
Classical Statistical Procedures

1.1. INTRODUCTION

An alternative title to this book could have been The Application of Classical
Statistical Procedures to Econometrics or something along these lines. What
it purports to do is provide the reader with mathematical tools that facilitate
the application of classical statistical procedures to the complicated statistical
models that we are confronted with in econometrics. It then demonstrates how
these procedures can be applied to a sequence of linear econometric models,
each model being more complicated statistically than the previous one. The
statistical procedures I have in mind are these centered around the likelihood
function: procedures that involve the score vector, the information matrix, and
the Cramer-Rao lower bound, together with maximum-likelihood estimation
and classical test statistics.

Until recently, such procedures were little used by econometricians. The like-
lihood function in most econometric models is complicated, and the first-order
conditions for maximizing this function usually give rise to a system of nonlin-
ear equations that is not easily solved. As a result, econometricians developed
their own class of estimators, instrumental variable estimators, that had the same
asymptotic properties as those of maximum-likelihood estimators (MLEs) but
were far more tractable mathematically [see Bowden and Turkington (1990)].
Nor did econometricians make much use of the prescribed classical statistical
procedures for obtaining test statistics for the hypotheses of interest in econo-
metric models; rather, test statistics were developed on an ad hoc basis.

All that changed in the last couple of decades, when there was renewed inter-
est by econometricians in maximum-likelihood procedures and in developing
Lagrangian multiplier test (LMT) statistics. One reason for this change was
the advent of large, fast computers. A complicated system of nonlinear equa-
tions could now be solved so we would have in hand the maximum-likelihood
estimates even though we had no algebraic expression for the underlying es-
timators. Another more recent explanation for this change in attitude is the
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2 Matrix Calculus and Zero-One Matrices

advent of results on zero-one matrices and matrix calculus. Works by Graham
(1981), Magnus (1988), Magnus andNeudecker (1988), and Lutkepohl (1996)
have shown us the importance of zero-one matrices, their connection to matrix
calculus, and the power of matrix calculus particularly with respect to applying
classical statistical procedures.

In this introductory chapter, I have a brief and nonrigorous summary of the
classical statistical procedures that are used extensively in the latter part of this
book.

1.2. THE SCORE VECTOR, THE INFORMATION MATRIX,
AND THE CRAMER-RAO LOWER BOUND

Let 0 be a k x 1 vector of unknown parameters associated with a statistical
model and let 1(0) be the log-likelihood function that satisfies certain regularity
conditions and is twice differentiable. Let dl/dO denote the k x 1 vector of
partial derivatives of/. Then dl/dO is called the score vector. Let d2lld0d0'
denote the k x k Hessian matrix of 1(0). Then the (asymptotic) information
matrix is defined as

1(0) = - lim -E(d2l/d0d0'),

where n denotes the sample size. Now the limit of the expectation need not
be the same as the probability limit. However, for the models we consider in
this book, based as they are on the multivariate normal distribution, the two
concepts will be the same. As a result it is often more convenient to regard the
information matrix as

I(0) = -p\im-d2l/d0d0f.
n

The inverse of this matrix, I~l(0), is called the (asymptotic) Cramer-Rao
lower bound. Let 0 be a consistent estimator of 0 such that

Jn~(0 - 0) - i Af(O, V).

The matrix V is called the asymptotic covariance matrix of 0. Then V ex-
ceeds the Cramer-Rao lower bound I~l(0) in the sense that V — I~l(0) is a
positive-semidefinite matrix. If V = I~l(0), then 0 is called a best asymptoti-
cally normally distributed estimator (which is shortened to BAN estimator).

