
Part 1

Path Integrals

“Yossarian? What kind of a name is Yos-
sarian?”
He had the facts at his finger tips. “It’s
Yossarian’s name,” he explained.

J. Heller, Catch-22

The path integral is a method of quantization which is equivalent to the
operator formalism. It recovers the operator formalism in quantum me-
chanics and perturbation theory in quantum field theory (QFT).
The approach based on path integrals has several advantages over the

operator formalism. It provides a useful tool for nonperturbative studies
including:

(1) instantons,
(2) analogy with statistical mechanics,
(3) numerical methods.

A standard way of deriving the path integral is from the operator for-
malism:

operator formalism ⇐⇒ path integral .

We shall proceed in the opposite direction, following the original paper
by Feynman [Fey51].
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1
Operator calculus

The operator calculus developed by Feynman [Fey51] makes it possible to
represent functions of (noncommuting) operators as path integrals, with
the integrand being the path-ordered exponential of operators, the order
of which is controlled by a parameter that varies along the trajectory.
This procedure is termed Feynman disentangling. It is also applicable to
functions of matrices (say, γ-matrices which are associated with a spinor
particle). When applied to the evolution operator, this procedure results
in the standard path-integral representation of quantum mechanics.
In this chapter we first demonstrate the general technique using the

simplest example, a free propagator in Euclidean space, and then con-
sider the path-integral representation of quantum mechanics, as well as
propagators in an external electromagnetic field.

1.1 Free propagator

Let us first consider the simplest propagator of a free scalar field which is
given in the operator formalism by the vacuum expectation value of the
T -product∗

G(x− y) = 〈0|Tϕ(x)ϕ(y) |0〉 (1.1)

with ϕ being the field-operator.
The T -product (1.1) obeys the equation(

−∂2 −m2
)
G(x− y) = i δ(d)(x− y) , (1.2)

where d = 4 is the dimension of space-time, however the formulas are
applicable at any value of d. In the operator formalism, Eq. (1.2) is a

∗ The ordered products of operators were introduced by Dyson [Dys49]. This paper
and other classical papers on quantum electrodynamics are collected in the book
edited by Schwinger [Sch58].
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4 1 Operator calculus

consequence of the free equations(
−∂2 −m2

)
ϕ(x)
∣∣ 0〉 = 0 ,〈

0
∣∣(−∂2 −m2

)
ϕ(x) = 0

}
(1.3)

and canonical equal-time commutators

[ϕ(t, �x) , ϕ̇(t, �y)] = i δ(d−1)(�x− �y) ,
[ϕ(t, �x) ,ϕ(t, �y)] = 0 .

}
(1.4)

The delta-function δ(1)(x0 − y0) emerges when (∂/∂x0)2 is applied to the
operator of the T -product in (1.1).

Problem 1.1 Derive Eq. (1.2) in the operator formalism.

Solution Let us apply the operator on the left-hand side (LHS) of Eq. (1.2) to
the T -product which is defined by

T ϕ(x)ϕ(y) = θ(x0 − y0)ϕ(x)ϕ(y) + θ(y0 − x0)ϕ(y)ϕ(x) (1.5)

with

θ(x0 − y0) =
{
1 for x0 ≥ y0

0 for x0 < y0 .
(1.6)

Equation (1.3) implies a nonvanishing result to emerge only when (∂/∂x0)2 is
applied to the operator of the T -product. One obtains(

−∂2 −m2
)
〈0|Tϕ(x)ϕ(y) |0〉 = − ∂

∂x0
〈0|Tϕ̇(x)ϕ(y) |0〉

= δ(1)(x0 − y0) 〈0| [ϕ(y) , ϕ̇(x)] |0〉
= i δ(d)(x− y) , (1.7)

where the canonical commutation relations (1.4) are used.

The explicit solution to Eq. (1.2) for the free propagator is well-known
and is most simply given by the Fourier transform:

G(x− y) =
∫

ddp

(2π)d
eip(x−y) i

p2 −m2 + iε
. (1.8)

An extra iε (with ε → +0) in the denominator is due to the T -product in
the definition (1.1) and unambiguously determines the integral over p0.
The propagator (1.8) is known as the Feynman propagator that respects
causality.

