
LINEAR WATER WAVES

The book gives a self-contained and up-to-date account of mathematical re-
sults in the linear theory of water waves. The study of these waves has many
applications, including naval archtecture, ocean engineering, and geophysical
hydrodynamics. The book is divided into three sections that cover the linear
boundary value problems serving as the approximate mathematical models
for time-harmonic waves, ship waves on calm water, and unsteady waves,
respectively. These problems are derived from physical assumptions set forth
in the introductory chapter, in which the linearization procedure is also de-
scribed for the nonlinear boundary conditions on the free surface. In the rest
of the book, a plethora of mathematical techniques is applied for investigation
of the problems. In particular, the reader will find integral equations based
on Green’s functions, various inequalities involving the kinetic and poten-
tial energy, and integral identities. These tools are applied for establishing
conditions that provide the existence and uniqueness of solutions, and their
asymptotic behavior at infinity and near singularities of the boundary of the
water domain. Examples of nonuniqueness usually referred to as “trapped
modes,” are constructed with the help of the so-called inverse procedure. For
time-dependent problems with rapidly stabilizing and high-frequency bound-
ary data, the perturbation method is used for obtaining the asymptotic behavior
as the perturbation parameter tends to a limiting value.

Linear Water Waves will serve as an ideal reference for those working in
fluid mechanics and engineering, as well as a source of new applications for
those interested in partial differential equations of mathematical physics.
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Preface

Now, the next waves of interest, that are easily seen by everyone
and which are usually used as an example of waves in elementary
courses, are water waves. As we shall soon see, they are the worst
possible example, because they are in no respect like sound and
light; they have all the complications that waves can have.

—The Feynman Lectures on Physics, Vol. 1, Section 51.4 (86)

The aim of the present book is to give a self-contained and up-to-date account
of mathematical results in the linear theory of water waves. The study of dif-
ferent kinds of waves is of importance for various applications. For example,
it is required for predicting the behavior of floating structures (immersed to-
tally or partially) such as ships, submarines, and tension-leg platforms and for
describing flows over bottom topography. Furthermore, the investigation of
wave patterns of ships and other vehicles in forward motion is closely related
to the calculation of the wave-making resistance and other hydrodynamic
characteristics that are used in marine design. Another area of application is
the mathematical modeling of unsteady waves resulting from such phenom-
ena as underwater earthquakes, blasts, and the like.

The history of water wave theory is almost as old as that of partial differen-
tial equations. Their founding fathers are the same: Euler, Lagrange, Cauchy,
Poisson. Further contributions were made by Stokes, Lord Kelvin, Kirchhoff,
and Lamb, who constructed a number of explicit solutions. In the 20th century,
Havelock, Kochin, Sretensky, Stoker, John, and others applied the Fredholm
theory of boundary integral equations to the field of water waves.

There are several general expositions of the classical theory by Crapper
[42], Lamb [179], Lighthill [201], Sretensky [310], Stoker [312], Wehausen
and Laitone [354], and Whitham [359]. Various aspects of the linear theory
of water waves were considered in works of Havelock and Ursell and can be
found in their collected papers (see [111] and [342], respectively). Other works

xi
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xii Preface

are focused on various applied aspects of the theory. In particular, Haskind
[106], Mei [242], Newman [262, 263], and Wehausen [352] consider the
wave–body interaction. Also, there is the very recent monograph by Linton
and McIver [208] on the mathematical methods used in the theory of such
interactions, but it mainly discusses mathematical techniques from the point of
view of their applications in ocean engineering. Problems in the theory of ship
waves and wave resistance are considered by Kostyukov [147], Bhattacharya
[26], Timman, Hermans, and Hsiao [318], and Wehausen [353], but like [208]
these works illuminate those problems in a way more appropriate for applied
research. There are books by Debnath [46] and Ovsyannikov et al. [273]
concerned with nonlinear waves. However, there is no monograph on the
progress achieved in the more mathematical approach to the linear water-
wave theory during the last few decades.