1.3. MAXIMUM LIKELIHOOD ESTIMATORS
AND TEST PROCEDURES

Classical statisticians prescribed a procedure for obtaining a BAN estimator,
namely the maximum-likelihood procedure. Let 0 denote the parameter space.
Then any value of 0 that maximizes 1(0) over 0 is called a maximum-likelihood
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Classical Statistical Procedures 3

estimate, and the underlying estimator is called the MLE. The first-order con-
ditions for this maximization are given by

0

dO

Let 0 denote the MLE of 0. Then 0 is consistent, and 0 is the BAN estimator so

Let H e a G x l vector whose elements are functions of the elements of 0. We
denote this by h(6). Suppose we are interested in developing test statistics for
the null hypothesis

Ho : h(0) = 0

against the alternative

HA : h(0) / 0.

Let 0 denote the MLE of 0 and 0 denote the constrained MLE of 0; that is,
0 is the MLE of 0 we obtain after we impose HQ on our statistical model.
Let dh(O)/dO denote the k x G matrix whose (ij) element is dhj/dOi. Then
classical statisticians prescribed three competing procedures for obtaining a test
statistic for Ho. These are as follows.

LAGRANGIAN MULTIPLIER TEST STATISTIC

n dO 30

Note that the LMT statistic uses the constrained MLE of 0. If Ho is true, 0
should be close to 6 and as, by the first-order conditions, dl(O)/dO = 0, the
derivative dl(O)/dO evaluated at 0 should also be close to the null vector. The
test statistic is a measure of the distance dl(O)/dO is from the null vector.

WALD TEST STATISTIC

Note that the Wald test statistic uses the (unconstrained) MLE of 6. Essentially
it is based on the asymptotic distribution of *Jnh(6) under Ho, the statistic
itself measuring the distance h(0) is from the null vector.

LIKELIHOOD RATIO TEST STATISTIC

T3=2[l(§)-1(6)1

Note that the likelihood ratio test (LRT) statistic uses both the unconstrained
MLE 0 and the constrained MLE 0. If Ho is indeed true, it should not matter
whether we impose it or not, so 1(0) should be approximately the same as 1(0).
The test statistic T3 measures the difference between 1(0) and 1(0).
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4 Matrix Calculus and Zero-One Matrices

All three test statistics are asymptotically equivalent in the sense that, under
Ho, they all have the same limiting x2 distribution and under HA, with local
alternatives, they have the same limiting noncentral x2 distribution. Usually
imposing the null hypothesis on our model leads to a simpler statistical model,
and thus the constrained MLEs 0 are more obtainable than the 0 MLEs. For
this reason the LMT statistic is often the easiest statistic to form. Certainly it is
the one that has been most widely used in econometrics.

1.4. NUISANCE PARAMETERS

Let us now partition 0 into 0 == (a'P')', where a is a k\ x 1 vector of parameters
of primary interest and /3 is a £2 x 1 vector of nuisance parameters, k\ + &2 = k.
The terms used here do not imply that the parameters in /3 are unimportant to
our statistical model. Rather, they indicate that the purpose of our analysis is to
make statistical inference about the parameters in a instead of those in /3.

In this situation, two approaches can be taken. First, we can derive the infor-
mation matrix 1(0) and the Cramer-Rao lower bound I~l(0). Let

be these matrices partitioned according to our partition of 0. As far as a is
concerned we can now work with Iaa and Iaa in place of 1(0) and I~l(0), re-
spectively. For example, Iaoe is the Cramer-Rao lower bound for the asymptotic
covariance matrix of a consistent estimator of a. If a is the MLE of a, then

and so on.
A particular null hypothesis that has particular relevance for us is

Ho : a = 0

against

Under this first approach, the classical test statistics for this null hypothesis
would be the following test statistics.

LAGRANGIAN TEST STATISTIC

n da da
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Classical Statistical Procedures 5

WALD TEST STATISTIC

T2 = na'Iaa(0yla.

LIKELIHOOD RATIO TEST STATISTIC

T3=2[l(0)-l(0)].

Under Ho all three test statistics would have a limiting x2 distribution with k\
degrees of freedom, and the nature of the tests insists that we use the upper tail
of this distribution to find the appropriate critical region.