Problem 1.2 Perform the Fourier transformation of the free momentum-space
propagator in the energy p0:

Gω(t− t′) =

+∞∫
−∞

dp0

2π
eip0(t−t′) i

p2
0 − ω2 + iε

, ω =
√
�p 2 +m2 . (1.9)
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1.1 Free propagator 5

Solution The poles of the momentum-space propagator are at

p0 = ±ω ∓ iε . (1.10)

For t > t′ (t < t′), the contour of integration can be closed in the upper (lower)
half-plane which gives

Gω(t− t′) = θ(t− t′)
e−iω(t−t′)

2ω
+ θ(t′ − t)

eiω(t−t′)

2ω

=
e−iω|t−t′|

2ω
. (1.11)

The Green function (1.11) obeys the equation(
− ∂2

∂t2
− ω2

)
Gω(t− t′) = i δ(1)(t− t′) (1.12)

and therefore coincides with the causal Green function for a harmonic oscillator
with frequency ω.

Remark on operator notations

In mathematical language, the Green function G(x − y) is termed the
resolvent of the operator on the LHS of Eq. (1.2), and is often denoted
as the matrix element of the inverse operator

G(x− y) =
〈
y

∣∣∣∣ i
−∂2 −m2

∣∣∣∣x〉 . (1.13)

The operators act in an infinite-dimensional Hilbert space, the elements
of which in Dirac’s notation [Dir58] are the bra and ket vectors 〈g| and |f〉,
respectively. The coordinate representation emerges when these vectors
are chosen to be the eigenstates of the position operator xµ:

xµ|x〉 = xµ|x〉 . (1.14)

These basis vectors obey the completeness condition∫
ddx |x〉〈x| = 1 , (1.15)

while the wave functions, associated with 〈g| and |f〉, are given by

〈g | x〉 = g(x) , 〈x | f〉 = f(x) . (1.16)

These wave functions appear in the expansions

|f〉 =
∫
ddx f(x)|x〉 , 〈g| =

∫
ddy g(y)〈y| . (1.17)
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6 1 Operator calculus

The action of a linear operator O on the bra and ket vectors in Hilbert
space is determined by its matrix element 〈y |O| x〉, which is also known
as the kernel of the operator O and is denoted by

〈y |O| x〉 = O(y, x) . (1.18)

Using the expansion (1.17), one obtains

〈g |O| f〉 =
∫
ddx

∫
ddy g(y)O(y, x) f(x) . (1.19)

Since the kernel of the unit operator is the delta-function,

〈y |1|x〉 = 〈y|x〉 = δ(d)(x− y) , (1.20)

the formula
〈y |O| x〉 = O δ(d)(x− y) (1.21)

can also be written down as a direct consequence of Eq. (1.20), where the
operator O on the right-hand side (RHS) acts on the variable x.
Therefore, when the operator acts on a function f(x), the result is

expressed via the kernel by the standard formula

Of(y) ≡ 〈y |O| f〉 =
∫
ddxO(y, x) f(x) . (1.22)

Equation (1.21) is obviously reproduced when f is substituted by a delta-
function, while Eq. (1.19) takes the form

〈g |O| f〉 =
∫
ddx g(x)Of(x) . (1.23)

If space-time is approximated by a discrete set of points, then the op-
erator O is approximated by a matrix with elements 〈y |O| x〉.

1.2 Euclidean formulation

Equation (1.8) can be obtained alternatively by inverting the operator
on the LHS of Eq. (1.2). Before doing that, it is convenient to make an
analytic continuation in the time-variable t, and to pass to the Euclidean
formulation of quantum field theory (QFT) where one substitutes

t = −ix4 . (1.24)

The four-momentum operator in Minkowski space reads as

pµ
M = i ∂µ

M ≡
(
i
∂

∂t
,−i ∂

∂�x

)
Minkowski space , (1.25)
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1.2 Euclidean formulation 7

while its Euclidean counterpart is given by

pµ
E = −i ∂µ

E ≡
(
−i ∂

∂�x
,−i ∂

∂x4

)
Euclidean space . (1.26)

These two formulas together with Eq. (1.24) yield

E ≡ p0 = −i p4 (1.27)

for the relation between energy and the fourth component of the Euclidean
four-momentum.
The passage to Euclidean space results in changing the Minkowski sig-

nature of the metric gµν to the Euclidean one:∗

(+−− −) −→ (+ + + +)

Minkowski signature −→ Euclidean signature .
(1.28)

As such, one finds

p2M = p20 − �p 2 −→ −p2E = −�p 2 − p24 . (1.29)

The exponent in the Fourier transformation changes analogously:

−pµx
µ = −Et+ �p�x −→ pµ

Ex
µ
E = �p�x+ p4x4 . (1.30)

This reproduces the standard Fourier transformation in Euclidean space

f(p) =
∫
ddx e−ipxf(x) ,

f(x) =
∫

ddp

(2π)d
eipxf(p) .

