MESOSCALE DYNAMICS

Mesoscale weather systems are responsible for numerous natural disasters, such as damaging winds, blizzards, and flash flooding. A fundamental understanding of the underlying dynamics involved in these weather systems is essential in forecasting their occurrence. This book provides a systematic approach to this subject, and covers a more complete spectrum of mesoscale dynamics than other texts.

The opening chapters introduce the basic equations governing mesoscale weather systems and their approximations. The subsequent chapters cover four major areas of mesoscale dynamics: wave dynamics, moist convection, front dynamics, and mesoscale modeling. Wave dynamics covers wave generation and maintenance, orographically forced flow, and thermally forced flow. The moist convection part covers mesoscale instabilities, isolated storms, mesoscale convective systems, orographic precipitation, and introduces tropical cyclone dynamics. The dynamics of synoptic-scale fronts, mesoscale fronts, and jet streaks are discussed in the front dynamics part. The last part of the book introduces basic numerical modeling techniques, parameterizations of major physical processes, and the foundation for mesoscale numerical weather prediction.

Mesoscale Dynamics is an ideal reference on this topic for researchers in meteorology and atmospheric science. This book could also serve as a textbook for graduate students, and it contains over 100 problems, with password-protected solutions available to instructors at www.cambridge.org/9780521808750. Modeling projects, providing hands-on practice for building simple models of stratified fluid flow from a one-dimensional advection equation, are also described.

Y UH-LANG LIN's research in mesoscale dynamics and modeling includes moist convection, orographic effects on airflow and weather systems, gravity waves, tropical, lee and coastal cyclogeneses, storm dynamics, wake vortex, aviation turbulence, forest fire, and modeling of the Martian atmosphere.

MESOSCALE DYNAMICS

By Yuh-Lang Lin

© Cambridge University Press

Cambridge University Press 978-0-521-80875-0 - Mesoscale Dynamics Yuh-Lang Lin Frontmatter <u>More information</u>

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521808750

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-978-0-521-80875-0 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

0

Contents

Pr	eface		page x1			
1	Ove	1				
	1.1	Introduction	1			
	1.2	Definitions of atmospheric scales	3			
	1.3	Energy generation and scale interactions	7			
	1.4	Predictability	10			
	Ref	erences	11			
2	Gov	Governing equations for mesoscale motions				
	2.1	Introduction	12			
	2.2	Derivation of the governing equations	12			
	2.3	Approximations to the governing equations	17			
	Ref	erences	20			
	Pro	20				
3	Basi	22				
	3.1	Introduction	22			
	3.2	Basic wave properties	24			
	3.3	Sound waves	28			
	3.4	29				
	3.5	37				
	3.6	Inertia-gravity waves	43			
	3.7	Wave reflection levels	50			
	3.8	Critical levels	54			
	App	60				
	References					
	Pro	63				
4	Mes	64				
	4.1	Introduction	64			
	4.2	4.2 Wave generation mechanisms				
		4.2.1 Density impulses and moist convection	66			
		4.2.2 Mesoscale instabilities	71			

vi			Contents		
			4.2.3 Geostrophic adjustment	74	
			4.2.4 Nonlinear interactions	85	
		4.3	Wave maintenance mechanisms	85	
			4.3.1 Linear wave ducting mechanism	86	
			4.3.2 Solitary wave mechanism	91	
			4.3.3 Wave-CISK mechanism	97	
		4.4	Energy propagation and momentum flux	101	
		Refe	erences	104	
		Prol	blems	107	
	5	Orographically forced flows			
		5.1	109		
		5.2	Flows over two-dimensional isolated mountains	115	
			5.2.1 Uniform basic flow	115	
			5.2.2 Basic flow with variable Scorer parameter	121	
			5.2.3 Trapped lee waves	122	
		5.3	Nonlinear flows over two-dimensional mountains	125	
			5.3.1 Nonlinear flow regimes	125	
			5.3.2 Generation of severe downslope winds	131	
		5.4	Flows over three-dimensional mountains	138	
			5.4.1 Linear theory	139	
			5.4.2 Generation of lee vortices	144	
		5.5	Flows over larger mesoscale mountains	152	
			5.5.1 Rotational effects	152	
			5.5.2 Lee cyclogenesis	157	
			5.5.3 Orographic influence on cyclone track	167	
		5.6	Other orographic effects	170	
			5.6.1 Effects on frontal passage	170	
			5.6.2 Coastally trapped disturbances	173	
			5.6.3 Cold-air damming	174	
			5.6.4 Gap flow	176	
		App	pendix 5.1	177	
		Refe	erences	179	
		Prol	blems	183	
	6	The	rmally forced flows	184	
		6.1	Two-dimensional flows	184	
			6.1.1 Steady flows over a sinusoidal heat source	184	
			6.1.2 Steady flows over an isolated heat source	190	
		6.2	Transient flows	193	
			6.2.1 Flow responses to pulse heating	193	
			6.2.2 Flow responses to steady heating	196	
		6.3	Applications to mesoscale circulations	198	
			6.3.1 Density current formation and propagation	198	