The second approach is to work with the concentrated log-likelihood func-
tion. Here we undertake a stepwise maximization of the log-likelihood
function. We first maximize 1(0) with respect to the nuisance parameters /3 to
obtain ft = ft(a), say. The vector ft is then placed back in the log-likelihood
function to obtain

The function l(a) is called the concentrated likelihood function. Our analysis
can now be reworked with l(a) in place of 1(0).

For example, let

1 v l d!

I = -phm-
n da da'

and let a be any consistent estimator of a such that
Vn(<* -a)-i N(0, Va).

Then Va > I in the sense that their difference is a positive-semidefinite
matrix. If a is the MLE of a, then a is obtained from

^ = 0,
da

and so on. As far as test procedures go for the null hypothesis Ho : h(a) = 0,
under this second approach we rewrite the test statistics by using I and 7 in
place of 1(0) and 1(0), respectively. In this book, I largely use the first approach
as one of my expressed aims is to achieve the complete information matrix 1(0)
for a sequence of econometric models.

1.5. DIFFERENTIATION AND ASYMPTOTICS

Before we leave this brief chapter, note that classical statistical procedures
involve us in much differentiation. The score vector dl/dO, the Hessian matrix
d2l/d0d0f, and dh/dO all involve working out partial derivatives. It is at this
stage that difficulties can arise in applying these procedures to econometric

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80788-3 - Matrix Calculus and Zero-One Matrices: Statistical and
Econometric Applications
Darrell A. Turkington
Excerpt
More information

www.cambridge.org/9780521807883
www.cambridge.org
www.cambridge.org


6 Matrix Calculus and Zero-One Matrices

models. As hinted at in Section 1.2, the log-likelihood function 1(0) for most
econometric models is a complicated function, and it is no trivial matter to
obtain the derivatives required in our application. Usually it is too great a task
for ordinary calculus. Although in some cases it can be done, [see, for example,
Rothenberg and Leenders (1964)], what often happens when one attempts to
do the differentiation by using ordinary calculus is that one is confronted with
a hopeless mess. It is precisely this problem that has motivated the writing of
this book. I hope that it will go some way toward alleviating it.

It is assumed that the reader is familiar with standard asymptotic theory.
Every attempt has been made to make the rather dull but necessary asymptotic
analysis in this book as readable as possible. Only the probability limits of the
information matrices that are required in our statistical analysis are worked out
in full. The probability limits themselves are assumed to exist - a more formal
mathematical analysis would give a list of sufficient conditions needed to ensure
this. Finally, as already noted, use is made of the shortcut notation

rather than the more formally correct notation
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Elements of Matrix Algebra

2.1. INTRODUCTION

In this chapter, we consider matrix operators that are used throughout the book
and special square matrices, namely triangular matrices and band matrices, that
will crop up continually in our future work. From the elements o f a n m x n
matrix, A = (a/y) and a p xq matrix, B = (btj), the Kronecker product forms
an mp x nq matrix. The vec operator forms a column vector out of a given
matrix by stacking its columns one underneath the other. The devec operator
forms a row vector out of a given matrix by stacking its rows one alongside the
other. In like manner, a generalized vec operator forms a new matrix from a
given matrix by stacking a certain number of its columns under each other and
a generalized devec operator forms a new matrix by stacking a certain number
of rows alongside each other. It is well known that the Kronecker product is
intimately connected with the vec operator, but we shall see that this connection
also holds for the devec and generalized operators as well. Finally we look at
special square matrices with zeros above or below the main diagonal or whose
nonzero elements form a band surrounded by zeros. The approach I have taken
in this chapter, as indeed in several other chapters, is to list, without proof, well-
known properties of the mathematical concept, in hand. If, however, I want to
present a property in a different light or if I have something new to say about
the concept, then I will give a proof.