 (1.31)

We shall use the same notation vµ for a four-vector in Minkowski and
Euclidean spaces:

vµ
M = (v0, �v) Minkowski space ,

vµ
E = (�v, v4) Euclidean space ,

 (1.32)

∗ An older generation will be familiar with the Euclidean notation which is used
throughout the book by Akhiezer and Berestetskii [AB69]. In contrast, the two canon-
ical books on quantum field theory by Bogoliubov and Shirkov [BS76] and by Bjorken
and Drell [BD65] use the Minkowskian notation instigated by Feynman. The modern
generation of textbooks on quantum field theory includes those by Brown [Bro92] and
Weinberg [Wei98].
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8 1 Operator calculus

�✄ � ✲

✻

︷ ︸︸ ︷
Minkowski
space

t = −iτ

�✂ ✁

�t

✟✟

✟✟
Euclidean
space

{

(a)

�✂ ✁ ✲

✻

︷ ︸︸ ︷
Minkowski
space

E = −ip4

�✄ �

�E

✘✘❍❍

✘✘❍❍
Euclidean

space

}

(b)

Fig. 1.1. Direction of Wick’s rotation from Minkowski to Euclidean space (indi-
cated by the arrows) for (a) time and (b) energy. The dots represent singularities
of a free propagator in (a) coordinate and (b) momentum spaces. The contours
of integration in Minkowski space are associated with causal Green functions.
They can obviously be deformed in the directions of the arrows.

with

v0 = −iv4 . (1.33)

The only difference resides in the metric. We do not distinguish between
upper and lower indices in Euclidean space.
Using Eqs. (1.24) and (1.26), we see that in Euclidean space Eq. (1.2)

takes the form (
−∂2 +m2

)
G(x− y) = δ(d)(x− y) (1.34)

with a positive sign in front of m2.
The passage to the Euclidean formulation is justified in perturbation

theory where it is associated with the Wick rotation. The direction in
which the rotation is performed is unambiguously prescribed by the +iε
term in Eq. (1.8), and is depicted in Fig. 1.1. The variable t = x0 rotates
through −π/2, while E = p0 rotates through π/2.
Figure 1.1a explains the sign in Eq. (1.24). Figure 1.1b and Eq. (1.27)

implies that the integration over p4 goes in the opposite direction, so that
+∞∫

−∞

dp0
2π

· · · = i

+∞∫
−∞

dp4
2π

· · · . (1.35)

Thus when passing into Euclidean variables, Eq. (1.8) becomes

G(x− y) =
∫

ddp

(2π)d
eip(y−x) 1

p2 +m2
. (1.36)
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1.2 Euclidean formulation 9

Note that the RHS of Eq. (1.36) is nothing but the Fourier transform of
the free momentum-space Euclidean propagator, and there is no need to
retain an iε in the denominator since the integration prescription is now
unambiguous.
It is now clear why we keep the same notation for the coordinate-space

Green functions: the Feynman propagator in Minkowski space and the
Euclidean propagator. They are the same analytic function of the time-
variable.

Problem 1.3 Repeat the calculation of Problem 1.2 in Euclidean space.

Solution According to Eq. (1.36) we need to calculate

Gω(τ − τ ′) =

+∞∫
−∞

dp4

2π
eip4(τ

′−τ) 1
p2
4 + ω2

. (1.37)

The integral on the RHS can be calculated for τ > τ ′ (τ < τ ′) by closing the
contour in the lower (upper) half-plane, and taking the residues at p4 = −iω
(p4 = iω), respectively. This yields

Gω(τ − τ ′) = θ(τ − τ ′)
eω(τ ′−τ)

2ω
+ θ(τ ′ − τ)

eω(τ−τ ′)

2ω

=
e−ω|τ−τ ′|

2ω
. (1.38)

The Euclidean Green function (1.38) can obviously be obtained from the
Minkowskian one, Eq. (1.11), by the substitution

τ = it , τ ′ = it′ (1.39)

and vice versa. Gω(τ − τ ′) obeys the equation(
− ∂2

∂τ2
+ ω2

)
Gω(τ − τ ′) = δ(1)(τ − τ ′) (1.40)

and, therefore, is the Green function for a Euclidean harmonic oscillator with
frequency ω.

