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Preface

These two volumes provide an up-to-date account of the mathematics and
numerical modelling that underpins weather forecasting, climate change sim-
ulations, dynamical meteorology and oceanography. The articles are a com-
bination of teaching/review material and present results from contemporary
research. The subject matter will be of interest to mathematicians and meteo-
rologists, from graduate students to experts in the field. The articles have been
written with the intention of providing accessible, interdisciplinary, accounts.
The Introduction, which appears in both volumes, provides a guide to, and
a perspective on, the subject matter and contents, and draws some tentative
conclusions about the possible directions for future research.

The volumes are the result of the stimulus provided by the programme on
The Mathematics of Atmosphere and Ocean Dynamics held at the Isaac New-
ton Institute for Mathematical Sciences in 1996, together with a follow-up
meeting there in December 1997. The mathematical, scientific and compu-
tational challenge behind weather forecasting is why should we be able to
forecast at all when the dynamical equations, the heat/moisture processes,
and the billions of arithmetical calculations on 10–100 million unknowns in-
volved in global forecasting each have associated instabilities and the potential
for chaos? The overarching idea was to identify the stabilising principles and
represent them effectively in mathematics that would lead to successful and
efficient computation. Certain geometrical ideas are found to characterise the
essential controlling physical principles, and the interplay of geometry and
analysis makes for interesting new mathematics and helps to explain why
computation of useful information becomes possible in the presence of chaos.

For obvious reasons, with over four years having elapsed since the conclu-
sion of the original Programme, the subject matter has advanced as a result
of work undertaken in the intervening period, both exploring ideas that were
originally conceived in the Programme and developing new approaches. This
has enabled new directions to be explored and this is reflected in the con-
tributions. The Editors are indebted to all the contributors for both their
perseverance and patience which has brought the project to fruition. While
bringing the contributions together, we have received valuable help and en-
couragement from a number of people in addition to the support from the Met
Office, Bracknell, and Lincoln College, Oxford. In particular, we would like to
thank Terry Davies, Raymond Hide, Brian Hoskins and Emily Shuckburgh for
reading various articles and providing useful comments. We would also like to
thank Julian Hunt for his unstinting support for the programme from its in-
ception, and John Toland for suggesting a programme on this subject matter
in the first place! Much of the hard work in organizing the Programme was
borne by the staff at the Newton Institute, and we would like to thank them,
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xii Preface

and the Director, Keith Moffatt, for valuable advice and assistance. Finally,
David Tranah of the University Press showed us how to bring it all together.

Both the Programme and the volumes are forward looking, and history
will decide on their success. However, it is with deep sadness that we record
here the tragic passing of our much respected colleague Dr. Rupert Ford of
Imperial College, who fell ill and died in March 2001 at the age of thirty-three.
Although not making a written contribution to these volumes, Rupert was one
of the most active and enthusiastic participants in the Programme itself, and
a tremendous stimulus to us all. He stood astride the several disciplines that
the organizers of the Programme sought to bring together. By the time of
his death he had already published several outstanding contributions toward
solving the problems with which the Programme was concerned. He will be
sorely missed throughout a wide research community and we, the Editors and
contributors, dedicate these volumes to his memory.

Ian Roulstone John Norbury
Met Office University of Oxford
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Introduction and Scientific Background

J.C.R. Hunt, J. Norbury and I. Roulstone

Because of the importance and excitement of recent developments in research
on large scale atmosphere-ocean dynamics, in 1996 an intense programme was
held at the Isaac Newton Institute in Cambridge bringing together about 300
scientists from a wide range of specialisms. The articles in these two volumes
consist of reviews, up to date research findings, and challenging statements
about problems for future research. These are based on presentations made
during the programme and more recent developments in the research, result-
ing from the vigorous and continuing interactions between many of the par-
ticipants.

Numerical weather prediction and ocean modelling are successful applica-
tions of mathematical physics and numerical analysis. Their scientific method-
ology is essentially reductionist, because it involves reducing the calculations
of a complex environmental process into constituent parts, each of which can
be understood scientifically and modelled (Hunt 1999). This involves combin-
ing quantitative representation at every point in space and time of physical
processes, governing phase changes, radiation and molecular diffusion, with
the mathematical modelling of fluid mechanics on a wide range of scales from
thousands of kilometres to centimetres. In order that the predictions cover all
the aspects of practical importance, as well as increasing their accuracy year
on year, regular improvements are needed in the models of key processes and
mechanisms; some are well understood such as phase changes and low ampli-
tude waves, but others such as radiation and turbulence can only be approx-
imately parameterised or modelled, using the latest research as it develops.
Once these large systems of mathematical equations and boundary conditions
have been fixed in any particular model, they are then further approximated
by some form of discretisation, so as to be suitable for computation. Addi-
tional mathematical algorithms are introduced for the iterative recalculation
of the equations for the ‘assimilation’ of the observational data as it continu-
ally arrives. Numerical analysis, mathematical and physical compromises are
all necessary in these stages of the development of an accurate and practical
operational system.

Typically 1010–1011 equations have to be calculated in the operations of
national and international meteorological organisations when they produce
their regular forecasts for the global weather. They utilize both the largest
computers in the world and 100 million observations per day which, according
to the World Meteorological Organisation, now cost more than $1 billion per
year. The question of how to optimally incorporate satellite observations of
particular atmospheric features, together with the more traditional ground
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xiv Introduction and Scientific Background

and ship based observations, is one of growing importance both scientifically
and economically. One could say that this effort has ‘paid-off’ because the
errors, which increase with the number of days ahead for the forecasts, have
been steadily decreasing, so that a 3-day forecast today is by many measures
as accurate as a 1-day forecast 20 years ago. Forecasts for up to 7 days are
now regularly issued and found to have useful accuracy on continental scales.
However, to maintain this downward trend in errors, continuing research is
essential.

