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1 Introduction

Most fluid systems, such as the three-dimensional compressible Euler equa-
tions, are too complicated to yield general analytical solutions, and approx-
imation methods are needed to make progress in understanding aspects of
particular flows. This chapter reviews derivations of approximate or reduced
geophysical fluid equations which result from combining perturbation methods
with preservation of the variational or Hamiltonian structure. Preservation of
this structure ensures that analogues of conservation laws in the original ‘par-
ent’ equations of motion are preserved. Although formal accuracy in terms
of a small parameter may be achieved with conservative asymptotic pertur-
bation methods, asymptotic solutions are expected to diverge on longer time
scales. Nevertheless, perturbation methods combined with preservation of the
variational or Hamiltonian structure are hypothesized to be useful in a clima-
tological sense because conservation laws associated with this structure remain
to constrain the reduced fluid dynamics.
Variational and Hamiltonian formulations of fluid flows are of interest when

effects of forcing and dissipation are of secondary importance, which is often
the case on scales shorter than characteristic damping times or when non-
linearities remain dominant on longer time scales. Variational or Hamilto-
nian methods form a unifying framework to analyze various fluid phenomena.
Applications of these methods include the systematic derivation and use of
wave-activity conservation laws, classical linear and nonlinear stability the-
orems, saturation bounds on the growth of instabilities, statistical mechan-
ics of geophysical fluid dynamics and conservative numerical integration (e.g.
Fjørtoft 1950; Holloway 1986; Holm et al. 1985; McLachlan 1995; Morrison
1998; Salmon 1988a, 1998; Shepherd 1990, 1994; Vladimirov 1987, 1989).
In geophysical fluid dynamics the above-mentioned approximate or reduced

models are generally called balanced models because certain types of waves
have been eliminated relative to ones present in the original ‘parent’ dynamics;
e.g. an incompressible fluid is balanced relative to a compressible one because
sound waves have been eliminated through the constraint of incompressibility.
Elimination of certain types of waves can often be formalized through scaling,
yielding relevant small parameters, and perturbation analysis. A well known
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2 Bokhove

example is the elimination of acoustic waves in the reduction from compress-
ible to incompressible dynamics in which the Mach number, the ratio between
a characteristic velocity scale and the speed of sound, is the relevant small pa-
rameter. Balanced equations thus result from singular perturbation methods,
or equivalent approaches, which simplify the equations with essential singular
terms and reduce the order (for example in time) of the system of differential
equations. Although a perturbative approach appears to be most rigorous,
one always has to realize that small parameters are a result of a scaling of
the equations. This scaling tends to be a non-rigorous process, because al-
though there may be a dominant characteristic time or spatial scale in the
flow other scales can be excited and remain present due to nonlinear inter-
actions. As an alternative to a formal perturbative approach, certain types
of waves in the flow may be eliminated by imposing constraints based on
observed characteristics or special insights in the fluid dynamical behaviour,
which in light of the non-rigorous aspects of scaling often results into reduced
systems of similar accuracy as the ones obtained via formal scaling and per-
turbation methods. This alternative, apparently less accurate, approach for
finding constraints goes along with the observation that the notion of ‘bal-
ance’ and the accuracy of solutions of balanced systems (analytical or numer-
ical) hold often surprisingly well outside the realm of asymptotic perturba-
tion theory. Examples of the numerical accuracy of solutions of geophysical
balanced models are found in the context of coastal dynamics in Allen and
Newberger (1993), in atmospheric dynamics in McIntyre and Norton (2000)
and perhaps even in surf-zone dynamics where breaking waves on beaches
lead to low Froude number balanced along-shore currents (e.g. Özkan-Haller
1997).
The history of numerical weather prediction also nicely illustrates the use

