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Introduction

C ontrol systems are tightly intertwined in our daily lives so much so that we take them
for granted. They may be as low tech and unglamorous as our flush toilet. Or they
may be as high tech as electronic fuel injection in our cars. In fact, there is more than

a handful of computer control systems in a typical car that we now drive. In everything from
the engine to transmission, shock absorber, brakes, pollutant emission, temperature, and so
forth, there is an embedded microprocessor controller keeping an eye out for us. The more
gadgetry, the more tiny controllers pulling the trick behind our backs.1 At the lower end of
consumer electronic devices, we can bet on finding at least one embedded microcontroller.

In the processing industry, controllers play a crucial role in keeping our plants running –
virtually everything from simply filling up a storage tank to complex separation processes
and chemical reactors.

As an illustration, let’s take a look at a bioreactor (Fig. 1.1). To find out if the bioreactor is
operating properly, we monitor variables such as temperature, pH, dissolved oxygen, liquid
level, feed flow rate, and the rotation speed of the impeller. In some operations, we may also
measure the biomass and the concentration of a specific chemical component in the liquid
or the composition of the gas effluent. In addition, we may need to monitor the foam head
and make sure it does not become too high. We most likely need to monitor the steam flow
and pressure during the sterilization cycles. We should note that the schematic diagram is
far from complete. By the time we have added enough details to implement all the controls,
we may not recognize the bioreactor. These features are not pointed out to scare anyone; on
the other hand, this is what makes control such a stimulating and challenging field.

For each quantity that we want to maintain at some value, we need to ensure that the
bioreactor is operating at the desired conditions. Let’s use the pH as an example. In control
calculations, we commonly use a block diagram to represent the problem (Fig. 1.2). We will
learn how to use mathematics to describe each of the blocks. For now, the focus is on some
common terminology.

To consider pH as a controlled variable, we use a pH electrode to measure its value
and, with a transmitter, send the signal to a controller, which can be a little black box or a
computer. The controller takes in the pH value and compares it with the desired pH, what

1 In the 1999 Mercedes-Benz S-class sedan, there are approximately 40 “electronic control units” that
control up to 170 different variables.
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Figure 1.1. Schematic diagram of instrumentation associ-
ated with a fermentor. The steam sterilization system and all
sensors and transmitters are omitted for clarity. The thick
solid lines represent process streams. The thin solid lines
represent information flow.

is called the set point or the reference. If the values are not the same, there is an error, and
the controller makes proper adjustments by manipulating the acid or the base pump – the
actuator.2 The adjustment is based on calculations made with a control algorithm, also called
the control law. The error is calculated at the summing point, where we take the desired pH
minus the measured pH. Because of how we calculate the error, this is a negative-feedback
mechanism.

This simple pH control example is what we call a single-input single-output (SISO)
system; the single input is the set point and the output is the pH value.3 This simple feedback

−

Acid/base
Pump

pH Control
Algorithm

pH electrode
with transmitter

ErrorDesired
pH

pH

Mixed
Vessel

Controller
Function

Actuator Process

Transducer

+

Measured
pH

Figure 1.2. Block-diagram representation of a single-input single-
output negative-feedback system. Labels within the boxes are general.
Labels outside the boxes apply to the simplified pH control discussion.

2 In real life, bioreactors actually use on–off control for pH.
3 We will learn how to identify input and output variables, how to distinguish among manipulated

variables, disturbances, measured variables, and so forth. Do not worry about remembering all the
terms here; they will be introduced properly in subsequent chapters.
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Introduction

mechanism is also what we call a closed loop. This single-loop system ignores the fact that
the dynamics of the bioreactor involves complex interactions among different variables. If
we want to take a more comprehensive view, we need to design a multiple-input multiple-
output (MIMO), or multivariable, system. When we invoke the term system, we are referring
to the process4 (the bioreactor here), the controller, and all other instrumentation, such as
sensors, transmitters, and actuators (like valves and pumps) that enable us to control the
pH.