In the 1980s prediction of global ocean currents began to be developed
based on similar types of mathematical and computational methods, and fluid
mechanics, but the models had to allow for the quite different thermodynamics
and mixing processes of the watermass. Also the boundary conditions of the
oceans at the surface, coasts and ocean floor are obviously different from those
of the atmosphere. Although soundings from ships and buoys are now being
supplemented by satellite borne measurements at the ocean surface, regular
observations for initialising ocean models are only available over limited regions
of the world. Nevertheless useful forecasts for global ocean temperatures and
currents are produced every few days. Furthermore now that these models
are working, it is possible to develop global climate models by coupling the
atmospheric and ocean models together, and then to take up the challenge of
predicting aspects of variability on seasonal timescales and climate change over
the continents, oceans and icecaps for periods of the order of 100 years and
beyond. As the models improve, their spatial discrimination is becoming finer.

On long climatic timescales processes have to be modelled that, on the
shorter timescale of weather or ocean forecasts, either can be neglected, such
as chemical reactions whose effects on weather are only significant over a pe-
riod of months, or can be considered to be fixed boundary conditions, such as
ice-sheets which change relatively slowly. On the climate timescale these other-
wise neglected effects, such as the chemistry of the ozone hole, grow and decay
significantly and affect the whole globe. As J.–L. Lions (1995) has pointed out,
the mathematical properties of the governing equations may be transformed so
substantially by the introduction of certain effects, such as modelling the dy-
namics of ice sheets, that it is no longer possible to prove an existence theorem!
Despite such mathematical doubts, climate change computations converge to
the same equilibrium state even over quite a wide range of initial conditions.
The results for the key parameters, such as global temperature, now agree
with measurements of the global climate taken over the past 150 years within
the natural fluctuations of the system. Governments have accepted the reli-
ability of these models as a basis for their policies to mitigate the effects of
increases over the next century of global temperature and sea level because of
their likely effects on human life and economic activities.

By the end of the nineteenth century, the equations of motion, of thermo-
dynamics, and of transport of moisture, that are the essential components of
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Introduction and Scientific Background xv

any model for forecasting the weather, had been worked out. However, it was
also clear to those interested in such endeavours, for example Vilhelm Bjerk-
nes (1914) and Lewis Fry Richardson (1922), that the problem of finding and
computing solutions was extremely difficult. Although it was only 30-odd years
between Richardson writing about a ‘mere dream’ of machines capable of per-
forming such tasks and the advent of the first numerical forecasts (Charney,
Fjørtoft and Von Neumann 1950), the intervening years witnessed the cre-
ation of ingenious methods for studying and analysing the atmospheric and
oceanic flows that are still important in the context of weather and climate
forecasting. Examples include fronts, ocean eddies and mid-latitude cyclones
— such as the low pressure systems that cross the Atlantic and bring ‘weather’
to northern Europe.

The key idea behind these advances is to study the solutions of much simpler
dynamical systems, whose solutions stay close for finite, but useful, time in-
tervals, to those of the full fluid and thermodynamic equations. Indeed, much
of modern dynamical meteorology is based on such studies, beginning with
the pioneering work of Rossby (1936, 1940), Charney (1947, 1948) and Eady
(1949). These approximate models usually correspond to some mathematical
asymptotic state in which there is a dominant ‘geostrophic’ balance between
the Coriolis, buoyancy and pressure-gradient forces on fluid particles so that
the effects of acceleration of the particles (in the rotating frame of reference
of the Earth) are relatively small. The asymptotic state arises from the rapid
rotation and strong stratification of the Earth’s atmosphere. Here, geostrophic
balance (at its simplest) means horizontal flow around the pressure contours
(Buys-Ballot’s law), and this is coupled to the changes in the buoyancy force
(hydrostatic balance between the vertical pressure gradient and gravity) in the
vertical. Such approximations to Newton’s second law are commonly referred
to as balanced models. The Navier-Stokes equations for rotating, compressible,
stratified fluid flow together with the equations of state and thermodynam-
ics, commonly known in meteorology as the primitive equations, are the basis
for numerical models used for atmospheric and oceanic predictions, and are
therefore the starting point for the derivation of balanced models.

In the mid to late nineteenth century, classical hydrodynamics centred on
the mathematical theorems of vortex motion, discovered by Helmholtz and
Kelvin. The most notable of these governed the strength (or ‘circulation’),
the movement and the stability of vortices. Vortices persist even when their
surroundings are quite disturbed or turbulent, as one observes by a simple
experiment in one’s bath. Vortices can move dangerously as tornadoes and
swirling tropical storms, and last a long time over hundreds or thousands
of rotation periods. Helmholtz’ and Kelvin’s theorem was formulated for a
barotropic fluid in which the pressure is a function of the density alone, and
therefore is too restrictive to represent air or sea water in motion because of
the lack of thermodynamics.
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xvi Introduction and Scientific Background

