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Introduction

1.1 The Schwarz–Christoffel idea

The idea behind the Schwarz–Christoffel (SC) transformation and its variations
is that a conformal transformation f may have a derivative that can be expressed
as

f ′ =
∏

fk (1.1)

for certain canonical functions fk . A surprising variety of conformal maps can
be fitted into this basic framework. In fact, virtually all conformal transforma-
tions whose analytic forms are known are Schwarz–Christoffel maps, albeit
sometimes disguised by an additional change of variables.

Geometrically speaking, the significance of (1.1) is that

arg f ′ =
∑

arg fk .

In the classical transformation, each arg fk is designed to be a step function, so
the resulting arg f ′ is piecewise constant with specific jumps (i.e., f maps the
real axis onto a polygon). To be specific, let P be the region in the complex
plane C bounded by a polygon � with vertices w1, . . . , wn , given in counter-
clockwise order, and interior angles α1π, . . . , αnπ . For now, we assume that P
is bounded and without cusps or slits, so that αk ∈ (0, 2) for each k. Let f be
a conformal map of the upper half-plane H+onto P , and let zk = f −1(wk) be
the kth prevertex.1 We shall assume zn = ∞ without loss of generality, for if
infinity is not already a prevertex, we can simply introduce its image (which lies

1 The Carathéodory–Osgood theorem [Hen74] guarantees a continuous extension of f to the
boundary. Hence the prevertices are well defined.
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2 1. Introduction
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Figure 1.1. Notational conventions for the Schwarz–Christoffel transformation. In this
case, z1 and z2 are mathematically distinct but graphically difficult to distinguish. As with
all figures in this book, everything shown is not just schematic but also quantitatively
correct.

on �) as a new vertex with interior angle π . The other prevertices z1, . . . , zn−1

are real. Figure 1.1 illustrates these definitions.
As with all conformal maps, the main effort is in getting the boundary right.

By the Schwarz reflection principle, which was invented for this purpose, f can
be analytically continued across the segment (zk, zk+1). In particular, f ′ exists
on this segment, and we see that arg f ′ must be constant there. Furthermore,
arg f ′ must undergo a specific jump at z = zk , namely

[
arg f ′(z)

]z+
k

z−
k

= (1 − αk)π = βkπ. (1.2)

The angle βkπ is the turning angle at vertex k. We now identify a function fk

that is analytic in H+, satisfies (1.2), and otherwise has arg fk constant on R:

fk = (z − zk)
−βk . (1.3)

Any branch consistent with H+ will work; to be definite, we pick the branch
with fk(z) > 0 if z > zk on R. The action of fk on the real line is sketched in
Figure 1.2.

The preceding argument suggests the form

f ′(z) = C
n−1∏
k=1

fk(z)

for some constant C . We will prove the following fundamental theorem of
Schwarz–Christoffel mapping in section 2.2.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521807263 - Schwarz-Christoffel Mapping
Tobin A. Driscoll and Lloyd N. Trefethen
Excerpt
More information

http://www.cambridge.org/0521807263
http://www.cambridge.org
http://www.cambridge.org


1.1 The Schwarz–Christoffel idea 3
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Figure 1.2. Action of a term (1.3) in the SC product. In either case, the argument of the
image jumps by βkπ at zk .

Theorem 1.1. Let P be the interior of a polygon � having vertices w1, . . . , wn

and interior angles α1π , . . . , αnπ in counterclockwise order. Let f be any
conformal map from the upper half-plane H+ to P with f (∞) = wn. Then

f (z) = A + C
∫ z n−1∏

k=1

(ζ − zk)
αk−1 dζ (1.4)

for some complex constants A and C, where wk = f (zk) for k = 1, . . . , n − 1.

The lower integration limit is left unspecified, as it affects only the value of A.
The formula also applies to polygons that have slits (α = 2) or vertices

at infinity (−2 ≤ α ≤ 0). Indeed, arbitrary real exponents can meaningfully
appear in (1.4), although the resulting region may overlap itself and not be
bounded by a polygon in the usual sense of the term; see section 4.7.