When we change a specific operating condition, meaning the set point, we would like,
for example, the pH of the bioreactor to follow our command. This is what we call
servocontrol. The pH value of the bioreactor is subjected to external disturbances (also
called load changes), and the task of suppressing or rejecting the effects of disturbances
is called regulatory control. Implementation of a controller may lead to instability, and the
issue of system stability is a major concern. The control system also has to be robust such
that it is not overly sensitive to changes in process parameters.

What are some of the issues when we design a control system? In the first place, we need
to identify the role of various variables. We need to determine what we need to control, what
we need to manipulate, what the sources of disturbances are, and so forth. We then need to
state our design objective and specifications. It may make a difference whether we focus on
the servo or on the regulator problem, and we certainly want to make clear, quantitatively, the
desired response of the system. To achieve these goals, we have to select the proper control
strategy and controller. To implement the strategy, we also need to select the proper sensors,
transmitters, and actuators. After all is done, we have to know how to tune the controller.
Sounds like we are working with a musical instrument, but that’s the jargon.

The design procedures depend heavily on the dynamic model of the process to be con-
trolled. In more advanced model-based control systems, the action taken by the controller
actually depends on the model. Under circumstances for which we do not have a precise
model, we perform our analysis with approximate models. This is the basis of a field called
system identification and parameter estimation. Physical insight that we may acquire in the
act of model building is invaluable in problem solving.

Although we laud the virtue of dynamic modeling, we will not duplicate the introduction
of basic conservation equations. It is important to recognize that all of the processes that we
want to control, e.g., bioreactor, distillation column, flow rate in a pipe, drug delivery system,
etc., are what we have learned in other engineering classes. The so-called model equations are
conservation equations in heat, mass, and momentum. We need force balance in mechanical
devices, and, in electrical engineering, we consider circuit analysis. The difference between
what we now use in control and what we are more accustomed to is that control problems are
transient in nature. Accordingly, we include the time-derivative (also called accumulation)
term in our balance (model) equations.

What are some of the mathematical tools that we use? In classical control, our analy-
sis is based on linear ordinary differential equations with constant coefficients – what is
called linear time invariant (LTI). Our models are also called lumped-parameter models,
meaning that variations in space or location are not considered. Time is the only indepen-
dent variable. Otherwise, we would need partial differential equations in what is called
distributed-parameter models. To handle our linear differential equations, we rely heavily

4 In most of the control world, a process is referred to as a plant. Here “process” is used because, in the
process industry, a plant carries the connotation of the entire manufacturing or processing facility.
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Introduction

Table 1.1. Examples used in different chapters

Example Page no.

Example 4.7 72
Example 4.7A 73
Example 4.7B 186
Example 4.7C 187
Example 4.8 75
Example 4.8A 181

Example 5.7 101
Example 5.7A 112
Example 5.7B 123
Example 5.7C 123
Example 5.7D 172

Example 7.2 133
Example 7.2A 135
Example 7.2B 139
Example 7.2C 170
Example 7.2D 171
Example 7.3 133
Example 7.3A 135
Example 7.3B 140
Example 7.4 136
Example 7.4A 172
Example 7.5 137
Example 7.5A 143
Example 7.5B 188

on Laplace transform, and we invariably rearrange the resulting algebraic equation into
the so-called transfer functions. These algebraic relations are presented graphically as block
diagrams (as in Fig. 1.2). However, we rarely go as far as solving for the time-domain solu-
tions. Much of our analysis is based on our understanding of the roots of the characteristic
polynomial of the differential equation – what we call the poles.

At this point, a little secret should be disclosed. Just from the terminology, it may be
inferred that control analysis involves quite a bit of mathematics, especially when we go
over stability and frequency-response methods. That is one reason why these topics are
not immediately introduced. Nonetheless, we have to accept the prospect of working with
mathematics. It would be a lie to say that one can be good in process control without sound
mathematical skills.

Starting in Chap. 6, a select set of examples is repeated in some subsections and chapters.
To reinforce the thinking that different techniques can be used to solve the same problem,
these examples retain the same numeric labeling. These examples, which do not follow
conventional numbering, are listed in Table 1.1 to help you find them.