Vilhelm Bjerknes in 1897 (Friedman 1989) first made the link between the-
oretical fluid mechanics and meteorology, by generalising the circulation the-
orem to include the usual atmospheric and oceanic situations where vorticity
is generated or destroyed by the variation of buoyancy forces involving tem-
perature changes in the vertical. The application of these results to synoptic
meteorology in the ensuing years is, perhaps, the most important advance in
the subject (Petterssen 1956). However Bjerknes and his son Jakob are more
famous for their observational description in the 1920s of how cyclonic dis-
turbances develop, with converging air flow leading to the formation of fronts
and the triggering of rain bands along the fronts. Through their advocacy and
organisation of rapid international exchange of meteorological measurement,
their ideas featured in public weather forecasts in the 1930s (Friedman 1989).
Qualitative elements of frontal analysis and the further dynamical analysis of
regions of convergence and divergence by Sutcliffe (1947) and his contempo-
raries provided the conceptual basis of practical forecasting until the 1990s.
Rossby (1936, 1940) and Ertel (1942) provided the next important conceptual
development in meteorology and oceanography with the unifying concept of
‘potential vorticity’ (PV). PV is proportional to the vertical component of
the vorticity of a fluid parcel per unit mass, and is approximately conserved
when the effects of friction and external heating are slow compared to the
other changes that are occurring in an air mass as it moves horizontally and
vertically, e.g. over another air mass or mountains. This dynamical insight
about changing meteorological conditions constrained by the conservation of
a scalar quantity was connected to the earlier ideas of geostrophic balance
through the pioneering work of Charney (1947) on quasi-geostrophic theory
and by Kleinschmidt (1950a,b; 1951) on the dynamics of cyclones. However,
exploitation of this new variable (PV) had to wait until the introduction of
super-computers and the greater availability of upper-air data in the 1980s.
The concept of PV has become a useful tool in practical forecasting because
this one scalar field determines (via so-called ‘inversion’) the wind, pressure,
temperature and density fields. This is a conceptual simplification because the
changing weather (or even errors in weather patterns) can be described very
economically (and errors corrected) using this one variable at different levels
(Hoskins, McIntyre and Robertson 1985). The mathematical significance of
potential vorticity conservation is not only that it is a ‘governing’ variable,
but also that its properties reflect the underlying symmetries of the fluid-
dynamical system which, in turn, determine conservation properties in both
the infinite-dimensional, and numerical finite-dimensional, approximate ‘mod-
els’ of such systems.

In recent years a new appreciation has emerged of the central role, in con-
trolling the behaviour of the equations and their solutions, of conservation laws
of dynamical systems. This has been achieved by connecting them with the
intrinsic geometric structure of the underlying equations of motion regarded
as a hamiltonian dynamical system (i.e. one defined by its integral properties
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Introduction and Scientific Background xvii

such as mass, energy, potential vorticity). Recent research in mechanics and
dynamical systems using this powerful concept is often not familiar to those
working in theoretical fluid dynamics, meteorology and oceanography. Mod-
ern hamiltonian mechanics provides a natural framework for understanding
phenomena such as nonlinear stability, integral invariants and constrained dy-
namical systems (such as balanced models), and also for developing improved
numerical schemes that have reduced errors because the schemes reflect the
intrinsic geometrical properties of the analytical equations (Budd and Iserles
1999). The interplay of geometry and analysis will have many applications in
geophysical mechanics; forecasting and climate modelling being prime exam-
ples here. The Newton Institute programme was designed to help advance this
understanding.

The lectures in these volumes explain why simplifications to Newton’s sec-
ond law applied to the complex motions in the atmosphere and oceans are
needed to understand and solve the equations. Since the early work of Runge
(1895), Kutta (1901) and Richardson (1911), mathematical analysis has en-
abled the accuracy of such approximations to be assessed systematically on
what are now large scale computations. However, whereas meteorologists have
sought patterns in the weather for over 300 years, mathematicians have only
recently begun to use geometrical thinking to understand the structure be-
hind the governing equations and their approximate forms. Here constrained
hamiltonian mechanics, transformation groups, and convex analysis are used
to control the potentially chaotic dynamics in the numerical simulations, and
to suggest optimal ways to exploit observational data. Many of the chap-
ters 1 included in these volumes describe studies of the governing systems of
equations, with all their complexities and approximations, although the main
emphasis was on simpler systems whose integral properties and detailed solu-
tions can be derived exactly. The approximations involved in deriving these
idealised systems are controversial and have not always been mathematically
consistent. Recent research, such as Cullen [I, 4], has centred on quantifying
these approximations, by making full use of the latest results from the theory
of stratified, rotating fluid dynamics. This book and its companion show how
geometry and analysis quantify the concepts behind the fluid dynamics, and
thus facilitate new solution strategies.

Any selection of contributions from an extensive subject such as weather
and ocean forecasting necessarily reflects a particular viewpoint concerning
both the historical significance of certain developments and their implications
for future progress. The following brief commentary indicates the viewpoint
taken and supplies a setting for the individual papers. However, the emphasis is
always on large-scale atmosphere and ocean dynamical models that are useful
in predicting changing weather patterns and climatic trends.

1They are designated hereafter by a number in square brackets [ ], with the volume
number first, where needed. Other references are referred to by their date e.g. (1999).
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xviii Introduction and Scientific Background

Introduction to Volume 1—Analytical Methods and Numerical
Models

The article A View of the Equations of Meteorological Dynamics and Various
Approximations by White [1], is a pedagogical introduction to the mathe-
matics of meteorological fluid dynamics, which includes the derivation of the
governing equations from those for the conservation of mass, momentum, ther-
modynamics etc., making further suitable approximations consistent with the
asymptotic regimes to be modelled. White reviews the problem of deriving
simplified balance equations which, as he explains, requires certain assump-
tions. This article has been written for mathematicians and physicists who
desire a compact introduction to the subject rather than the more extensive
treatments to be found in good contemporary textbooks on meteorology. At-
tention is also paid to various recent developments which have received little
exposure outside the research literature yet. The approximated models studied
include the hydrostatic primitive equations, the shallow water equations, the
barotropic vorticity equation, several approximately-geostrophic models and
some acoustically-filtered models which permit buoyancy modes. Conservation
properties and frame invariance are given special emphasis. A straightforward
problem of small-amplitude wave motion in a rotating, stratified, compressible
atmosphere is addressed in detail, with particular attention paid to the occur-
rence or non-occurrence of acoustic, buoyancy and planetary modes in these
models. The concluding section contains a short discussion of basic issues in
numerical model construction.