Formula (1.4) can be adapted to maps from different regions (such as the
unit disk), to exterior maps, to maps with branch points, to doubly connected
regions, to regions bounded by circular arcs, and even to piecewise analytic
boundaries. These and other variations are the subject of Chapter 4.

But there is a major difficulty we have not yet mentioned: without knowl-
edge of the prevertices zk , we cannot use (1.4) to compute values of the map.
In view of how we arrived at (1.4), the image f (R ∪ {∞}) of the extended
real line will necessarily be some polygon whose interior angles match those
of P , no matter what real values of zk are used; that much is forced by the
parameters αk . (Here we are broadening the usual idea of “polygon” to allow
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4 1. Introduction

Γ f
(
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Figure 1.3. The effect of prevertices on side lengths. The region on the left is the “target,”
whereas the region on the right illustrates the type of distortion that may occur if the
prevertices are chosen incorrectly.

self-intersections.) The prevertices, however, influence the side lengths of
f (R ∪ {∞}), as illustrated in Figure 1.3. Determining their correct values for a
given polygon is the Schwarz–Christoffel parameter problem, and its solution
is the first step in using the SC formula.2 In sections 2.3–2.5 we will consider
some of the classical cases for which the parameter problem can be solved
explicitly.

In the majority of practical problems, there is no analytic solution for the
prevertices, which depend nonlinearly on the side lengths of �. Numerical
computation is also usually needed to evaluate the integral in (1.4) and to invert
the map. Thus, much of the potential of SC mapping went unrealized until
computers became readily available in the last quarter of the twentieth century.
Numerical issues are discussed in Chapter 3.

1.2 History

The roots of conformal mapping lie early in the nineteenth century. Gauss con-
sidered such problems in the 1820s. The Riemann mapping theorem was first
stated in Riemann’s celebrated doctoral dissertation of 1851: any simply con-
nected region in the complex plane can be conformally mapped onto any other,
provided that neither is the entire plane.3 The Schwarz–Christoffel formula was
discovered soon afterwards, independently by Christoffel in 1867 and Schwarz
in 1869.

2 Sometimes the constants A and C are included as unknowns in the parameter problem. However,
they can be found easily once the prevertices are known, for they just describe a scaling, rotation,
and translation of the image.

3 Riemann’s proof, based on the Dirichlet principle, was later pointed out by Weierstrass to be
incomplete. Rigorous proofs did not appear until the work of Koebe, Osgood, Carathéodory, and
Hilbert early in the twentieth century.
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1.2 History 5

Elwin Bruno Christoffel (1829–1900) was born in the German town of
Montjoie (now Monschau) and was studying mathematics in Berlin under
Dirichlet and others when Riemann’s dissertation appeared.4 Christoffel com-
pleted his doctoral degree in 1856 and in 1862 succeeded Dedekind as a pro-
fessor of mathematics at the Swiss Federal Institute of Technology in Zurich.
It was in Zurich that he published the first paper on the Schwarz–Christoffel
formula, with the Italian title, “Sul problema delle temperature stazonarie e la
rappresentazione di una data superficie” [Chr67]. Christoffel’s motivation was
the problem of heat conduction, which he approached by means of the Green’s
function. This paper presented the discovery that, in the case of a polygonal
domain, the Green’s function could be obtained via a conformal map from the
half-plane, as in (1.4). In subsequent papers he extended these ideas to exteriors
of polygons and to curved boundaries [Chr70a, Chr70b, Chr71].

Hermann Amandus Schwarz (1843–1921) grew up nearly a generation after
Christoffel but also very much under the influence of Riemann. In the late 1860s
he was living in Halle, where his discovery of the Schwarz–Christoffel formula
apparently came independently of Christoffel’s. His three papers on the subject
[Sch69a, Sch69b, Sch90] cover much of the same territory as Christoffel’s, in-
cluding the generalizations to curved boundaries (section 4.11) and to circular
polygons (section 4.10), but the emphasis is quite different—more numerical
and more concerned with particular cases such as triangles in [Sch69b] and
quadrilaterals in [Sch69a].5 Schwarz even published the world’s first plot of a
Schwarz–Christoffel map, reproduced in Figure 1.4. Schwarz’s papers included
his famous reflection principle: if an analytic function f , extended continu-
ously to a straight or circular boundary arc, maps the boundary arc to another
straight or circular arc, then f can be analytically continued across the arc by
reflection.