of balanced models (e.g. Daley 1991). The first numerical weather prediction
model was the barotropic quasi-geostrophic equation (see section 3.5 for a f-
plane version), which crudely describes the motion of vortical structures and
Rossby waves (e.g. Gill 1982) in a one-layer fluid. In this model, gravity waves
and acoustic waves have been eliminated or filtered, and the Rossby number
(the ratio of the local Earth’s rotation time scale to the advective time scale)
and aspect ratio (between vertical and horizontal spatial scales and velocity
fields, respectively) are the relevant small parameters used in the approxima-
tion. In the 1960’s the hydrostatic primitive equations (see section 3.2 for a
planar version) replaced the (barotropic and baroclinic) quasi-geostrophic nu-
merical weather prediction models. In these hydrostatic equations only acous-
tic waves have been filtered (except for the boundary-trapped Lamb mode,
e.g. Gill (1982)); it was nevertheless still necessary to initialize or balance the
data such as to eliminate spurious high-amplitude gravity waves. The con-
cept of balance remains crucial in the initialization and interpretation phase
of numerical weather prediction.
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Hamiltonian balanced models 3
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Figure 1: Sketch of the fluid systems considered in section 3. Connecting solid
lines, going down, indicate the approximation route and Roman numerals the
followed approximation approach. I–V denote various singular approximation
methods defined in section 2 and 3 while ‘*’ is a regular leading-order Rossby-
number expansion. The left column under the heading ‘Filtered Waves’ indi-
cates the wave types filtered in the approximation between two fluid systems
(dashed horizontal lines).

Theoretical analysis and numerical process studies of balanced models have
greatly advanced our understanding in meteorology and oceanography and
(nearly) inviscid fluid models are often the first ones to be studied (e.g. consider
the analysis of quasi-geostrophic systems in Pedlosky (1987); and the analysis
of cyclogenesis in various balanced systems in Snyder et al. (1991) and Maraki
et al. 1999). A systematic derivation of reduced models with conservation
laws has been and is important to understand geophysical flows. This chapter
gives an account of some of the recent progress in deriving these conservative,
geophysical balanced models.
Variational and Hamiltonian formulations, perturbative approaches based

on slaving, and several constrained variational or Hamiltonian approximation
approaches are introduced, and denoted by numerals I to V (Fig. 1), at first
in section 2 for finite-dimensional systems because they facilitate a more suc-
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4 Bokhove

cinct exposition of the essentials. (The more technical mathematical aspects
of infinite-dimensional Hamiltonian systems are not considered here, see e.g.
Marsden and Ratiu 1994.) Section 2 also contains several examples of finite-
dimensional conservative fluid models. It additionally introduces the powerful
energy-Casimir method which can be used to derive stability criteria for steady
states of (non-canonical) Hamiltonian systems. In section 3 the Hamiltonian
approximation approaches I–V are applied to various fluid models (Fig. 1)
starting from the compressible Euler equations and finishing with the baro-
tropic quasi-geostrophic and higher-order geostrophically balanced equations.
The presentation of fluid examples runs in parallel with the general finite-
dimensional treatment in section 2 which facilitates comparisons. In addition,
I quote or derive stability criteria for all fluid examples. These criteria are
summarized in Table 1 in the summary and discussion.

2 Finite-dimensional systems

Two variational principles, Hamilton’s principle and its related action princi-
ple, are introduced in section 2.1. This action principle follows from Hamilton’s
principle via a Legendre transformation and yields Hamilton’s equations of mo-
tion. Hamilton’s equations open the route to the definition of the more general
Poisson systems in section 2.2. Systematic approximations are introduced in
section 2.3 using slaving principles and singular perturbations. These approx-
imations yield constraints which will be imposed in various but related ways
on variational and Hamiltonian formulations in section 2.4. A unified abstract
treatment combining the derivation of constraints and balanced Hamiltonian
dynamics is presented in section 2.5 together with a discussion of its limita-
tions, which appear so severe that only the leading-order theory presented in
section 2.6 seems to be applicable in practice. Finally, a review of the energy-
Casimir method concerning stability criteria for steady states of Hamiltonian
systems can be found in section 2.7.

2.1 Variational principles

2.1.1 Hamilton’s principle

The equations of motion for a classical-mechanical system with generalized
coordinates qi(t) and velocities q̇i(t) ≡ dqi(t)/dt as functions of time t fol-
low from Hamilton’s principle (e.g. Lanczos 1970, Arnol’d 1989, Marsden and
Ratiu 1994)

δA[qi] = lim
ε→0

A[qi + ε δqi]−A[qi]
ε

= 0 (2.1)

with the action A[qi] defined by

A[qi] =
∫ t1

t0
dt L(qi, q̇i, t) (2.2)
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Hamiltonian balanced models 5

and its endpoint conditions by δqi(t0) = δqi(t1) = 0, where L is the Lagrangian
and i = 1, . . . ,K. The familiar Euler–Lagrange equations appear when vari-
ations in Hamilton’s principle (2.1) are performed and when the endpoint
conditions are used to eliminate terms arising after integration by parts in
time. They have the form

d

dt

∂L

∂q̇i
=

∂L

∂qi
. (2.3)