The motion of a rotating, stratified fluid governed by the hydrostatic prim-
itive equations is studied by Allen et al. [2]. The hydrostatic approximation,
as discussed by White, reflects the high degree of stratification in the at-
mosphere and oceans. Approximate models are derived from the hydrostatic
primitive equations for application to mesoscale oceanographic problems. The
approximations are made within the framework of Hamilton’s principle us-
ing the Euler–Poincaré theorem for ideal continua (see Holm et al. [II, 7]). In
this framework, the resulting eulerian approximate equations satisfy Kelvin’s
theorem, conserve potential vorticity of fluid particles and conserve a volume-
integrated energy. In addition, Allen et al. assess the accuracy of the model
equations through numerical experiments involving a baroclinically unstable
oceanic jet.

Roulstone and Norbury (1994) describe how one particular balanced model,
the so-called semi-geostrophic (SG) equations, can be formulated in a manner
similar to the Euler equations in two dimensions. Balanced evolution, which in
this model entails the complete absence of fast inertia-gravity waves, is gener-
ated by a hamiltonian such that the solution is a sequence of minimum energy
states, in a certain sense. Hoskins and Bretherton (1972) showed that the SG
equations may be expressed in terms of lagrangian conservation laws. Thence
a stable manifold within the dynamical system of the atmosphere is defined by
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Introduction and Scientific Background xix

using a convexity principle to minimize the energy. An extra advantage of this
principle is that it applies to variables which have discontinuities. Furthermore,
Hoskins and Bretherton (1972) showed that there exists a transformation of
coordinates under which the motion of the fluid parcels is exactly geostrophic.
For this reason such coordinates are sometimes referred to as geostrophic co-
ordinates. Singularities of this differentiable map can be interpreted as fronts.

For a solution to the semi-geostrophic equations on a plane rotating with
constant angular velocity — a so-called f -plane — the Cullen–Norbury–Purser
principle (Cullen et al. 1991) states that at each fixed time, the fluid parti-
cles arrange themselves to minimise energy. Rewriting the equations in terms
of the so-called geostrophic coordinates (Sewell [II,5]), this principle yields a
constrained variational problem (where the constraint evolves with time): at
each fixed time t, minimize the energy over all possible fluid configurations,
given that values of the geostrophic transformation are known on particles.
The minimizer, if it exists and is unique, gives the actual state of the fluid (in
terms of the geostrophic transformation) at time t. Assuming the geostrophic
energy is finite, it has been proved (Douglas 1998) that there is a unique min-
imizer, equal to the gradient of a convex function. In this way, solutions can
be viewed as a sequence of minimum energy states. The set of possible states
is described by a set of rearrangements; the unique minimizer is the monotone
rearrangement (see Brenier 1991).

Douglas [5] presents some mathematical ideas on rearrangements of fluid
volumes that have found application in meteorology, and that promote the
lagrangian viewpoint. An intuitive idea of when two functions are rearrange-
ments is as follows. Let f be a function, defined on a bounded region, such
as temperature or moisture content. Imagine that the bounded region is a
continuum of infinitesimal particles, and suppose that we exchange the parti-
cle positions with each particle retaining its value of f , that is, we conserve
the temperature or moisture on fluid particles. This yields a new function g,
which describes the temperature or moisture at the new locations, which is a
‘rearrangement’ of f . The concept of rearranging a function can be applied to
both scalar and vector valued functions, and Douglas [5] develops the theory
for both cases. Examples are given to illustrate the key ideas. Essentially, re-
arrangements allow us to conserve quantities on fluid masses as the masses are
transported through the atmosphere using a lagrangian rather than eulerian
viewpoint.

We can rewrite the energy minimization problem as a ‘Monge mass transfer
problem’, for which there already exists a significant mathematical theory and
numerical solution procedure. We then find that the monotone rearrangement
is the optimal mapping. Thus, the geostrophic energy-minimising arrangement
of fluid masses can be related to local stability conditions that require convex-
ity of certain pressure (or geopotential) surfaces in the atmosphere. Failure to
satisfy these conditions is usually associated with a breakdown in balance and
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xx Introduction and Scientific Background

rapid change of atmospheric conditions, including storms. An introduction to
the theory of rearrangements, together with a discussion of their application
to the semi-geostrophic equations, is given by Douglas [5]. An alternative in-
terpretation of this theory based on probability ensembles, considering in what
sense maximum likelihood states are equivalent to the Cullen–Norbury–Purser
principle in semi-geostrophic theory, is given in Baigent and Norbury [6].

Following the seminal work of Vilhelm Bjerknes, the method of numerical
weather prediction (NWP) was first worked out by L.F. Richardson in 1922
(see, for example, Nebeker 1995). He anticipated that sufficient measurement
of data would become available and that computations would become suffi-
ciently fast and comprehensive that the accuracy of weather forecasts should
eventually equal those for the stellar and planetary positions recorded annu-
ally in the Nautical Almanac. This presumption was essentially questioned by
Lorenz (1963), who showed that even much simpler mathematical represen-
tations of fluid flow (3 coupled non-linear, first-order, differential equations)
are intrinsically prone to errors, so that however small their initial value the
magnitudes of errors generally grow. His broad conclusions have had a major
influence on the interpretation of weather forecasts ever since, the first being
that there is much more sensitivity to errors in some states of a system (e.g.
near saddle points in the phase plane) than in others. The second is that errors
can grow exponentially. The latter conclusion has been bowdlerised in much
popular comment as implying that since errors grow rapidly the weather is
so chaotic that it cannot be forecast at all! Reasons why this might not be
true for large scale weather evolution were advanced during the Isaac Newton
Institute programme and have been the basis of significant follow-up work.
First it is necessary to think carefully about what is meant by forecast error.
A new approach to the evaluation of weather forecast error is to decompose
the error into a combination of displacement error and difference in qualitative
features. Douglas [5], and Cullen [4], demonstrate this idea and give a precise
formulation using rearrangements of functions.