In 1869 Christoffel moved briefly to the Gewerbeakademie in Berlin, and
Schwarz succeeded him in Zurich. By this time the two were well aware of
each other’s work; the phrase Schwarz–Christoffel transformation is now nearly
universal (although the order of the names is reversed in some of the literature
of the former Soviet Union).

In the 130 years since its discovery, the Schwarz–Christoffel formula has had
an extensive impact in theoretical complex analysis, especially as a constructive

4 For extensive biographical information on Christoffel, the reader is referred to the sesquicen-
tennial volume [BF81], particularly Pfluger’s paper therein on Christoffel’s work on the SC
formula.

5 Schwarz also credits Weierstrass for proving the existence of a solution for the unknown para-
meters (which Schwarz proved for n = 4) in the general case.
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6 1. Introduction

Figure 1.4. Schwarz’s 1869 plot of the conformal map of a square onto a disk, reproduced
from [Sch69b].

tool for proving the Riemann mapping theorem and related results. Its practical
implementation—the main subject of this book—lagged far behind. Schwarz
himself was the first to point out the importance of the parameter problem (dis-
cussed in the preceding section). This problem limited practical use to simple
special cases, until the invention of computers.

Algorithmic discussions of the computation of Schwarz–Christoffel maps to
prescribed polygons appear in several books, including those of Kantorovich
and Krylov [KK64] and Gaier [Gai64]. Algorithms and in some cases computer
programs have also appeared in numerous technical articles over the years, but
in most of the earlier cases the authors were unaware of each other’s work, and
the quality of the result was wanting. Crucial issues that were often neglected
included efficient evaluation of the SC integral and the need to impose necessary
ordering conditions on the prevertices while solving the parameter problem.
The most generally applicable computer programs for the classical problem are
those of Trefethen [Tre80] (SCPACK) and Driscoll [Dri96] (SC Toolbox). The
former was developed around 1980, and the latter began development in 1993.
Both have been widely disseminated in the public domain.

Here is a list, more or less chronological, of contributors to constructive SC
mapping of whom we are aware.

Gauss (1820s): Idea of conformal mapping
Riemann (1851): Riemann mapping theorem
Christoffel [Chr67, Chr70a, Chr70b, Chr71]: Discovery of SC formula and

variants
Schwarz [Sch69a, Sch69b, Sch90]: Discovery of SC formula and variants
Kantorovich & Krylov [KK64] (first published 1936)
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1.2 History 7

Polozkii (1955)
Filchakov ([Fil61], 1968, 1969, 1975)
Binns [Bin61, Bin62, Bin64]
Pisacane & Malvern [PM63]
Savenkov (1963, 1964)
Gaier [Gai64]: Book on numerical conformal mapping
Haeusler (1966)
Lawrenson & Gupta [LG68]: Adaptive quadrature, equations solver for

parameters
Beigel (1969)
Hoffman (1971, 1974)
Gaier [Gai72]: “Crowding” phenomenon
Howe [How73]
Vecheslavov, Tolstobrova & Kokoulin [VT73, VK74]: Doubly connected

regions
Foster & Anderson [FA74, And75]
Cherednichenko & Zhelankina [CZ75]
Squire [Squ75]
Meyer [Mey79]: Comparison of algorithms
Nicolaide [Nic77]
Prochazka [HP78, Pro83]: FORTRAN package KABBAV
Davis et al. [Dav79, ADHE82, SD85]: Curved boundaries
Hopkins & Roberts [HR79]: Solution by Kufarev’s method
Reppe [Rep79]: First fully robust algorithm
Binns, Rees & Kahan [BRK79]
Volkov [Vol79, Vol87, Vol88]
Trefethen [Tre80, Tre84, Tre89, Tre93]: Robust algorithm, SCPACK, general-

