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1

Introduction

C ontrol systems are tightly intertwined in our daily lives so much so that we take them
for granted. They may be as low tech and unglamorous as our flush toilet. Or they
may be as high tech as electronic fuel injection in our cars. In fact, there is more than

a handful of computer control systems in a typical car that we now drive. In everything from
the engine to transmission, shock absorber, brakes, pollutant emission, temperature, and so
forth, there is an embedded microprocessor controller keeping an eye out for us. The more
gadgetry, the more tiny controllers pulling the trick behind our backs.1 At the lower end of
consumer electronic devices, we can bet on finding at least one embedded microcontroller.

In the processing industry, controllers play a crucial role in keeping our plants running –
virtually everything from simply filling up a storage tank to complex separation processes
and chemical reactors.

As an illustration, let’s take a look at a bioreactor (Fig. 1.1). To find out if the bioreactor is
operating properly, we monitor variables such as temperature, pH, dissolved oxygen, liquid
level, feed flow rate, and the rotation speed of the impeller. In some operations, we may also
measure the biomass and the concentration of a specific chemical component in the liquid
or the composition of the gas effluent. In addition, we may need to monitor the foam head
and make sure it does not become too high. We most likely need to monitor the steam flow
and pressure during the sterilization cycles. We should note that the schematic diagram is
far from complete. By the time we have added enough details to implement all the controls,
we may not recognize the bioreactor. These features are not pointed out to scare anyone; on
the other hand, this is what makes control such a stimulating and challenging field.

For each quantity that we want to maintain at some value, we need to ensure that the
bioreactor is operating at the desired conditions. Let’s use the pH as an example. In control
calculations, we commonly use a block diagram to represent the problem (Fig. 1.2). We will
learn how to use mathematics to describe each of the blocks. For now, the focus is on some
common terminology.

To consider pH as a controlled variable, we use a pH electrode to measure its value
and, with a transmitter, send the signal to a controller, which can be a little black box or a
computer. The controller takes in the pH value and compares it with the desired pH, what

1 In the 1999 Mercedes-Benz S-class sedan, there are approximately 40 “electronic control units” that
control up to 170 different variables.
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Figure 1.1. Schematic diagram of instrumentation associ-
ated with a fermentor. The steam sterilization system and all
sensors and transmitters are omitted for clarity. The thick
solid lines represent process streams. The thin solid lines
represent information flow.

is called the set point or the reference. If the values are not the same, there is an error, and
the controller makes proper adjustments by manipulating the acid or the base pump – the
actuator.2 The adjustment is based on calculations made with a control algorithm, also called
the control law. The error is calculated at the summing point, where we take the desired pH
minus the measured pH. Because of how we calculate the error, this is a negative-feedback
mechanism.

This simple pH control example is what we call a single-input single-output (SISO)
system; the single input is the set point and the output is the pH value.3 This simple feedback

−
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pH Control
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Mixed
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Figure 1.2. Block-diagram representation of a single-input single-
output negative-feedback system. Labels within the boxes are general.
Labels outside the boxes apply to the simplified pH control discussion.

2 In real life, bioreactors actually use on–off control for pH.
3 We will learn how to identify input and output variables, how to distinguish among manipulated

variables, disturbances, measured variables, and so forth. Do not worry about remembering all the
terms here; they will be introduced properly in subsequent chapters.
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mechanism is also what we call a closed loop. This single-loop system ignores the fact that
the dynamics of the bioreactor involves complex interactions among different variables. If
we want to take a more comprehensive view, we need to design a multiple-input multiple-
output (MIMO), or multivariable, system. When we invoke the term system, we are referring
to the process4 (the bioreactor here), the controller, and all other instrumentation, such as
sensors, transmitters, and actuators (like valves and pumps) that enable us to control the
pH.

When we change a specific operating condition, meaning the set point, we would like,
for example, the pH of the bioreactor to follow our command. This is what we call
servocontrol. The pH value of the bioreactor is subjected to external disturbances (also
called load changes), and the task of suppressing or rejecting the effects of disturbances
is called regulatory control. Implementation of a controller may lead to instability, and the
issue of system stability is a major concern. The control system also has to be robust such
that it is not overly sensitive to changes in process parameters.