Directly or indirectly, the papers in this volume show why useful predic-
tions can be made in the presence of chaos. Cullen [4] explains how the errors
for more complex systems than those considered by Lorenz often grow more
slowly, one of the reasons being that typical atmosphere and ocean weather
events have a localised or vortex nature rather than a wave-like form (Hunt
1999). Other papers (see Arnol’d 1998) show that whether the systems are
simple or complex, whatever their growth rate over the first few days, the er-
rors are limited because the range of possible solutions for small initial errors
tend to be confined within certain ‘basins of attraction’ in the phase planes
of the system. This geometrical interpretation reflects recent mathematical
research in which the results of geometrical analysis of differential systems
leads to a clearer definition of their ‘global’ (in the mathematical sense) prop-
erties. Babin, Mahalov and Nicolaenko [3] give a detailed derivation of the
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Introduction and Scientific Background xxi

errors involved in the balanced dynamics in the different asymptotic regimes
of interest in atmospheric and oceanic dynamics. Babin et al. derive a new
theorem for these error limits, and show how some of the standard approx-
imations based on ‘balance’ and the neglect of the nonlinear time averaged
effects of ‘unbalanced’ motion may be significant — reflecting perhaps the
practical meteorologist’s well known concern with waves on fronts, another
example of further instability.

Weather forecasts are routinely computed for up to 10 days ahead, based
on large quantities of wind, temperature and humidity data that are collected
continuously, at random locations around the globe, and used to modify the
computations. The data are of course insufficient to determine the exact state
of the atmosphere. Since the data are very expensive to obtain there is a
premium on their optimal exploitation. Therefore it is of the highest impor-
tance for numerical weather prediction to identify the dominant processes and
flow features that determine how the large scale weather patterns develop.
By ensuring that the continuous assimilation of data is consistent with these
features the accuracy of the forecasts is greatly increased. Ocean modelling is
beginning to develop similar data assimilation techniques. Cullen [4] explains
how we can think of the atmosphere as evolving close to a dynamical system
with high predictability which both explains the current success of operational
predictions, and suggests that further useful progress can be made by exploit-
ing this closeness more fully in the design of numerical prediction systems.
Furthermore, using the notion of balance, and the associated transformation
theory described by Sewell [II,5], Cullen suggests ways of using the incom-
plete observational data in more efficient ways, by exploiting the information
implicit in the balance conditions to project the data onto the model grid in
ways that respect the prevailing synoptic conditions. Babin et al. [3] provide a
rigorous account of the asymptotic validity of these simpler systems. Cullen [4]
argues that some recent results presented during the programme, from both
atmosphere and ocean models, suggest that it is well worth making efforts
to reduce the generation of spurious solutions arising from model and com-
putational errors. Recent work supports the aim of building better numerical
models that naturally support the desired simpler solutions.

Atmosphere and ocean models include approximate representations of sub
grid scale processes and physical forcing; their best mathematical representa-
tion is not certain. Considerable progress is being made in showing how certain
turbulence mixing processes that have been represented by diffusion-like terms
can better be represented as effective advective transport terms. This could
even affect conclusions about the large scale atmosphere and ocean circulation.
Furthermore this change affects the form of the overall mathematical model,
since these ‘transports’ have to be properly integrated with the rest of the
dynamics. This issue too is discussed in the article by Cullen [4].

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80681-7 - Large-Scale Atmosphere–ocean Dynamics: Volume I: Analytical Methods
and Numerical Models
Edited by John Norbury and Ian Roulstone
Fronntmatter
More information

www.cambridge.org/9780521806817
www.cambridge.org
www.cambridge.org


xxii Introduction and Scientific Background

Introduction to Volume 2 — Geometric Methods and Models

Salmon (1983, 1985, 1988) pioneered the systematic derivation of balanced
models within the framework of Hamilton’s principle. The rationale is to make
approximations to the lagrangian without disturbing the symmetry properties
of the functional, thereby ensuring that the resulting model retains approx-
imations to the conservation laws of the primitive equations. The derivation
and understanding of balanced models from the hamiltonian point of view
was one of the key themes of the Newton Institute programme. The chapter
Balanced models in geophysical fluid dynamics: hamiltonian formulation, con-
straints and formal stability by Bokhove [1], gives a step by step account of
the basics of hamiltonian mechanics and proceeds to demonstrate how hamil-
tonian formulations of balanced models can be constructed such that fast
inertio-gravity waves can be eliminated by imposing certain constraints.