ized parameter problems
Brown [Bro81]
Tozoni [Toz83]
Hoekstra (1983, [Hoe86]): Curved boundaries, doubly connected regions
Sridhar & Davis [SD85]: Strip maps
Floryan & Zemach [Flo85, Flo86, FZ87]: Channel flows, periodic regions
Bjørstad & Grosse [BG87]: Software for circular-arc polygons
Dias, Elcrat & Trefethen [ET86, DET87, DE92]: Free-streamline flows
Däppen [Däp87, Däp88]: Doubly connected regions
Costamagna ([Cos87, Cos01]): Applications in electricity and magnetism
Howell & Trefethen [How90, HT90, How93, How94]: Integration methods,

elongated regions, circular-arc polygons
Pearce [Pea91]: Gearlike domains
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8 1. Introduction

Chaudhry [Cha92, CS92]: Piecewise smooth boundaries
Gutlyanskii & Zaidan [GZ94]: Kufarev’s method
Driscoll [Dri96]: SC Toolbox for MATLAB
Hu [Hu95, Hu98]: Doubly connected regions (FORTRAN package DSCPACK)
Driscoll & Vavasis [DV98]: CRDT algorithm based on cross-ratios
Jamili (1999): Doubly connected regions

For more background information on conformal mapping in general and
Schwarz–Christoffel mapping in particular, see [AF97, BF81, Hen74, Neh52,
SL91, TD98, vS59, Wal64].
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2
Essentials of Schwarz–Christoffel mapping

2.1 Polygons

For the rest of this book, a (generalized) polygon � is defined by a collection of
vertices w1, . . . , wn and real interior angles α1π , . . . , αnπ . It is convenient for
indexing purposes to define wn+1 = w1 and w0 = wn . The vertices, which lie
in the extended complex plane C ∪ {∞}, are given in counterclockwise order
with respect to the interior of the polygon (i.e., locally the polygon is “to the
left” as one traverses the side from wk to wk+1).

The interior angle at vertex k is defined as the angle swept from the outgoing
side at wk to the incoming side. If |wk| < ∞, we have αk ∈ (0, 2]. If αk = 2,
the sides incident on wk are collinear, and wk is the tip of a slit. The definition
of the interior angle is applied on the Riemann sphere if wk = ∞. In this case,
αk ∈ [−2, 0]. See Figure 2.1. Specifying αk is redundant if wk and its neighbors
are finite, but otherwise αk is needed to determine the polygon uniquely.

In addition to the preceding restrictions on the angles αk , we require that the
polygon make a total turn of 2π. That is,

n∑
k=1

(1 − αk) = 2, (2.1)

or, equivalently,

n∑
k=1

αk = n − 2.

We shall also, unless explicitly stated otherwise, require the polygon to be
simple (forbid it from intersecting itself and thus covering part of the plane
more than once). This condition has no elementary expression in terms of the

9
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10 2. Essentials of Schwarz–Christoffel mapping

α = 0

α = − 1
2

α = −1

α = − 3
2

α = −2

Figure 2.1. Examples of interior angles corresponding to a vertex at infinity.

vertices and angles—in a sense, it is artificial. We may occasionally use the
term polygon to refer to a region bounded by a polygon. Context should keep
the meaning clear.

2.2 The Schwarz–Christoffel formula

We now complete the proof of the half-plane formula of Theorem 1.1.

Theorem 2.1. Let P be the interior of a polygon � having vertices w1, . . . , wn

and interior angles α1π , . . . , αnπ in counterclockwise order. Let f be any
conformal map from the upper half-plane H+ to P with f (∞) = wn. Then

Schwarz–Christoffel formula for a half-plane

f (z) = A + C
∫ z n−1∏

k=1

(ζ − zk)
αk−1 dζ (2.2)

for some complex constants A and C, where wk = f (zk) for k = 1, . . . , n − 1.

Proof. For simplicity, we treat just the case where all prevertices are finite and
the product ranges over indices 1 to n. By the Schwarz reflection principle, the
mapping function f can be analytically continued into the lower half-plane; the
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