Although the decades after World War II have brought a renewed interest
in both mathematical and applied aspects of the theory, some fundamental
questions still remained open. A number of (at the time) unsolved problems
were listed by Ursell in 1992 [341]. Since then, substantial progress has been
achieved. The new results and methods developed for obtaining them together
with those dating from the 1970s and 1980s form the core of this book. We
give an account of the state of the art in the field providing the reader with mod-
ern tools for further research. It is worth mentioning that these tools are not
only applicable to problems of water waves but also have a much wider range
of usage. Integral identities and energy inequalities for proving uniqueness
theorems, the inverse procedure for constructing non-uniqueness examples,
various versions of the integral equations method for solving boundary value
problems, and asymptotic expansions for both transient and steady-state prob-
lems represent several of the techniques used in the book, and the list can be
continued.

The book is arranged in three parts, each treating one of the main themes,
which are, respectively, as follows: time-harmonic waves, waves caused by
the uniform forward motion of a body on calm water, and unsteady waves.
Also, there is an introductory chapter preceding Part 1 that is concerned
with governing equations obtained on the basis of general dynamics of an
inviscid incompressible fluid (water is the standard example of such a fluid).
Linearized problems are derived there as well.

Part 1 is devoted to waves arising, in particular, in two closely related
phenomena, which are radiation of waves by oscillating immersed bodies
and scattering of incoming progressive waves by an obstacle (a floating body
or variable bottom topography). Mathematically these phenomena give rise
to a boundary value problem that is usually referred to as the water-wave
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Preface xiii

problem. The difficulty of this problem stems from several facts. First, it is
essential that the water domain is infinite. Second, there is a spectral parameter
(it is related to the radian frequency of waves) in a boundary condition on a
semi-infinite part of the boundary (referred to as the free surface of water).
Above all, the free surface may consist of more than one component as occurs
for a surface-piercing toroidal body. Thus the questions of solvability and
uniqueness are far from being solved because usual tools applicable to other
problems of mathematical physics fail in this case. The problem of uniqueness
is particularly difficult, and it was placed first in Ursell’s list of unsolved
problems mentioned above. Different cases are possible, and we demonstrate
in Part 1 that, for some geometries of the water domain, the so-called trapped
modes (that is, nontrivial solutions of the homogeneous problem leading to
non-uniqueness in the inhomogeneous problem) do exist for certain values of
the spectral parameter whereas other geometries provide uniqueness for all
frequencies.

Part 1 is divided into five chapters. In Chapter 1, we give an account of
Green’s functions in three and two dimensions. This material is frequently
used in the sequel because, first of all, Green’s function gives a key for proving
the solvability theorem by reducing the water-wave problem to an integral
equation on the wetted surface (contour) of an immersed body, or of a bottom
obstruction (see Chapters 2 and 3). Second, Green’s function is the tool that
is applied in Chapter 4 for the construction of trapped waves, in other words,
for examples of non-uniqueness in the water-wave problem.

Chapter 2 is concerned with those cases in which the free surface coincides
with the whole horizontal plane. The application of the integral equation
technique to the problem of a submerged body is developed in Section 2.1. It
provides the solvability of the water-wave problem for all frequencies except
possibly for a finite number of values. In Sections 2.2 and 2.3, sufficient
conditions on the body shape and bottom profile are established that guarantee
the unique solvability for all frequencies. Moreover, a certain auxiliary integral
identity is derived for proving one of the uniqueness theorems. This identity
finds further applications in Chapters 3 and 5.

In Chapter 3, semisubmerged bodies are allowed in the way that leaves
no bounded components of the free surface. As in Chapter 2, we first apply
the method of integral equations. However, the integral equation based on
the source distribution over the wetted rigid surface gives rise to so-called
irregular frequencies, that is, the frequencies at which the integral equation is
not solvable for an arbitrary right-hand-side term. These values are not related
to the water-wave problem and arise from the fact that a certain boundary value
problem in the domain between the body surface and the free-surface plane
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xiv Preface

has these values as eigenvalues. There are different ways that lead to other
integral equations without irregular frequencies. We consider one of them
in detail and give a survey of the others in Section 3.1. In Section 3.2, we
present uniqueness theorems related to geometries under consideration. We
begin with John’s theorem and then consider extensions of John’s method.