A variety of dynamical systems can be derived from Hamilton’s principle.
For example, mono-atomic fluids consisting of N classical point particles, each
with unit mass m = 1, constitute a dynamical system with (generalized) po-
sitions qi and velocities q̇i (for i = 1, . . . ,K = dN and with dimension d). Its
dynamics is given by (2.3) for a Lagrangian L = T−V being the kinetic energy
T minus the potential energy V of the atoms. Alternatively, the dynamics (2.3)
may be considered as the discretization of a continuous description of a fluid
in terms of fluid parcels with unit mass m = 1, (generalized) positions qi and
velocities q̇i. (Salmon (1983) uses such a discrete description of fluid parcels,
along with an approximate representation of the potential energy, to perform
numerical integrations of a blob of shallow water. Brenier (1996) provides an-
other intriguing geometrical model of fluid parcel motion). More concretely,
let us consider the following two finite-dimensional examples.

Example 1: Dynamics of a particle of unit mass in three spatial dimensions
with position q = (q1, q2, q3)T = (x, y, z)T (now K = 3) and potential energy
V (x, y, z) follows from Hamilton’s principle as

ẍ = −∂V
∂x

, ÿ = −∂V
∂y

, z̈ = −∂V
∂z

, (2.4)

which we recognize as Newton’s equations of motion with a conservative force.

Example 2: Euler–Lagrange equations for Lorenz’s (1986) two-degree-of-free-
dom weather model with two coordinates q ≡ q1 and Q ≡ q2 (i.e. K = 2)

q̈ − b Q̈+ C sin 2 q = 0, (2.5)

(1 + b2) Q̈− b q̈ +
Q

ε2
= 0, (2.6)

readily follow from (2.1) and its endpoint conditions with Lagrangian

L(q,Q, q̇, Q̇) =
1
2
q̇2 − b q̇ Q̇+

1
2
(1 + b2) Q̇2

−
[
−1
2
C cos 2 q +

1
2
Q2

ε2

]
, (2.7)

which is the kinetic minus potential (terms in square brackets) energy. The
coupling parameter between the pendulum (2.5) and the harmonic oscillator
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6 Bokhove

(2.6) is b, ε a small parameter, and C is proportional to the square of the
(linearized) frequency of a pendulum.

In section 3.1.1 three-dimensional equations of motion for a compressible
fluid are shown to arise from a Hamilton’s principle wherein the Lagrangian
is a functional, i.e. an integral over space.

2.1.2 Action principle

The Lagrangian L(qi, q̇i, t) in (2.2) is non-singular if the determinant of the
Jacobian of the transformation between the two coordinate pairs {qi, q̇i} and
{qi, pi} is nonzero (i = 1, . . . ,K), in which conjugate momentum pi is defined
as

pi ≡
∂L(qi, q̇i, t)

∂q̇i
. (2.8)

In other words L is convex in q̇. Consequently a Legendre transform

H(qi, pi, t) = pi q̇
i − L(qi, q̇i, t) (2.9)

is well defined (see Lanczos 1970, Arnol’d 1989, and Marsden and Ratiu 1994;
also for a geometrical interpretation), and the Hamiltonian H is a function
of the qi, pi, and t only. q̇i(pi, qi, t) is now defined by the extremal conditions
∂H/∂q̇i = 0. Under this transformation Hamilton’s principle changes into the
action principle

δ

∫ t1

t0
dt L(qi, q̇i, t) = δ

∫ t1

t0
dt
{
pi q̇

i −H(qi, pi, t)
}
= 0 (2.10)

for variations δqi and δpi and endpoint conditions δqi(t0) = δqi(t1) = 0. Its
variations yield N ≡ 2K first-order equations, that is, Hamilton’s equations

dqi

dt
=

∂H

∂pi
,

dpi
dt
= −∂H

∂qi
. (2.11)

Example 3: The action principle corresponding to Example 1 is

δ

∫ t1

t0
dt
{
u ẋ+ v ẏ + w ż −

(
1
2
(u2 + v2 + w2) + V (x, y, z)

)}
= 0 (2.12)

with u = ∂L/∂ẋ, v = ∂L/∂ẏ and w = ∂L/∂ż.

