Chemorheology of Polymers: From Fundamental Principles to Reactive Processing

Understanding the dynamics of reactive polymer processes allows scientists to create new, high value, high performance polymers. Chemorheology of Polymers provides an indispensable resource for researchers and practitioners working in this area, describing theoretical and industrial approaches to characterizing the flow and gelation of reactive polymers. Beginning with an in-depth treatment of the chemistry and physics of thermoplastics, thermosets and reactive polymers, the core of the book focuses on fundamental characterization of reactive polymers, rheological (flow characterization) techniques and the kinetic and chemorheological models of these systems. Uniquely, the coverage extends to a complete review of the practical industrial processes used for these polymers and provides an insight into the current chemorheological models and tools used to describe and control each process. This book will appeal to polymer scientists working on reactive polymers within materials science, chemistry and chemical engineering departments as well as polymer process engineers in industry.

Peter J. Halley is a Professor in the School of Engineering and a Group Leader in the Australian Institute for Bioengineering and Nanotechnology (AIBN) at the University of Queensland. He is a Fellow of the Institute of Chemical Engineering (FIChemE) and a Fellow of the Royal Australian Chemical Institute (FRACI).

Graeme A. George is Professor of Polymer Science in the School of Physical and Chemical Sciences, Queensland University of Technology. He is a Fellow and Past-president of the Royal Australian Chemical Institute and a Member of the Order of Australia. He has received several awards recognizing his contribution to international polymer science.
Chemorheology of Polymers

From Fundamental Principles to Reactive Processing

PETER J. HALLEY
University of Queensland

GRAEME A. GEORGE
Queensland University of Technology
Contents

Preface

1 Chemistry and structure of reactive polymers
1.1 The physical structure of polymers
1.1.1 Linear polymers as freely jointed chains
1.1.2 Conformations of linear hydrocarbon polymers
1.1.3 Molar mass and molar-mass distribution
1.1.4 Development of the solid state from the melt
1.2 Controlled molecular architecture
1.2.1 Stepwise polymerization
1.2.2 Different polymer architectures achieved by step polymerization
1.2.3 Addition polymerization
1.2.4 Obtaining different polymer architectures by addition polymerization
1.2.5 Networks from addition polymerization
1.3 Polymer blends and composites
1.3.1 Miscibility of polymers
1.3.2 Phase-separation phenomena
1.3.3 Interpenetrating networks
1.4 Degradation and stabilization
1.4.1 Free-radical formation during melt processing
1.4.2 Free-radical formation in the presence of oxygen
1.4.3 Control of free-radical reactions during processing
References

2 Physics and dynamics of reactive polymers
2.1 Chapter rationale
2.2 Polymer physics and dynamics
2.2.1 Polymer physics and motion – early models
2.2.2 Theories of polymer dynamics
2.3 Introduction to the physics of reactive polymers
2.3.1 Network polymers
2.3.2 Reactively modified polymers
2.4 Physical transitions in curing systems
2.4.1 Gelation and vitrification
2.4.2 Phase separation
2.4.3 Time–temperature-transformation (TTT) diagrams
References
2.4.4 Reactive systems without major transitions 186
2.5 Physicochemical models of reactive polymers 186
 2.5.1 Network models 187
 2.5.2 Reactive polymer models 191
References 192

3 Chemical and physical analyses for reactive polymers 195
 3.1 Monitoring physical and chemical changes during reactive processing 195
 3.2 Differential scanning calorimetry (DSC) 196
 3.2.1 An outline of DSC theory 196
 3.2.2 Isothermal DSC experiments for polymer chemorheology 197
 3.2.3 Modulated DSC experiments for chemorheology 202
 3.2.4 Scanning DSC experiments for chemorheology 203
 3.2.5 Process-control parameters from time–temperature superposition 206
 3.2.6 Kinetic models for network-formation from DSC 207
 3.3 Spectroscopic methods of analysis 208
 3.3.1 Information from spectroscopic methods 208
 3.3.2 Magnetic resonance spectroscopy 209
 3.3.3 Vibrational spectroscopy overview – selection rules 213
 3.3.4 Fourier-transform infrared (FT-IR) and sampling methods: transmission, reflection, emission, excitation 216
 3.3.5 Mid-infrared (MIR) analysis of polymer reactions 222
 3.3.6 Near-infrared (NIR) analysis of polymer reactions 235
 3.3.7 Raman-spectral analysis of polymer reactions 240
 3.3.8 UV–visible spectroscopy and fluorescence analysis of polymer reactions 244
 3.3.9 Chemiluminescence and charge-recombination luminescence 255
 3.4 Remote spectroscopy 259
 3.4.1 Principles of fibre-optics 259
 3.4.2 Coupling of fibre-optics to reacting systems 263
 3.5 Chemometrics and statistical analysis of spectral data 271
 3.5.1 Multivariate curve resolution 272
 3.5.2 Multivariate calibration 275
 3.5.3 Other curve-resolution and calibration methods 280
 3.6 Experimental techniques for determining physical properties during cure 282
 3.6.1 Torsional braid analysis 282
 3.6.2 Mechanical properties 283
 3.6.3 Dielectric properties 287
 3.6.4 Rheology 292
 3.6.5 Other techniques 305
 3.6.6 Dual physicochemical analysis 311
References 312