Chapter 4 deals with the case in which isolated portions of the free sur-
face are present. This case is distinguished from the situations presented in
Chapters 2 and 3, because examples of trapped waves involving such geome-
tries have been constructed. In Section 4.1, we give two-dimensional examples
as well as axisymmetric ones. They show that the exceptional values of fre-
quency when the water-wave problem is not uniquely solvable do exist, at
least for special geometries obtained by means of the so-called inverse proce-
dure. We begin Section 4.2 with a number of geometric conditions providing
uniqueness in the two-dimensional problem when either two bodies are sym-
metric about a vertical axis or the water domain has no mirror symmetry.
Section 4.2 also deals with the uniqueness in the water-wave problem for a
toroidal body. It occurs that for an axisymmetric toroid (similarly to the case
of two symmetric cylinders), intervals of uniqueness alternate with intervals
of possible non-uniqueness on the frequency half-axis. However, if more re-
strictions are imposed on the geometry, then it is possible to prove that some
intervals of possible non-uniqueness are free of it.

A survey of results obtained in the extensive field of trapped waves periodic
in a horizontal direction is given in Chapter 5. A short Section 5.1 contains a
classification of such trapped waves. Edge waves are treated in Section 5.2.
We present results on trapped modes above submerged cylinders and bottom
protrusions in Section 5.3. Modes trapped by surface-piercing structures are
considered in Section 5.4. The last section, Section 5.5, is concerned with
trapped modes near vertical cylinders in channels.

Part 2 is concerned with waves caused by the uniform forward motion
of a body on calm water, and these waves are usually referred to as ship
waves. They are familiar to everybody because of their typical V pattern.
The first mathematical explanation of this pattern appeared in 1887, when
Lord Kelvin applied for this purpose his method of the stationary phase.
Thus a clear evidence was given that the linear theory explains ship waves
at least qualitatively. The boundary value problem describing ship waves is
known as the Neumann–Kelvin problem, and as in the case of the water-wave
problem the corresponding water domain is infinite, and there is a spectral
parameter (related to the forward velocity) in the boundary condition on the
free surface. The two problems are distinguished in both the free surface
boundary conditions and conditions at infinity. The latter are unsymmetric
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Preface xv

and axially symmetric in the Neumann–Kelvin and water-wave problems,
respectively.

Part 2 consists of three chapters, and as in Part 1 we begin with the three-
and two-dimensional Green’s functions for the Neumann–Kelvin problem
(Chapter 6). It is worth mentioning that in Section 6.2 we give an asymptotic
formula that describes the behavior of waves generated by Kelvin’s source
uniformly in all horizontal directions and with respect to depth.

The next two chapters, Chapters 7 and 8, are mainly concerned with the
simpler two-dimensional Neumann–Kelvin problems for totally submerged
and surface-piercing bodies, respectively. For the former case, necessary
and sufficient conditions of the unique solvability are given for both infinite
(Section 7.1) and finite (Section 7.2) depth of water. It is shown that these
conditions hold for a circular cylinder in deep water, which is the only geom-
etry when the problem is known to be uniquely solvable for all values of the
forward velocity.

In the case of a surface-piercing cylinder, two supplementary conditions
must be imposed and several sets of such conditions are possible. For one
set of supplementary conditions considered in Section 8.1, the analogues
of necessary and sufficient conditions from Chapter 7 are obtained, and they
guarantee the unique solvability of the problem for surface-piercing cylinders.
Other supplementary conditions are treated in Section 8.3, and some of them
lead to the existence of trapped modes having finite energy. Examples of
trapped modes are constructed in Section 8.4. In Section 8.5, we show that
supplementary conditions of the first type guarantee that the unique solvability
theorem holds for supercritical values of the forward velocity (that is, values
exceeding a certain critical number depending on the water depth). Formulae
for the total resistance of surface-piercing cylinders to the forward motion
are derived in Section 8.2 for deep and shallow water, and these formulae
generalize those obtained in Section 7.3 and expressing the wave-making
resistance of totally submerged cylinders.