As we shall see in a moment, the Euclidean formulation makes path in-
tegrals well-defined, and allows nonperturbative investigations analogous
to statistical mechanics to be carried out. There are no reasons, however,
why Minkowski and Euclidean formulations should always be equivalent
nonperturbatively.

Remark on Euclidean γ-matrices

The γ-matrices in Minkowski space satisfy{
γµ
M, γ

ν
M

}
= 2 gµν

I , (1.41)
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10 1 Operator calculus

where I denotes the unit matrix. Therefore, γ0 is Hermitian while the
Minkowskian spatial γ-matrices are anti-Hermitian.
Analogously, the Euclidean γ-matrices satisfy

{γµ, γν} = 2 δµν I , (1.42)

so that all of them are Hermitian. We compose them from 2× 2 matrices
as

γ4 = γ0 =
(

I 0
0 −I

)
(1.43)

and

�γ =
(
0 −i�σ
i�σ 0

)
, (1.44)

where �σ are the usual Pauli matrices. Note that the Euclidean spatial
γ-matrices differ from the Minkowskian ones by a factor of i.
The free Dirac equation in Euclidean space reads as(

∂̂ +m
)
ψ = 0 , ∂̂ = γµ∂µ (1.45)

or

(ip̂ +m)ψ = 0 (1.46)

with p given by Eq. (1.26).

1.3 Path-ordering of operators

There are no problems in defining a function of an operator A, say via
the Taylor series. For instance,

eA =
∞∑

n=0

1
n!
An. (1.47)

However, it is more complicated to define a function of several noncom-
muting operators (or matrices), e.g. A and B having

[A,B] �= 0 , (1.48)

since the order of operators is now essential. In particular, one has

eA+B �= eA eB , (1.49)

so that the law of addition of exponents fails. Certainly, the exponen-
tial on the LHS is a well-defined function of A + B, but since A and B
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1.3 Path-ordering of operators 11

are intermixed in the Taylor expansion, this expansion is of little use in
practice. We would like to have an expression where all Bs are written,
say, to the right of all As. Generically, this is a problem of representing a
symmetric ordering of operators via a normal ordering.
This can be achieved by the following formal trick [Fey51].
Let us write

eA+B = lim
M→∞

[
1 +

1
M
(A+B)

]M
= lim

M→∞

[
1 +

1
M
(A+B)

]
· · ·
[
1 +

1
M
(A+B)

]
︸ ︷︷ ︸

M times

. (1.50)

The structure of the product on the RHS prompts us to introduce an
index i running from 1 to M and replace (A + B) in each multiplier by
(Ai +Bi). Therefore, one writes

eA+B = lim
M→∞

M∏
i=1

[
1 +

1
M
(Ai +Bi)

]
= lim

M→∞

[
1 +

1
M
(AM +BM )

]
· · ·
[
1 +

1
M
(A1 +B1)

]
, (1.51)

where the index i controls the order of the operators which are all treated
differently. The ordering is such that the larger i is, the later the operator
with the index i acts. This order of operators is prescribed by quantum
mechanics, where initial and final states are represented by ket and bra
vectors, respectively.
Equation (1.51) can be rewritten as

eA+B = P lim
M→∞

exp
[ 1
M

M∑
i=1

(Ai +Bi)
]
, (1.52)

where the symbol P denotes the ordering operation. There is no ambigu-
ity on the RHS of Eq. (1.52) concerning ordering Ai and Bi with the same
index i, since such terms are O

(
M−2) and are negligible as M → ∞.

To describe the continuum limit asM → ∞, one introduces the contin-
uum variable σ = i/M which belongs to the interval [0, 1]. The continuum
limit of Eq. (1.52) reads as

eA+B = P exp
{ 1∫
0

dσ [A(σ) +B(σ)]
}
, (1.53)
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