What are some of the issues when we design a control system? In the first place, we need
to identify the role of various variables. We need to determine what we need to control, what
we need to manipulate, what the sources of disturbances are, and so forth. We then need to
state our design objective and specifications. It may make a difference whether we focus on
the servo or on the regulator problem, and we certainly want to make clear, quantitatively, the
desired response of the system. To achieve these goals, we have to select the proper control
strategy and controller. To implement the strategy, we also need to select the proper sensors,
transmitters, and actuators. After all is done, we have to know how to tune the controller.
Sounds like we are working with a musical instrument, but that’s the jargon.

The design procedures depend heavily on the dynamic model of the process to be con-
trolled. In more advanced model-based control systems, the action taken by the controller
actually depends on the model. Under circumstances for which we do not have a precise
model, we perform our analysis with approximate models. This is the basis of a field called
system identification and parameter estimation. Physical insight that we may acquire in the
act of model building is invaluable in problem solving.

Although we laud the virtue of dynamic modeling, we will not duplicate the introduction
of basic conservation equations. It is important to recognize that all of the processes that we
want to control, e.g., bioreactor, distillation column, flow rate in a pipe, drug delivery system,
etc., are what we have learned in other engineering classes. The so-called model equations are
conservation equations in heat, mass, and momentum. We need force balance in mechanical
devices, and, in electrical engineering, we consider circuit analysis. The difference between
what we now use in control and what we are more accustomed to is that control problems are
transient in nature. Accordingly, we include the time-derivative (also called accumulation)
term in our balance (model) equations.

What are some of the mathematical tools that we use? In classical control, our analy-
sis is based on linear ordinary differential equations with constant coefficients – what is
called linear time invariant (LTI). Our models are also called lumped-parameter models,
meaning that variations in space or location are not considered. Time is the only indepen-
dent variable. Otherwise, we would need partial differential equations in what is called
distributed-parameter models. To handle our linear differential equations, we rely heavily

4 In most of the control world, a process is referred to as a plant. Here “process” is used because, in the
process industry, a plant carries the connotation of the entire manufacturing or processing facility.
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Table 1.1. Examples used in different chapters

Example Page no.

Example 4.7 72
Example 4.7A 73
Example 4.7B 186
Example 4.7C 187
Example 4.8 75
Example 4.8A 181

Example 5.7 101
Example 5.7A 112
Example 5.7B 123
Example 5.7C 123
Example 5.7D 172

Example 7.2 133
Example 7.2A 135
Example 7.2B 139
Example 7.2C 170
Example 7.2D 171
Example 7.3 133
Example 7.3A 135
Example 7.3B 140
Example 7.4 136
Example 7.4A 172
Example 7.5 137
Example 7.5A 143
Example 7.5B 188

on Laplace transform, and we invariably rearrange the resulting algebraic equation into
the so-called transfer functions. These algebraic relations are presented graphically as block
diagrams (as in Fig. 1.2). However, we rarely go as far as solving for the time-domain solu-
tions. Much of our analysis is based on our understanding of the roots of the characteristic
polynomial of the differential equation – what we call the poles.

At this point, a little secret should be disclosed. Just from the terminology, it may be
inferred that control analysis involves quite a bit of mathematics, especially when we go
over stability and frequency-response methods. That is one reason why these topics are
not immediately introduced. Nonetheless, we have to accept the prospect of working with
mathematics. It would be a lie to say that one can be good in process control without sound
mathematical skills.

Starting in Chap. 6, a select set of examples is repeated in some subsections and chapters.
To reinforce the thinking that different techniques can be used to solve the same problem,
these examples retain the same numeric labeling. These examples, which do not follow
conventional numbering, are listed in Table 1.1 to help you find them.

It may be useful to point out a few topics that go beyond a first course in control. With
certain processes, we cannot take data continuously, but rather in certain selected slow in-
tervals (e.g., titration in freshmen chemistry). These are called sampled-data systems. With

4
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computers, the analysis evolves into a new area of its own – discrete-time or digital con-
trol systems. Here, differential equations and Laplace transform do not work anymore.
The mathematical techniques to handle discrete-time systems are difference equations and
z transforms. Furthermore, there are multivariable and state-space controls, which we will
encounter in a brief introduction. Beyond the introductory level are optimal control, non-
linear control, adaptive control, stochastic control, and fuzzy-logic control. Do not lose the
perspective that control is an immense field. Classical control appears insignificant, but we
have to start somewhere, and onward we crawl.
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