		Contents	vii						
		6.3.2 Heat island circulations	199						
		6.3.3 Moist convection	201						
		6.3.4 Gravity wave generation and propagation	201						
	6.4	Effects of shear, three dimensionality, and rotation	203						
		6.4.1 Two-dimensional shear flows	203						
		6.4.2 Three-dimensional nonrotating flows	207						
		6.4.3 Three-dimensional rotating flows	211						
	6.5	Dynamics of sea and land breezes	215						
		6.5.1 Linear theories	216						
		6.5.2 Nonlinear numerical studies	219						
	6.6	6.6 Dynamics of mountain-plains solenoidal circulations							
	App	pendix 6.1	224						
	Ref	erences	224						
	Pro	blems	227						
7	Mes	soscale instabilities	229						
	7.1	Wave energy transfer through instabilities	230						
	7.2	Integral theorems of stratified flow	233						
		7.2.1 Governing equations	233						
		7.2.2 Miles' theorem	236						
		7.2.3 Howard's semicircle theorem	236						
	7.3	Static, conditional, and potential instabilities	238						
		7.3.1 Static instability	238						
		7.3.2 Conditional instability	244						
		7.3.3 Potential instability	249						
	7.4	Kelvin–Helmholtz instability	252						
	7.5	Inertial instability							
	7.6	Symmetric instability	256						
		7.6.1 Dry symmetric instability	257						
		7.6.2 Moist symmetric instability	260						
	7.7	Baroclinic instability	265						
	Refe	References							
	Pro	271							
8	Isol	272							
	8.1	Dynamics of single-cell storms and downbursts	272						
	8.2	Dynamics of multicell storms							
	8.3	Effects of shear and buoyancy	283						
		8.3.1 Effects of shear on cold outflow	283						
		8.3.2 Effects of buoyancy	289						
	8.4	Dynamics of supercell storms	293						
		8.4.1 General characteristics	293						
		8.4.2 Effects of unidirectional shear	297						
		8.4.3 Storm splitting	300						

viii			Contents				
			8.4.4	Storm rotation and propagation	304		
			8.4.5	Effects of directional shear	307		
		8.5	Torna	do dynamics	309		
			8.5.1	Supercell tornadogenesis	309		
			8.5.2	Nonsupercell tornadogenesis	313		
			8.5.3	Tornado vortex dynamics	315		
		Refer	ences		318		
		Probl	ems		320		
	9	Meso	scale c	onvective systems	322		
		9.1	Squall	lines and rainbands	323		
			9.1.1	Squall line classifications	323		
			9.1.2	Formation mechanisms	328		
			9.1.3	Maintenance mechanisms	332		
			9.1.4	Squall line movement	335		
			9.1.5	Rainbands	336		
		9.2	Mesos	cale convective complexes	338		
			9.2.1	General characteristics	338		
			9.2.2	Formation and development mechanisms	341		
		9.3	Tropic	al cyclones	347		
			9.3.1	General characteristics	347		
			9.3.2	Tropical cyclogenesis	349		
			9.3.3	Intensity and mesoscale structure	360		
		D (9.3.4	Tropical cyclone movement	370		
		Refe	erences		373		
	10	Prot	olems		3//		
	10	Dyn	amics	of fronts and jet streaks	3/9		
		10.1	Kine	ematics of frontogenesis	380		
		10.2	Dyn	amics of two-dimensional frontogenesis	38/		
			10.2	2 Eventegenesis and event frontal simulation	38/		
		10.2	10.2 Enor	.2 Frontogenesis and cross-frontal circulations	204		
		10.5	Moi	st and frictional affects on frontogenesis	394 401		
		10.4	Oth	ar types of fronts	401		
		10.5	10.5	1 Upper-level frontogenesis	405		
			10.5	2 Drylines	403		
		10.6	Iet e	treak dynamics	420		
		10.0	10.6	1 Upper-level iet streaks	420		
			10.0	2 Low-level jets	433		
		Refe	erences		437		
		Prot	leme				
		1100	-ieiii3		17-71		

