the same basis exists everywhere in
space, we may write the general form

r = q1q1 + q2q2 + q3q3 = qnqn (M1.12)

where the qi are the measure numbers corresponding to the basis vectors qi . The
form (M1.12) is also valid along the radius in a spherical coordinate system since
the basis vectors do not change along this direction.

A different situation arises in case of curvilinear coordinate lines since the
orientations of the basis vectors change with position. This is evident, for example,
on considering the coordinate lines (lines of equal latitude and longitude) on the
surface of a nonrotating sphere. In case of curvilinear coordinate lines the position
vector r has to be replaced by the differential expression dr = dqn qn. Later we
will discuss this topic in the required detail.

M1.3 Vector multiplication

M1.3.1 The scalar product of two vectors

By definition, the coordinate-free form of the scalar product is given by

A · B = |A| |B| cos(A,B) (M1.13)
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8 Algebra of vectors

Fig. M1.4 Geometric interpretation of the scalar product.

If the vectors A and B are orthogonal the expression cos(A,B) = 0 so that the
scalar product vanishes. The following rules involving the scalar product are valid:

the commutative law : A · B = B · A
the associative law : (kA) · B = k(A · B) = kA · B
the distributive law : A · (B+ C) = A · B+ A · C

(M1.14)

Moreover, we recognize that the scalar product, also known as the dot product or
inner product, may be represented by the orthogonal projections

A · B = |A′||B|, A · B = |A||B′| (M1.15)

whereby the vector A′ is the projection of A on B, and B′ is the projection of B on
A; see Figure M1.4.

The component notation of the scalar product yields

A · B = A1B1q1 · q1 + A1B2q1 · q2 +A1B3q1 · q3

+A2B1q2 · q1 +A2B2q2 · q2 +A2B3q2 · q3

+A3B1q3 · q1 +A3B2q3 · q2 +A3B3q3 · q3

(M1.16)

Thus, in general the scalar product results in nine terms. Utilizing the Einstein
summation convention we obtain the compact notation

A · B = Amqm · Bnqn = AmBnqm · qn = AmBngmn (M1.17)

The quantity gij is known as the covariantmetric fundamental quantity representing
an element of a covariant tensor of rank two or order two. This tensor is called
the metric tensor or the fundamental tensor. The expression “covariant” will be
described later. Since qi ·qj = qj ·qi we have the identity

gij = gji (M1.18)
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M1.3 Vector multiplication 9

On substituting for A,B the unit vectors of the Cartesian coordinate system, we
find the well-known orthogonality conditions for the Cartesian unit vectors

i · j = 0, i · k = 0, j · k = 0 (M1.19)

or the normalization conditions

i · i = 1, j · j = 1, k · k = 1 (M1.20)

For the special case of Cartesian coordinates, from (M1.16) we, therefore, obtain
for the scalar product

A · B = AxBx +AyBy +AzBz (M1.21)

When the basis vectors i, j,k are oriented along the (x, y, z)-axes, the coordinates
of their terminal points are given by

i : (1, 0, 0), j : (0, 1, 0), k : (0, 0, 1) (M1.22)

This expression is the Euclidian three-dimensional space or the space of ordinary
human life. On generalizing to the N -dimensional space we obtain

e1: (1, 0, . . ., 0), e2: (0, 1, . . ., 0), . . . eN: (0, 0, . . ., 1)

(M1.23)

This equation is known as the Cartesian reference frame of the N -dimensional
Euclidian space. In this space the generalized form of the position vector r is given
by

r = x1e1 + x2e2 + · · · + xNeN (M1.24)

The length or the magnitude of the vector r is also known as the Euclidian norm

|r| = √
r·r =

√
(x1)2 + (x2)2 + · · · + (xN )2 (M1.25)

M1.3.2 The vector product of two vectors

In coordinate-free or invariant notation the vector product of two vectors is defined
by

A× B = C = |A| |B| sin(A,B) eC (M1.26)

The unit vector eC is perpendicular to the plane defined by the vectors A and B.
The direction of the vector C is defined in such a way that the vectors A, B, and C
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10 Algebra of vectors

Fig. M1.5 Geometric interpretation of the vector or cross product.

form a right-handed system. Themagnitude ofC is equal to the areaF of a parallel-
ogram defined by the vectors A and B as shown in Figure M1.5. Interchanging the
vectors A and B gives A× B = −B×A. This follows immediately from (M1.26)
since the unit vector eC now points in the opposite direction.

The following vector statements are valid:

A× (B+ C) = A× B +A× C

(kA) × B = A× (kB) = kA× B

A× B = −B × A

(M1.27)

The component representation of the vector product yields

A× B = Amqm × Bnqn =

∣∣∣∣∣∣∣∣∣

q2 × q3 q3 × q1 q1 × q2

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
(M1.28)

By utilizing Cartesian coordinates we obtain the well-known relation

A × B =

∣∣∣∣∣∣∣∣∣

i j k

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣∣
(M1.29)

M1.3.3 The dyadic representation, the general product of two vectors

The general or dyadic product of two vectors A and B is given by

! = AB = (A1q1 + A2q2 +A3q3)(B
1q1 + B2q2 + B3q3) (M1.30)

It is seen that the vectors are not separated by a dot or a cross. At first glance this
type of vector product seems strange. However, the advantage of this notation will
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M1.3 Vector multiplication 11

Fig. M1.6 Geometric representation of the scalar triple product.

become apparent later. On performing the dyadic multiplication we obtain

! = AB = A1B1q1q1 + A1B2q1q2 +A1B3q1q3

+ A2B1q2q1 +A2B2q2q2 +A2B3q2q3

+ A3B1q3q1 +A3B2q3q2 +A3B3q3q3

(M1.31)

In carrying out the general multiplication, we must be careful not to change the
position of the basis vectors. The following statements are valid:

(A + B)C = AC+ BC, AB �= BA (M1.32)

M1.3.4 The scalar triple product

The scalar triple product, sometimes also called the box product, is defined by

A · (B × C) = [A,B,C] (M1.33)

The absolute value of the scalar triple product measures the volume of the paral-
lelepiped having the three vectorsA, B, C as adjacent edges, see Figure M1.6. The
height h of the parallelepiped is found by projecting the vector A onto the cross
product B × C. If the volume vanishes then the three vectors are coplanar. This
situation will occur whenever a vector appears twice in the scalar triple product. It
is apparent that, in the scalar triple product, any cyclic permutation of the factors
leaves the value of the scalar triple product unchanged. A permutation that reverses
the original cyclic order changes the sign of the product:

[A,B,C] = [B,C,A] = [C,A,B]

[A,B,C] = −[B,A,C] = −[A,C,B]
(M1.34)
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