It may be useful to point out a few topics that go beyond a first course in control. With
certain processes, we cannot take data continuously, but rather in certain selected slow in-
tervals (e.g., titration in freshmen chemistry). These are called sampled-data systems. With

4

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521807603 - Process Control: A First Course with MATLAB
Pao C. Chau
Excerpt
More information

http://www.cambridge.org/0521807603
http://www.cambridge.org
http://www.cambridge.org


Introduction

computers, the analysis evolves into a new area of its own – discrete-time or digital con-
trol systems. Here, differential equations and Laplace transform do not work anymore.
The mathematical techniques to handle discrete-time systems are difference equations and
z transforms. Furthermore, there are multivariable and state-space controls, which we will
encounter in a brief introduction. Beyond the introductory level are optimal control, non-
linear control, adaptive control, stochastic control, and fuzzy-logic control. Do not lose the
perspective that control is an immense field. Classical control appears insignificant, but we
have to start somewhere, and onward we crawl.
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Mathematical Preliminaries

C lassical process control builds on linear ordinary differential equations (ODEs) and
the technique of the Laplace transform. This is a topic that we no doubt have come
across in an introductory course on differential equations – like two years ago?

Yes, we easily have forgotten the details. Therefore an attempt is made here to refresh the
material necessary to solve control problems; other details and steps will be skipped. We
can always refer back to our old textbook if we want to answer long-forgotten but not urgent
questions.

What Are We Up to?

� The properties of Laplace transform and the transforms of some common functions.
We need them to construct a table for doing an inverse transform.

� Because we are doing an inverse transform by means of a look-up table, we need to
break down any given transfer functions into smaller parts that match what the table
has – what are called partial fractions. The time-domain function is the sum of the
inverse transform of the individual terms, making use of the fact that Laplace transform
is a linear operator.

� The time-response characteristics of a model can be inferred from the poles, i.e., the
roots of the characteristic polynomial. This observation is independent of the input
function and singularly the most important point that we must master before moving
onto control analysis.

� After a Laplace transform, a differential equation of deviation variables can be thought
of as an input–output model with transfer functions. The causal relationship of changes
can be represented by block diagrams.

� In addition to transfer functions, we make extensive use of steady-state gain and time
constants in our analysis.

� Laplace transform is applicable to only linear systems. Hence we have to linearize
nonlinear equations before we can go on. The procedure of linearization is based on a
first-order Taylor series expansion.
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2.1. A Simple Differential Equation Model

2.1. A Simple Differential Equation Model

First an impetus is provided for solving differential equations in an approach unique to control
analysis. The mass balance of a well-mixed tank can be written (see Review Problems)
as

τ
dC

dt
= Cin − C, with C(0) = C0,

where C is the concentration of a component, Cin is the inlet concentration, C0 is the initial
concentration, and τ is the space time. In classical control problems, we invariably rearrange
the equation as

τ
dC

dt
+ C = Cin (2.1)

and further redefine variables C ′ = C − C0 and C ′
in = Cin − C0.1 We designate C ′ and C ′

in
as deviation variables – they denote how a quantity deviates from the original value at
t = 0.2 Because C0 is a constant, we can rewrite Eq. (2.1) as

τ
dC ′

dt
+ C ′ = C ′

in, with C ′(0) = 0. (2.2)

Note that the equation now has a zero initial condition. For reference, the solution to
Eq. (2.2) is3

C ′(t) = 1

τ

∫ t

0
C ′

in(z)e−(t−z)/τ dz. (2.3)

If C ′
in is zero, we have the trivial solution C ′ = 0. It is obvious from Eq. (2.2) immediately.

For a more interesting situation in which C ′ is nonzero or for C to deviate from the initial
C0, C ′

in must be nonzero, or in other words, Cin is different from C0. In the terminology
of differential equations, the right-hand side (RHS) C ′

in is called the forcing function. In
control, it is called the input. Not only is C ′

in nonzero, it is, under most circumstances, a
function of time as well, C ′

in = C ′
in(t).

In addition, the time dependence of the solution, meaning the exponential function, arises
from the left-hand side (LHS) of Eq. (2.2), the linear differential operator. In fact, we
may recall that the LHS of Eq. (2.2) gives rise to the so-called characteristic equation (or
characteristic polynomial).