		Contents	ix					
11	Dynamics of orographic precipitation							
	11.1 Orographic influence on climatological distribution							
		of precipitation 4						
	11.2	Orographic modification of preexisting disturbances	446					
		11.2.1 Passage of troughs	447					
		11.2.2 Passage of midlatitude cyclones and fronts	451					
		11.2.3 Passage of tropical cyclones	453					
		11.2.4 Common ingredients of orographic precipitation	458					
	11.3	Formation and enhancement mechanisms						
		11.3.1 Stable ascent mechanism	462					
		11.3.2 Release of moist instabilities	466					
		11.3.3 Effects of mountain geometry	470					
		11.3.4 Combined thermal and orographic forcing	471					
		11.3.5 Seeder–feeder mechanism	472					
		11.3.6 Dynamical–microphysical interaction mechanism	475					
	11.4	Control parameters and moist flow regimes	477					
		11.4.1 Control parameters	477					
	D C	11.4.2 Moist flow regimes	478					
1.0	Refer	ences	484					
12	Basic numerical methods							
	12.1		489					
	12.2	Finite difference approximations of derivatives	491					
	12.3	Finite difference approximations of the advection equation	495					
		12.3.1 Two-time-level schemes	496					
	12.4	12.3.2 I hree-time-level schemes	504					
	12.4	5 Somi Lagrangian methods						
	12.3	ndiv 12.1						
	Appendix 12.1							
	References Drahlama							
	Modeling projects							
13	Nume	erical modeling of geophysical fluid systems	518					
15	13.1	Grid systems and vertical coordinates	518					
	13.1	13.1.1 Grid systems	520					
		13.1.2 Vertical coordinates	526					
	13.2	Boundary conditions	528					
	10.2	13.2.1 Lateral boundary conditions	528					
		13.2.2 Upper boundary conditions	530					
		13.2.3 Lower boundary conditions	537					
	13.3	Initial conditions and data assimilation	539					
	13.4	Nonlinear aliasing and instability	547					
	13.5	Modeling a stratified fluid system	551					

Х				Contents		
		13.6 Predictability and ensemble forecasting			555	
	References Problems Modeling project					
	14	Parameterizations of physical processes			563	
		14.1 Reynolds averaging			563	
		14.2	Parame	eterization of planetary boundary layer processes	568	
			14.2.1	Parameterization of the surface layer	570	
			14.2.2	Parameterization of the PBL	572	
		14.3	Parame	eterization of moist processes	579	
			14.3.1	Parameterization of microphysical processes	580	
			14.3.2	Cumulus parameterization	585	
		14.4	Parame	eterizations of radiative transfer processes	594	
			14.4.1	Introduction	594	
			14.4.2	Longwave radiation	598	
			14.4.3	Shortwave radiation	601	
	References					
	Problems					
	Appendices					
	I	Α. <i>L</i>	nbols	610		
	1	B . N	omenclai	ture	615	
	Inde	x			618	

Preface

Mesoscale weather systems, such as thunderstorms, mesoscale convective systems, supercells, fronts, jet streaks, gravity waves, severe downslope winds, low-level jets, sea breezes, heat island circulations, and clear air turbulence, are responsible for numerous natural disasters, such as blizzards, torrential rain, flash flooding, damaging winds, and aviation accidents. Thus, a fundamental understanding of their underlying dynamics, the mesoscale dynamics, is essential to help forecast their occurrence. Although textbooks are available in individual subdisciplines such as cloud dynamics, storm dynamics, convection, and synoptic-dynamic meteorology, there are no textbooks which take a systematic approach and cover a more complete spectrum of the mesoscale dynamics. In particular, due to the rapid advancements in research in the past three decades or so, there is a need for a mesoscale dynamics textbook.

The text is presented in four parts: wave dynamics, moist convection, front dynamics, and mesoscale modeling. There are no clear boundaries among these parts. In the opening chapters, the basic equations governing mesoscale weather systems and their approximations are introduced. The wave dynamics include wave generation and maintenance, orographically forced flow, and thermally forced flow. The moist convection part includes mesoscale instabilities, isolated storms, mesoscale convective systems, and orographic precipitation. Traditionally, tropical cyclones are not viewed as a mesoscale phenomenon due to the wide range of scales involved in their genesis, movement, circulations, and convective systems. However, we may also view a hurricane or typhoon as an intense, rotating convective system once it has formed. Thus, for completeness, tropical cyclone dynamics are briefly introduced in the moist convection part of the text. The front dynamics covers dynamics of large scale fronts, mesoscale fronts, and jet streaks.