Example 4: We may verify that Hamilton’s equations corresponding to the
Euler–Lagrange equations for Lorenz’s (1986) model of Example 2 follow from
the action principle (2.10) with N = 2 and Hamiltonian

H = −1
2
C cos 2 q +

1
2

(
p2 +

Q2

ε2
+ (P + b p)2

)
(2.13)
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Hamiltonian balanced models 7

in which we have derived momenta p ≡ p1 = q̇ − b Q̇ and P ≡ p2 = (1 +
b2) Q̇ − b q̇ following (2.8). Conversely, we may derive q̇, Q̇ from the extremal
conditions ∂L/∂pi = 0 with L = q̇i pi −H(qi, pi).

Sometimes dynamical systems do not arise from Hamilton’s principle or
from a related action principle in terms of generalized coordinates and mo-
menta, but rather from an action principle in terms of some variables z. Con-
sider the action principle

0 = δ

∫ t1

t0
dt
{
am(z)

dzm

dt
−H(zm)

}
(2.14)

with endpoint variations δzm(t0) = δzm(t1) = 0, Hamiltonian H, functions
am(z) of z, m = 1, . . . , N and N = 2K. Variation (2.14) with respect to δzn

yields the equations

K̃nm
dzm

dt
=

∂H

∂zn
, (2.15)

where it is assumed that

K̃nm ≡
∂am
∂zn

− ∂an
∂zm

(2.16)

is a non-singular tensor. If z = {qi, pi} and

K̃ =

(
0 −I
I 0

)
(2.17)

then (2.14) equals (2.10); here I is the K × K unit matrix. Since K̃ is in-
vertible we may define a tensor J ≡ (K̃)−1 and rewrite (2.15) as generalized
Hamiltonian equations

dzi

dt
= J ij ∂H

∂zj
, (2.18)

which include the canonical Hamilton equations (2.11). Since J is non-singular,
transformations {zm} → {qi, pi} may be defined, at least locally, by virtue of
Darboux’s theorem (see e.g. Arnol’d 1989) such that J takes the canonical
form

Jc =

(
0 I
−I 0

)
. (2.19)

If global canonical, so-called Darboux, coordinates exist, then (2.14) may be
rewritten in the form (2.10). Action principle (2.14) often provides a more con-
venient description than Hamilton’s principle or the canonical action principle
(2.10) when (non-canonical) variables z are more meaningful or when global
canonical coordinates are difficult to define.
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8 Bokhove

Example 5: An action principle (2.14) for Lorenz’s (1986) model is

δ

∫ t1

t0
dt
{
x3

dφ

dt
− ε(x5 + b x3)

dx4
dt
−H

}
= 0 (2.20)

with respect to variations δz = δφ, δx3, δx4, and δx5, respectively, subject to
endpoint conditions δφ(t0,1) = δx4(t0,1) = 0, and with Hamiltonian

H = −1
2
C cos 2φ+

1
2
(x23 + x24 + x25) (2.21)

(Bokhove and Shepherd 1996). The action principle (2.20) yields Lorenz’s
(1986) model in a reduced format

dφ

dt
= x3 − b x5,

dx3
dt

= −C sin 2φ,
dx4
dt

= −x5
ε
,

dx5
dt

=
x4
ε
+ bC sin 2φ. (2.22)

Variational principle (2.20) is identical to the variational principle (2.10) in
Example 4 when we make the identification q = φ, p = x3, Q = ε x4 and
P = −(x5 + b x3).

A Lagrangian action principle for three-dimensional compressible flows is
derived in section 3.1.2 via a Legendre transform of a relevant Hamilton’s
principle.

2.2 Hamiltonian formulation

The mathematical structure of equations (2.18) gives rise to Poisson systems.
Such systems have the form

dF

dt
= [F,H], (2.23)

where H is the Hamiltonian and F is an arbitrary function of the variables z.
The Poisson bracket [·, ·] is defined by

[F,G] =
∂F

∂zi
J ij ∂G

∂zj
, (2.24)

where G is another arbitrary function of z and J is a tensor (here i = 1, . . . , N
for arbitraryN). The system (2.23), (2.24) is Hamiltonian if and only if bracket
(2.24) satisfies the following conditions for arbitrary functions F, G, K:

(i) skew-symmetry [F,G] = −[G,F ],

(ii) Jacobi’s identity [F, [G,K]] + [K, [F,G]] + [G, [K,F ]] = 0, and
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Hamiltonian balanced models 9

(iii) Leibniz’s rule
[F G,K] = F [G,K] +G [F,K]. (2.25)

By using (2.24) to evaluate (2.25) these conditions imply the following condi-
tions, which define a cosymplectic tensor J:

(i) skew-symmetry J ij = −J ji,

(ii) Jacobi’s identity

J im ∂J jk

∂zm
+ Jkm ∂J ij

∂zm
+ J jm ∂Jki

∂zm
= 0, (2.26)

(iii) Condition (2.25)(iii) is automatically guaranteed by the form (2.24),
because derivatives obey Leibniz’s rule (regarding functionals, see Olver
[1986]).