Do not worry if you have forgotten the significance of the characteristic equation. We will
come back to this issue again and again. This example is used just as a prologue. Typically
in a class on differential equations, we learn to transform a linear ordinary equation into

1 At steady state, 0 = Cs
in − Cs , and if Cs

in = C0, we can also define C ′
in = Cin − Cs

in. We will come back
to this when we learn to linearize equations. We will see that we should choose C0 = Cs.

2 Deviation variables are analogous to perturbation variables used in chemical kinetics or in fluid
mechanics (linear hydrodynamic stability). We can consider a deviation variable as a measure of how
far it is from steady state.

3 When you come across the term convolution integral later in Eq. (4.10) and wonder how it may come
about, take a look at the form of Eq. (2.3) again and think about it. If you wonder where Eq. (2.3) comes
from, review your old ODE text on integrating factors. We skip this detail as we will not be using the
time-domain solution in Eq. (2.3).
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Mathematical Preliminaries

an algebraic equation in the Laplace domain, solve for the transformed dependent variable,
and finally get back the time-domain solution with an inverse transformation.

In classical control theory, we make extensive use of a Laplace transform to analyze the
dynamics of a system. The key point (and at this moment the trick) is that we will try to
predict the time response without doing the inverse transformation. Later, we will see that
the answer lies in the roots of the characteristic equation. This is the basis of classical control
analyses. Hence, in going through Laplace transform again, it is not so much that we need a
remedial course. Our old differential equation textbook would do fine. The key task here is
to pitch this mathematical technique in light that may help us to apply it to control problems.

2.2. Laplace Transform

Let us first state a few important points about the application of Laplace transform in solving
differential equations (Fig. 2.1). After we have formulated a model in terms of a linear or a
linearized differential equation, dy/dt = f (y), we can solve for y(t). Alternatively, we can
transform the equation into an algebraic problem as represented by the function G(s) in the
Laplace domain and solve for Y (s). The time-domain solution y(t) can be obtained with an
inverse transform, but we rarely do so in control analysis.

What we argue (of course it is true) is that the Laplace-domain function Y (s) must contain
the same information as y(t). Likewise, the function G(s) must contain the same dynamic
information as the original differential equation. We will see that the function G(s) can be
“clean looking” if the differential equation has zero initial conditions. That is one of the
reasons why we always pitch a control problem in terms of deviation variables.4 We can
now introduce the definition.

The Laplace transform of a function f (t) is defined as

L[ f (t)] =
∫ ∞

0
f (t)e−st dt, (2.4)

where s is the transform variable.5 To complete our definition, we have the inverse transform,

f (t) = L−1[F(s)] = 1

2π j

∫ γ+ j∞

γ− j∞
F(s)est ds, (2.5)

where γ is chosen such that the infinite integral can converge.6 Do not be intimidated by

f(t) y(t) F(s) Y(s)L
dy/dt = f(t)

Input/forcing function
(disturbances, 
manipulated variables)

Output 
(controlled 
variable)

G(s)

Input Output

Figure 2.1. Relationship between time domain and Laplace do-
main.

4 But! What we measure in an experiment is the “real” variable. We have to be careful when we solve a
problem that provides real data.

5 There are many acceptable notations for a Laplace transform. Here we use a capital letter, and, if
confusion may arise, we further add (s) explicitly to the notation.

6 If you insist on knowing the details, they can be found on the Web Support.
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2.2. Laplace Transform

Eq. (2.5). In a control class, we never use the inverse transform definition. Our approach is
quite simple. We construct a table of the Laplace transform of some common functions, and
we use it to do the inverse transform by means of a look-up table.

An important property of the Laplace transform is that it is a linear operator, and the
contribution of individual terms can simply be added together (superimposed):

L[a f1(t) + b f2(t)] = aL[ f1(t)] + bL[ f2(t)] = aF1(s) + bF2(s). (2.6)

Note: The linear property is one very important reason why we can do partial fractions and
inverse transforms by means of a look-up table. This is also how we analyze more complex,
but linearized, systems. Even though a text may not state this property explicitly, we rely
heavily on it in classical control.