2.2. KRONECKER PRODUCTS

Let A = (ciij) be an m x n matrix and B a p x q matrix. The mp x nq matrix
given by

~anB a\nB'

am\B amnB
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8 Matrix Calculus and Zero-One Matrices

is called the Kronecker product of A and B, denoted by A 0 B. The following
useful properties concerning Kronecker products are well known:

A 0 (B 0 C) = (A 0 B) 0 C = A 0 5 0 C,

if A + 5 and C + £> exist,

(A® B)(C ® D) = AC ® BD, if AC and 5Z> exist.

The transpose of a Kronecker product is

(A ® B)' = A! 0 £',

whereas the rank of a Kronecker product is

r(A 0 5) = r(A) r(J5).

If A is a square n xn matrix and B is a square p x p matrix, then the trace of
the Kronecker product is

t r ( A 0 £ ) = tr AtrJB,

whereas the determinant of the Kronecker product is

|A®£| = |A|W,

and if A and B are nonsingular, the inverse of the Kronecker product is

Other properties of Kronecker products, although perhaps less well known, are
nevertheless useful and are used throughout this book. First note that, in general,
Kronecker products do not obey the commutative law, s o A 0 / ? 7 ^ # 0 A . One
exception to this rule is if a and b are two column vectors, not necessarily of
the same order; then

af ®b = b®a' = ba'. (2.1)

This exception allows us to write A 0 b in an interesting way, where A is an
m x n matrix and b is a p x 1 vector. Partitioning A into its rows, we write

where a1 is the /th row of A. Then clearly from our definition of Kronecker
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Elements of Matrix Algebra

product

(2.2)

where we achieve the last equality by using Eq. (2.1).
Second, it is clear from the definition of the Kronecker product that if A is

partitioned into submatrices, say

A =

"An A\K'

then

"An ® B A\K®B'

A/10 5 • • • AIK ® B

Suppose we now partition B into an arbitrary number of submatrices, say

B\\ • • • B\r

B =

Bs\ - - - Bsr

Then, in general,

A<g> B ?

A® BsX . . . A®Bsr

One exception to this rule is given by the following theorem.

Theorem 2.1. Let a be an m x 1 vector and 5 b e a p x ^ matrix. Write
B = {B\" Br), where each submatrix of B has p rows. Then

Br).
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10 Matrix Calculus and Zero-One Matrices

Proof of Theorem 2.1. Clearly

a® B =

\amBi

= (a

ax(Bx

am(Bx

®Br).

Br)

axBx axBr

amBx ••• amBr

D

Now consider A as an m x n matrix partitioned into its columns A = (ax • • • an)
and a partitioned matrix B = (Bx • • • Br). Then, by using Theorem 2.1, it is
clear that we can write

A 0 B = (ax • ax 0 5 r • • • an 0 Bx • • • aw 0 Z?r).

This property of Kronecker products allows us to write A 0 B in a useful way.
Partitioning A and B into their columns, we write

= (bx---bq).

Then

A 0 B = (ax 0 bx • • • ax 0 bq • • • an 0 bx • • • an 0 bq).

Third, note that if A and B are mxn and p x q matrices, respectively, and x
is any column vector, then

A(/n 0 JC') = (A 0 1) (/„ 0 x') = A 0 JC',

(x 0 IP)B = (JC 0 Ip) (1 0 5) = x 0 5 .

This property, coupled with the Kronecker product of A 0 5 , where A is parti-
tioned, affords us another useful way of writing A 0 B. Partitioning A into its
columns, we obtain

A 0 B = (ax 0 B • • • an 0 B) = [(ax 0 7^)5 • • • (an 0 /P)B].

Finally, note that for A m x n, and B pxq

A 0 5 = (A 0 Ip) (In 0 B) = (7m 0 5) (A 0 /^).

2.3. THE VEC AND THE DEVEC OPERATORS

2.3.1. Basic Definitions

Let A be an m x n matrix and aj be its y'th column. Then vec A is the mn x 1
vector

vec A =
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