4 Chemorheological techniques for reactive polymers 321
 4.1 Introduction 321
 4.2 Chemorheology 321
 4.2.1 Fundamental chemorheology 321
5 Chemorheology and chemorheological modelling

5.1 Introduction 351
5.2 Chemoviscosity and chemorheological models 351
5.2.1 Neat systems 351
5.2.2 Filled systems 357
5.2.3 Reactive-extrusion systems and elastomer/rubber-processing systems 370
5.3 Chemorheological models and process modelling 370
References 371

6 Industrial technologies, chemorheological modelling and process modelling for processing reactive polymers

6.1 Introduction 375
6.2 Casting 375
6.2.1 Process diagram and description 375
6.2.2 Quality-control tests and important process variables 375
6.2.3 Typical systems 376
6.2.4 Chemorheological and process modelling 376
6.3 Potting, encapsulation, sealing and foaming 378
6.3.1 Process diagram and description 378
6.3.2 Quality-control tests and important process variables 379
6.3.3 Typical systems 379
6.3.4 Chemorheological and process modelling 380
6.4 Thermoset extrusion 380
6.4.1 Extrusion 380
6.4.2 Pultrusion 382
6.5 Reactive extrusion 385
6.5.1 Process diagram and description 385
6.5.2 Quality-control tests and important process variables 387
6.5.3 Typical systems 388
6.5.4 Chemorheological and process modelling 389
6.6 Moulding processes 391
6.6.1 Open-mould processes 391
6.6.2 Resin-transfer moulding 393
6.6.3 Compression, SMC, DMC and BMC moulding 395
6.6.4 Transfer moulding 397
6.6.5 Reaction injection moulding 400
6.6.6 Thermoset injection moulding 403
6.6.7 Press moulding (prepreg) 405
6.6.8 Autoclave moulding (prepreg) 406
6.7 Rubber mixing and processing 407
 6.7.1 Rubber mixing processes 407
 6.7.2 Rubber processing 409
6.8 High-energy processing 413
 6.8.1 Microwave processing 413
 6.8.2 Ultraviolet processing 415
 6.8.3 Gamma-irradiation processing 416
 6.8.4 Electron-beam-irradiation processing 417
6.9 Novel processing 420
 6.9.1 Rapid prototyping and manufacturing 420
 6.9.2 Microlithography 424
6.10 Real-time monitoring 426
 6.10.1 Sensors for real-time process monitoring 426
 6.10.2 Real-time monitoring using fibre optics 429
References 431

Glossary of commonly used terms 435
Index 440
Preface

Plastics are the most diverse materials in use in our society and the way that they are processed controls their structure and properties. The increasing reliance on plastics for high-value and high-performance applications necessitates the investment in new ways of manufacturing polymers. One way of achieving this is through reactive processing. However, the dynamics of reactive processes places new demands on characterization, monitoring the systems and controlling the complete manufacturing process.

This book provides an in-depth examination of reactive polymers and processing, firstly by examining the necessary fundamentals of polymer chemistry and physics. Polymer characterization tools related to reactive polymer systems are then presented in detail with emphasis on techniques that can be adapted to real-time process monitoring. The core of the book then focuses on understanding and modelling of the flow behaviour of reactive polymers (chemorheology). Chemorheology is complex because it involves the changing chemistry, rheology and physical properties of reactive polymers and the complex interplay among these properties. The final chapter then examines a range of industrial reactive polymer processes, and gives an insight into current chemorheological models and tools used to describe and control each process.

This book differs from many other texts on reactive polymers due to its

- breadth across thermoset and reactive polymers
- in-depth consideration of fundamentals of polymer chemistry and physics
- focus on chemorheological characterization and modelling
- extension to practical industrial processes

The book has been aimed at chemists, chemical engineers and polymer process engineers at the advanced-undergraduate, post-graduate coursework and research levels as well as industrial practitioners wishing to move into reactive polymer systems.

The authors are particularly indebted to students, researchers and colleagues both in the Polymer Materials Research Group at Queensland University of Technology (QUT) and at the Centre for High Performance Polymers (CHPP) at The University of Queensland (UQ). Special thanks are due to those former students who have kindly permitted us to use their original material. We would also like to thank Meir Bar for his countless hours of redrawing, editing and proof reading during his sabbatical at UQ. Thanks are extended also to Vicki Thompson and Amanda Lee from Chemical Engineering, UQ, for their tireless printing work. Thanks also go to the Australian Research Council, the Cooperative Research Centre scheme, UQ, QUT and individual industrial partners for their funding of reactive polymer research work.