Most fluid systems, such as the three-dimensional compressible Euler equa-
tions, are too complicated to yield general analytical solutions, and approx-
imation methods are needed to make progress in understanding aspects of
particular flows. Bokhove reviews derivations of approximate or reduced geo-
physical fluid equations which result from combining perturbation methods
with preservation of the variational or hamiltonian structure. Preservation of
this structure ensures that analogues of conservation laws in the original ‘par-
ent’ equations of motion are preserved. Although formal accuracy in terms
of a small parameter may be achieved with conservative asymptotic pertur-
bation methods, asymptotic solutions are expected to diverge on longer time
scales. Nevertheless, perturbation methods combined with preservation of the
variational or hamiltonian structure are hypothesised to be useful in a clima-
tological sense because conservation laws associated with this structure re-
main to constrain the reduced fluid dynamics. Variational and hamiltonian
formulations, perturbative approaches based on ‘slaving’, and several con-
strained variational or hamiltonian approximation approaches are introduced,
beginning with finite-dimensional systems because they facilitate a more suc-
cinct exposition of the essentials. (The more technical mathematical aspects of
infinite-dimensional hamiltonian systems are not considered, see e.g. Marsden
and Ratiu 1994.) The powerful energy-Casimir method which can be used to
derive stability criteria for steady states of (canonical) hamiltonian systems
is introduced and the hamiltonian approximation approaches to various fluid
models starting from the compressible Euler equations and finishing with the
barotropic quasi-geostrophic and higher-order geostrophically balanced equa-
tions is presented. The presentation of fluid examples runs in parallel with the
general finite-dimensional treatment which facilitates a clear understanding of
the methods involved.

An illustration of the concept of balance within the framework of a finite-
dimensional system is provided by Lynch [2]. The linear normal modes of
the atmosphere fall into two categories, the low frequency Rossby waves and
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Introduction and Scientific Background xxiii

the high frequency gravity waves. The elastic pendulum is a simple mechan-
ical system having low frequency and high frequency oscillations. Its motion
is governed by four coupled nonlinear ordinary differential equations. Lynch
studies the dynamics of this system, drawing analogies between its behaviour
and that of the atmosphere. The linear normal mode structure of the system
is analysed, the procedure of initialization is described and the existence and
character of the slow manifold is discussed. This allows non-specialists to see,
in a very simple example, what is performed routinely with the enormous
systems of equations in modern numerical weather prediction and why.

Balmforth and Morrison [4] develop a hamiltonian description of shear flow,
including the dynamics of the continuous spectrum. Euler’s equation linearized
about a shear flow equilibrium is solved by means of a novel invertible integral
transform that is a generalization of the Hilbert transform. The integral trans-
form provides a means for describing the dynamics of the continuous spectrum
that is well-known to occur in this system. The results are interpreted in the
context of hamiltonian systems theory, where it is shown that the integral
transform defines a canonical transformation to action-angle variables.

Many balanced models do not support gravity waves, indeed the elimination
of these waves from the solutions is usually the aim in defining an appropriate
balance. Caillol and Zeitlin [3] point out that although internal gravity waves
are not normally associated with ‘weather’ (see also Cullen [I,4]), they play
an important role in energy transport in atmosphere and ocean dynamics. In
[3], Caillol and Zeitlin study statistically steady states of an ensemble of in-
teracting internal gravity waves and the corresponding energy spectra. They
derive a kinetic equation for a system of weakly nonlinear plane-parallel in-
ternal gravity waves in the Boussinesq approximation and solve them to find
stationary energy spectra for wave packets propagating in the direction close
to vertical. The result is a Rayleigh–Jeans energy equipartition solution and
a Kolmogorov-type solution of the form εk ∼ k

−(3/2)
1 k

−(3/2)
3 corresponding to

a constant energy flux through the wave spectrum.
The canonical vortex structures, their interaction and slow evolution, may

be described, in the semi-geostrophic model, by solutions to the non-standard
(Monge mass transfer) optimization problem described by Cullen [I,4] and
Douglas [I,5]. It has been shown, by Chynoweth and Sewell (1989) for exam-
ple, that singularities arise from the convexifications of multivalued Legendre
dual functions, such as the swallowtail, with a typical singular surface being
identified with a weather front. Sewell [5] reviews many aspects of transforma-
tion theory including Legendre duality and other types, and of lift transfor-
mations and canonical transformations. Applications are mentioned in several
branches of mechanics. A straightforward style is adopted, so that the paper
is accessible to a wide readership. Developments in the semi-geostrophic the-
ory of meteorology in the last fifteen years have prompted this review, but
it draws upon earlier work in, for example, plasticity theory, gas dynamics,
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xxiv Introduction and Scientific Background

shallow water theory, catastrophe theory, hamiltonian mass-point mechanics,
and the theory of maximum and minimum principles. Singularities need to
be described in transformation theory, and the swallowtail catastrophe is one
such example. The intimate relation between lift transformations and hamilto-
nian structures is described. New exact solutions in a semi-geostrophic central
orbit theory are given and properties of constitutive surfaces in gas dynamics
and shallow water theory are described.

Purser [6] demonstrates that, using transformation theory, one can con-
struct different versions of the semi-geostrophic equations for the purposes of
modelling non-axisymmetric vortices on an f -plane and hemispheric (variable-
f) dynamics. Both formulations retain a Legendre duality — a feature which
is central to the construction of lagrangian finite-element methods. Note also
that McIntyre and Roulstone [8] ask whether higher-order corrections to semi-
geostrophic theory may be constructed while retaining some of the mathemat-
ical features that facilitate the integration of the equations both analytically
and numerically.

For semi-geostrophic theories derived from the hamiltonian principles sug-
gested by Salmon it is known (e.g. Purser and Cullen 1987) that a duality
exists between the physical coordinates and geopotential, on the one hand,
and isentropic geostrophic momentum coordinates and geostrophic Bernoulli
function, on the other hand. The duality is characterized geometrically by
a contact structure as described by Sewell [5]. This enables the idealized bal-
anced dynamics to be represented by horizontal geostrophic motion in the dual
coordinates, while the mapping back to physical space is determined uniquely
by requiring each instantaneous state to be the one of minimum energy with
respect to volume-conserving rearrangements within the physical domain.