We now review the Laplace transforms of some common functions – mainly the ones that
we come across frequently in control problems. We do not need to know all possibilities.
We can consult a handbook or a mathematics textbook if the need arises. (A summary of
the important transforms is in Table 2.1.) Generally, it helps a great deal if you can do the
following common ones without having to use a look-up table. The same applies to simple
algebra, such as partial fractions, and calculus, such as linearizing a function.

(1) A constant:

f (t) = a, F(s) = (a/s). (2.7)

The derivation is

L[a] = a
∫ ∞

0
e−st dt = −a

s
e−st

∣∣∣∣
∞

0

= a

(
0 + 1

s

)
= a

s
.

(2) An exponential function (Fig. 2.2):

f (t) = e−at , with a > 0, F(s) = [1/(s + a)], (2.8)

L[e−at ] = a
∫ ∞

0
e−at e−st dt = −1

(s + a)
e−(a+s)t

∣∣∣∣
∞

0

= 1

(s + a)
.

(3) A ramp function (Fig. 2.2):

f (t) = at for t ≥ 0 and a = constant, F(s) = (a/s2), (2.9)

L[at] = a
∫ ∞

0
t e−st dt = a

(
−t

1

s
e−st

∣∣∣∣
∞

0

+
∫ ∞

0

1

s
e−st dt

)

= a

s

∫ ∞

0
e−st dt = a

s2
.

slope a

Exponential decay Linear ramp

Figure 2.2. Illustration of exponential and
ramp functions.
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Mathematical Preliminaries

Table 2.1. Summary of a handful of common Laplace transforms

Function F (s) f (t)

The very basic functions a/s a or au(t)

a/s2 at

1/(s + a) e−at

ω/(s2 + ω2) sin ωt

s/(s2 + ω2) cos ωt

ω/[(s + a)2 + ω2] e−at sin ωt

(s + a)/[(s + a)2 + ω2] e−at cos ωt

s2 F(s) − s f (0) − f ′(0)
d2 f

dt2

F(s)

s

∫ t
0 f (t) dt

e−st0 F(s) f (t − t0)

A Aδ(t)

Transfer functions in time-constant form 1/(τ s + 1) (1/τ )e−t/τ

1

(τ s + 1)n

1

τ n(n − 1)!
tn−1e−t/τ

1/[s(τ s + 1)] 1 − e−t/τ

1/[(τ1s + 1)(τ2s + 1)]
(
e−t/τ1 − e−t/τ2

)
/τ1 − τ2

1

s(τ1s + 1)(τ2s + 1)
1 + τ1e−t/τ1 − τ2e−t/τ2

τ2 − τ1

(τ3s + 1)

(τ1s + 1)(τ2s + 1)

1

τ1

τ1 − τ3

τ1 − τ2
e−t/τ1 + 1

τ2

τ2 − τ3

τ2 − τ1
e−t/τ2

(τ3s + 1)

s(τ1s + 1)(τ2s + 1)
1 + τ3 − τ1

τ1 − τ2
e−t/τ1 + τ3 − τ2

τ2 − τ1
e−t/τ2

Transfer functions in pole-zero form 1/(s + a) e−at

1/[(s + a)2] t e−at

1

(s + a)n

1

(n − 1)!
tn−1e−at

1/[s(s + a)] (1/a) (1 − e−at )

1/[(s + a)(s + b)] [1/(b − a)](e−at − e−bt )

s/[(s + a)2] (1 −at) e−at

s/[(s + a)(s + b)] [1/(b − a)] (be−bt − ae−at )

1

s(s + a)(s + b)

1

ab

[
1 + 1

a − b
(be−at − ae−bt )

]

Note: We may find many more Laplace transforms in handbooks or texts, but here we stay with the most basic ones. The more
complex ones may actually be a distraction to our objective, which is to understand pole positions.

(4) Sinusoidal functions

f (t) = sin ωt, F(s) = [ω/(s2 + ω2)], (2.10)

f (t) = cos ωt, F(s) = [s/(s2 + ω2)]. (2.11)
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