Jacobi’s identity is often difficult to prove; it is a quadratic identity which
means that in perturbation approaches the various orders get mixed. Substi-
tution of F = zi into (2.23) yields the Hamiltonian equations (2.18). Note that
a cosymplectic tensor satisfying conditions (2.26) (i)–(ii) does not need to be
invertible. Poisson systems therefore generalize the Hamiltonian systems with
invertible J which were introduced at the end of section 2.1.2. Historically, the
theory of Hamiltonian dynamics originated in the realm of classical mechanics,
where the following canonical Poisson bracket

[F,G] =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
, (2.27)

for z = {qi, pi} and with N = 2K even, arises from the canonical equations of
motion (2.11) and the corresponding cosymplectic tensor is (2.19). The bracket
(2.27) satisfies conditions (2.25) (i)–(iii). The significance of these conditions
led to a generalized definition of Hamiltonian systems of the form (2.23), (2.24)
for more general, non-canonical, Poisson brackets.
This generalization, however, has important consequences. In contrast to

the Poisson bracket (2.27), the bracket (2.24) is neither necessarily canonical
nor even-dimensional, and this permits the existence of nontrivial Casimir
invariants C, which are solutions of [C,G] = 0 for arbitrary G. The invariance
of the Casimirs readily follows from this definition since

dC

dt
= [C,H] = 0. (2.28)

Casimir invariants span the kernel of the cosymplectic tensor J (Littlejohn
1982) since condition [C,G] = 0 implies that

J ij ∂C

∂zj
= 0, (2.29)
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10 Bokhove

and vectors with components ∂C/∂zj thus span the null space of J.
Other invariants of (continuous) Hamiltonian systems are related to symme-

tries of the Hamiltonian through Noether’s theorem (e.g. Lanczos 1970, Olver
1986, Arnol’d 1989). When a Hamiltonian is invariant under time translation
conservation of energy ensues, dH/dt = [H,H] = 0, and when a Hamiltonian
is invariant under spatial translations conservation of momentum ensues.
When the cosymplectic tensor J is invertible no nontrivial Casimirs exist

and the conditions (2.25) on J can then be translated into linear conditions
on the symplectic tensor K̃

(i) skew-symmetry K̃ij = −K̃ji,

(ii) Jacobi’s identity
∂K̃ij

∂zk
+
∂K̃jk

∂zi
+
∂K̃ki

∂zj
= 0. (2.30)

Example 6: The original model derived by Lorenz (1986), which we encoun-
tered in various disguises in Examples 2, 4, and 5, reads

dx1
dt

= −x2 x3 + b x2 x5,
dx2
dt

= x1 x3 − b x1 x5,
dx3
dt

= −x1 x2,
dx4
dt

= −x5
ε
,

dx5
dt

=
x4
ε
+ b x1 x2. (2.31)

Its Hamiltonian formulation is

dF

dt
= [F,H ′] (2.32)

with Poisson bracket (satisfying conditions (2.25)(i)–(iii))

[F,G] =
∂F

∂x1
x2

(
b
∂G

∂x5
− ∂G

∂x3

)
+

∂F

∂x2
x1

(
∂G

∂x3
− b

∂G

∂x5

)
+

∂F

∂x3

(
x2

∂G

∂x1
− x1

∂G

∂x2

)
− 1
ε

∂F

∂x4

∂G

∂x5
+

∂F

∂x5

(
−b x2

∂G

∂x1
+ b x1

∂G

∂x2
+
1
ε

∂G

∂x4

)
(2.33)

and Hamiltonian

H ′ = H +
3
2
C =

1
2
(x21 + 2x

2
2 + x23 + x24 + x25). (2.34)

The Casimir invariant C = 1
2 (x

2
1 + x22) shows why the parameter C has been

taken constant in previous appearances of Lorenz’s model in Examples 2, 4,
and 5. Note that variable φ in Example 5 follows from the polar transformation
x1 =

√
2C cos φ, x2 =

√
2C sin φ.
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