Purser [6] shows that the generic contact structure permits the emergence
of topological anomalies during the evolution of discontinuous flows. For both
theoretical and computational reasons it is desirable to seek special forms of
semi-geostrophic dynamics in which the structure of the contact geometry
prohibits such anomalies. Purser proves that this desideratum is equivalent
to the existence of a mapping of geographical position to a euclidean do-
main, combined with some position-dependent additive modification of the
geopotential, which results in the semi-geostrophic theory being manifestly
Legendre-transformable from this alternative representation to its associated
dual variables.

Legendre transformable representations for standard Boussinesq f -plane
semi-geostrophic theory and for the axisymmetric gradient-balance version
used to study the Eliassen vortex are already known and exploited in finite el-
ement algorithms. Here, Purser re-examines two other potentially useful classes
of semi-geostrophic theory: (i) the non-axisymmetric f -plane vortex; (ii) hemi-
spheric (variable-f) semi-geostrophic dynamics. We find that the imposition
of the natural dynamical and geometrical symmetry requirements together

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80681-7 - Large-Scale Atmosphere–ocean Dynamics: Volume I: Analytical Methods
and Numerical Models
Edited by John Norbury and Ian Roulstone
Fronntmatter
More information

www.cambridge.org/9780521806817
www.cambridge.org
www.cambridge.org


Introduction and Scientific Background xxv

with the requirement of Legendre-transformability makes the choice of the
f -plane vortex theory unique. Moreover, with modifications to accommodate
sphericity, this special vortex theory supplies what appears to be the most
symmetrical and consistent formulation of variable-f semi-geostrophic theory
on the hemisphere. The Legendre-transformable representations of these theo-
ries appear superficially to violate the original symmetry of rotation about the
vortex axis. But, remarkably, this symmetry is preserved provided the metric
of the new representation is interpreted to be a pseudo-euclidean Minkowski
metric. Rotation-invariance of the dynamical formulation in physical space is
then perceived as a formal Lorentz-invariance in its Legendre-transformable
representation.

Motivated by the remarkable mathematical structure of balanced models
formulated in terms of a variational principle and their use in solving this
class of problems, the last two articles consider more general and more accu-
rate models of balanced atmospheric dynamics. The contributions by Holm,
Marsden and Ratiu [7], and McIntyre and Roulstone [8], present recent devel-
opments in the theory of hamiltonian balanced models. Holm et al. [7] show
how a number of models can be written in Euler–Poincaré form, and they pro-
pose a new modification of the Euler–Boussinesq equations which adaptively
filters high wavenumbers and thereby enhances stability and regularity.

Recent theoretical work has developed the Hamilton’s-principle analogue of
Lie–Poisson hamiltonian systems defined on semidirect products. The main
theoretical results presented in [7] are twofold: (i) Euler–Poincaré equations
(the lagrangian analogue of Lie–Poisson hamiltonian equations) are derived
for a parameter dependent lagrangian from a general variational principle of
Lagrange–d’Alembert type in which variations are constrained; (ii) an abstract
Kelvin–Noether theorem is derived for such systems. By imposing suitable con-
straints on the variations and by using invariance properties of the lagrangian,
as one does for the Euler equations for the rigid body and ideal fluids, Holm et
al. cast several standard eulerian models of geophysical fluid dynamics (GFD)
at various levels of approximation into Euler–Poincaré form and discuss their
corresponding Kelvin–Noether theorems and potential vorticity conservation
laws. The various levels of GFD approximation are related by substituting a
sequence of velocity decompositions and asymptotic expansions into Hamil-
ton’s principle for the Euler equations of a rotating stratified ideal incom-
pressible fluid. They emphasize that the shared properties of this sequence
of approximate ideal GFD models follow directly from their Euler–Poincaré
formulations. New modifications of the Euler–Boussinesq equations and prim-
itive equations are also proposed in which nonlinear dispersion adaptively fil-
ters high wavenumbers and thereby enhances stability and regularity without
compromising either low wavenumber behaviour or geophysical balance.

The final article — epitomising the open-endedness of the Programme and
the ongoing research it has stimulated — describes an unfinished journey, as
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xxvi Introduction and Scientific Background

well as presenting background tutorial material. Semigeostrophic theory and
its contact structure and other formal properties are first of all reviewed in the
simplest nontrivial context, f -plane shallow-water dynamics inR2 = {x, y}. A
number of these properties are remarkably simple and elegant, and mathemat-
ically important. The authors ask which of those properties might generalize
to more accurate hamiltonian models of balanced vortex motion. Many of
the properties are intimately associated with the special canonical coordinates
(X, Y ) discovered by Hoskins (1975). The jacobian ∂(X, Y )/∂(x, y) of these
coordinates with respect to the physical space coordinates (x, y) is equal to the
absolute vorticity measured in units of the Coriolis parameter f ; and Hoskins’
transformation (x, y) �→ (X, Y ) is, in a natural sense, part of an explicitly
invertible contact transformation (see also Sewell [5]). The invertibility is asso-
ciated with a symmetric generating function. Unlike the flow in physical space
{x, y}, the flow in the space {X,Y } space is solenoidal, and its streamfunction
Φ(X,Y, t) is obtainable by solving an elliptic Monge–Ampère equation express-
ing ‘potential vorticity invertibility’. There are also certain Legendre duality
and convexity properties, which make the model well-behaved, both mathe-
matically and numerically, even when phenomena like frontal discontinuities
occur (see also Cullen [I,4], Purser [6] and Sewell [5]).