The last part of the text is devoted to the introduction of mesoscale modeling and the foundation for mesoscale numerical weather prediction. Since the 1970s, numerical models have become an important tool for studying mesoscale weather systems, thus making it essential to understand the fundamental properties of numerical models. In this part of the text, we briefly introduce the basic knowledge on numerical

xii

Preface

modeling techniques and parameterizations of major physical processes such as planetary boundary layer, cumulus convection, microphysical processes, and radiative transfer. This part of the text is not intended to replace advanced textbooks in mesoscale meteorological modeling or numerical weather prediction, but will instead provide the basic knowledge and background so that the readers have a better understanding of numerical schemes when they choose to use models to investigate mesoscale weather phenomena, rather than using a numerical model as a black box. The modeling exercise provides a hands-on practice for building a simple model of stratified fluid flow from a one-dimensional advection equation, two-dimensional shallowwater model, and three-dimensional shallow-water model.

This textbook is based on two graduate courses, mesoscale dynamics and mesoscale modeling, taught by the author at the Department of Marine, Earth, and Atmospheric Sciences of the North Carolina State University since 1987. It is designed for a two-semester course in mesoscale dynamics at graduate level. It may also be used for a one-semester graduate course focused on mesoscale wave dynamics by using material from Chapters 1 through 7, on moist convection and front dynamics by using material from Chapters 1 through 3 and Chapters 8 through 11, or on mesoscale modeling by using material from Chapters 1 through 3 and Chapters 12 through 14. I have assumed that students should have a fundamental understanding of basic dynamic meteorology or geophysical fluid dynamics. Although I have attempted to provide as many references as possible, there are still many papers that have been left out of the text. The webpage at: http://www.cambridge.org/9780521808750 will be used by the author to communicate with the readers.

I would like to acknowledge Professor Ron Smith for introducing mountain meteorology and relevant mesoscale dynamics to me when I was a Ph.D. student at Yale University. Also, I would like to acknowledge Professor Harry Orville at the South Dakota School of Mines and Technology for teaching me cloud modeling and dynamics and getting me involved in the development of a microphysical parameterization scheme (LFO scheme) which was later adopted as a major scheme in cloud, mesoscale, and numerical weather prediction models. I also benefited from attending the 1982 summer school on mesoscale meteorology in France (sponsored by NATO), where I learned a wide range of mesoscale meteorology from lecturers and fellow attendees. I would also like to extend thanks to the students in my mesoscale dynamics and mesoscale modeling/numerical weather prediction classes in North Carolina State University, especially Hye-Yeong Chun, Ron Weglarz, Mike Kiefer, Heather Reeves, Paul Suffern, Chad Ringley, Chenjie Huang, Dave Vollmer, Kelly Mahoney, Karl Pfeiffer, and Sen Chiao, who have contributed useful suggestions in the text and exercises that have improved the quality of the book. I am indebted to all of my colleagues who have made thorough reviews and comments on the manuscript of the book, which has greatly improved the quality of the text and are highly appreciated. These include Shu-Hua Chen, Min-Dah Chou, Jay Charney, Hye-Yeong Chun, Ching-Yuang Huang, Jerry Janowitz, Mike Kaplan, Steve Koch, Gary Lackmann,

Preface

Hsin-Mu Lin, Matt Parker, Rich Rotunno, Dave Schultz, Roger Smith, Wen-Yih Sun, Miguel Teixeira, Si-Chee Tsay, Ken Waight, Ron Weglarz, Chun-Chieh Wu, Qin Xu, Ming Xue, Ming-Jen Yang, Sandra Yuter and Fuqing Zhang. I would also like to thank Robert Mera, Michelle Lin, and Ron Weglarz for their technical editing of the manuscript and Ya-Hui Lin for her skillful drafting of the figures and patience in doing so. Jessica Lin has also assisted the drafting of the figures. The detailed copyediting by Jon Billam is appreciated. Parts of the book reflect my own research on mesoscale dynamics and modeling, which has been sponsored by the National Science Foundation, National Aeronautics and Space Administration, Office of Naval Research, Air Force Research Laboratory, Forest Service Office of Air Force Scientific Research, and National Oceanic and Atmospheric Administration.

Finally, the encouragement, support, and love from my wife, Emily, and my daughters, Michelle and Jessica, have made it easier to go through the long writing process. I would like to dedicate this book to them.

xiii