Section 7.4 deals with the three-dimensional Neumann–Kelvin problem
for a totally submerged body, and it is established that the problem is solvable
for all values of the spectral parameter with a possible exception for a finite
number of values. We note that less is known about the three-dimensional
Neumann–Kelvin problem than is known about the two-dimensional one.
For instance, there is no example of a totally submerged body for which the
problem is uniquely solvable for all values of the forward velocity. One of
the difficulties in this direction arises from the fact that the uniqueness of a
solution having finite energy does not imply the uniqueness of an arbitrary
solution, as the case is in the water-wave problem. Another important unsolved
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xvi Preface

question in three dimensions is how to impose a supplementary condition on
the contour, where a surface-piercing body intersects the free surface.

In Part 3, which consists of two chapters, we investigate unsteady wave
motions that develop in time under various disturbances applied either to
the free surface or beneath it. In addition, certain initial conditions must be
given at the time moment t = 0. Such problems arise in oceanography (for
example, when describing generation of tsunamis), as well as in ship research
(in particular, in the theory of wave-making resistance). All unsteady problems
may be divided into two large classes. One of them consists of problems
describing waves on the surface of an unsteady flow, whereas problems in the
second class deal with waves arising from disturbances that are motionless
relative water, and that depend on time only.

We begin Part 3 with results on the uniqueness, existence, and smoothness
of solution. They are presented in Chapter 9 and hold for both classes of
problems mentioned above. It should be noted that these results are obtained
under the essential restriction that the free surface coincides with the whole
horizontal plane, and the rigid boundaries of the water domain are placed at a
finite distance from the free surface. The case of rigid boundaries intersecting
the free surface is still an open question. In the next chapter, Chapter 10, we
are concerned with problems describing waves caused by rapidly stabilizing
and high-frequency disturbances that are motionless relative water. For both
cases we give an asymptotic analysis based on a two-scale expansion for the
velocity potential, and this allows us to describe principal terms in asymptotics
of hydrodynamic characteristics such as the free surface elevation, the force
acting on submerged bodies, the energy of waves, and so on.

In the Bibliography, we tried to list as many works that were published
after 1960 and that treat the mathematical aspects of water waves as we
could. An extensive lists of papers published up to 1960 are given by Stoker
[312] and Wehausen and Laitone [354], and an additional bibliography can
be found in the survey papers published by Newman [263] and Wehausen
[353] during the 1970s. The papers listed in our Bibliography are mostly
described briefly in Bibliographical Notes (almost every chapter has such a
title for its last section), but a few are not. Of course, despite our efforts, there
are omissions in the Bibliography (this is inevitable when one is dealing with
several hundreds of works published over several decades).

To complete the description of the book, we mention that parts are divided
into chapters, which consist of sections that are divided into subsections (and
some subsections are divided into subsubsections). The titles of chapters and
sections are given on the top of even and odd pages respectively. The titles of
sections and subsections are given as bold headlines and numbered by two and
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Preface xvii

three numbers, respectively; for example, 4.2 is Section 2 in Chapter 4, and
2.4.2 is Subsection 2 in Section 2.4. The titles of subsubsections are numbered
by four numbers and are not bold. Every chapter has independent numbering
of formulae and figures; for example, (2.36) denotes the 36th formula in
Chapter 2, and Fig. 2.3(a) refers to part (a) of the third figure in Chapter 2.
Most of the references are collected in Bibliographical Notes, but this does
not apply to review chapters and sections.

A substantial part of the book is based on authors’ contributions to the
theory. The presentation of material is mathematically rigorous, despite the
fact that we usually avoid the lemma–theorem style. Instead, we adopt a
more or less informal style, formulating, nevertheless, all proved assertions
in italics.

The prerequisite for reading the book is a course in Mathematical Anal-
ysis, and a familiarity with Bessel functions and the Fourier transform. We
assume also that the reader is aware of the elements of functional analysis
(for example, the Fredholm alternative is widely used in the book).

The book is supposed to be a research monograph in applied mathematics.
Some of its topics might be of interest to mathematicians who specialize in
partial differential equations and spectral operator theory. We also hope it
could be used as a reference book by experts in ocean engineering as well as
an advanced text for applied and engineering mathematics graduate students.
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