No such canonical coordinates were known in simple analytical form for
any other balanced model until the recent — and to fluid dynamicists very
surprising — discovery by McIntyre and Roulstone (1996) of complex-valued
canonical coordinates (X, Y ) in a certain class of hamiltonian balanced mod-
els, some of which are more accurate than semigeostrophic theory. The general
way in which these models and their canonical coordinates are systematically
derived by constraining an unbalanced ‘parent dynamics’ (hence ‘splitting’
the parent velocity field into two or more different fields) is discussed, fol-
lowing the method of Salmon (1988). The coordinates (X, Y ) are such that
∂(X, Y )/∂(x, y) is still real, and still equal to the absolute vorticity in units of
f . The models include Salmon’s L1 dynamics and a new family of ‘

√
3 models’

that are formally the most accurate possible of this class. The authors pur-
sue the question thus raised: do these new models, or any subset or superset
of them, share significant properties with semigeostrophic theory beyond the
underlying hamiltonian dynamical structure and the special canonical coordi-
nates (X, Y ) and their association with vorticity? The answer seems to be yes
to the extent that the flow in (complex!) (X,Y ) space is solenoidal — so that
a complex streamfunction Φ(X,Y, t) must exist — and that elliptic Monge–
Ampère equations expressing potential vorticity invertibility occur in all the
new models, as well as in semigeostrophic theory. Otherwise, the answer is no.
For instance the transformation (x, y) �→ (X, Y ) is no longer part of a con-
tact transformation. However, the ‘conjugate’ transformation (x, y) �→ (X, Ȳ ),
where Ȳ is the complex conjugate of Y , is, by contrast, part of an explicitly
invertible contact transformation with a symmetric generating function and
a new transformed potential Φ̂(X, Ȳ , t). This fact, discovered by Roubtsov
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and Roulstone (2001), implies connections with hyper-Kähler geometry. The
pair of transformations — taking (x, y) into (X, Y ) and relating to vorticity,
potential vorticity and elliptic Monge–Ampère equations, on the one hand,
and taking (x, y) into (X, Ȳ ) and relating to contact structure on the other
— reveals that the structure underlying the whole picture is just that of a
hyper-Kähler space or manifold, which in turn is part of a twistor space. The
implications of this remain to be explored.

Conclusions

The Newton Institute programme successfully brought together ideas from ge-
ometry, analysis and dynamical systems theory, and showed their many ben-
efits in numerical prediction used for weather forecasting, ocean and climate
modelling. Various papers in these volumes advance the programme; and they
suggest new problems and avenues for research in the theory of constrained
dynamical systems, in particular for strongly stratified and rotating fluid flows
where chaotic dynamics may be minimized.

From the material presented in these volumes we hope to gain new insights
into the important issues surrounding various questions about the descrip-
tion of weather systems, on the large scale in both the atmosphere and the
oceans, described by constrained variational principles. These issues include
‘potential vorticity inversion’ — the relationship between the potential vortic-
ity and the balanced wind and temperature fields as described earlier in this
Introduction — which usually involves solving a nonlinear elliptic problem
(as in semi-geostrophic theory, for example). The convergence and practical
stability of numerical schemes, and the relationship between stability of the
flow and ellipticity of the operators, is far from being completely understood
(for example, see comments in Ziemianski and Thorpe 2000 and also Knox
1997). For instance, Cullen [I,4] conjectures that ‘elliptic PV inversion’ con-
strains the enstrophy cascade, and hence controls the decay of fluid motions
to turbulence. One direction in which work on these issues is proceeding is
demanding more in terms of non-smooth analysis and ideas from rearrange-
ment theory, as well as promoting a lagrangian view of fluid dynamics. Convex
analysis plays a key role in many of the applications discussed here; in fact
for the semi-geostrophic model, convexity, ellipticity and stability are directly
related. From a purely mathematical perspective in terms of the lagrangian
description of infinite-dimensional systems, and from a physical point-of-view
relating to the stability of large-scale flows, convexity appears to limit chaotic
dynamics.

There is increasing evidence to suggest that a major application of the
hamiltonian dynamical aspects would be useful in numerical weather predic-
tion. Numerical models based on Hamilton’s equations pose a challenge to the
numerical analyst working in partial differential equations and to the theorist
who needs to find a hamiltonian formulation of the relevant constrained equa-
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xxviii Introduction and Scientific Background

tions of motion and their associated conservation properties. In particular,
balance conditions are an important constraint for the new generation of data
assimilation schemes which seek to minimise cost functions based on the fit
of observations to four-dimensional integral curves of the equations of motion
(Courtier and Talagrand 1990). The new techniques proposed here may there-
fore have a major impact on our ability to provide accurate and appropriately
balanced initial conditions for numerical weather prediction. Such study of
meteorological problems may also promote further insight into the theory of
dynamical systems.

We draw three main conclusions for practical computation from the papers
presented here. First, new approaches are now available for reducing errors
in numerical schemes by considering local integral properties; secondly, the
standard assumptions of geophysical fluid dynamics describing how flows are
in approximate geostrophic balance can be used to reduce significant errors in
certain forecasting situations, especially by making better use of assimilated
data in each application; and thirdly, the growth rate and maximum level of
errors caused by data uncertainty, when analysed using realistic local dynamics
and global dynamics respectively, differ quantitatively and conceptually from
those inferred from Lorenz’s much simpler chaotic systems.

We conclude by noting that the past few years have witnessed a number of
exciting parallel developments in both the mathematical aspects and the phe-
nomenology of stratified, rotating fluid dynamics, with the promise of practi-
cally important spinoffs including improved analyses and prediction of weather
systems. Recent mathematical advances have brought a new geometric view-
point to these problems, in particular a new appreciation of the central role of
potential vorticity and its connection with the symplectic geometric structure
of the underlying equations of motion regarded as a hamiltonian dynamical
system.

Weather forecasting and climate modelling are excellent examples of how
these mathematical advances have practical applications in solving problems
where there is a strong interplay of geometry and physics.
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