
1 Finite Difference Equations

In this chapter, the exact analytical solution of linear finite difference equations is
discussed. The main purpose is to identify the similarities and differences between
solutions of differential equations and finite difference equations. Attention is drawn
to the intrinsic problems of using a high-order finite difference equation to approx-
imate a partial differential equation. Since exact analytical solutions are used, the
conclusions of this chapter are not subjected to numerical errors.

1.1. Order of Finite Difference Equations: Concept of Solution

Domain: In this chapter the domain considered consists of the set of integers k = 0,
±1, ±2, ±3, . . . . The general member of the sequence . . . , y–2, y–1, y0, y1, y2, . . . will
be denoted by yk.

An ordinary difference equation is an algorithm relating the values of different
members of the sequence yk. In general, a finite difference equation can be written
in the form

yk+n = F (yk+n−1, yk+n−2, . . . , yk,k), (1.1)

where F is a general function.
The order of a difference equation is the difference between the highest and

lowest indices appearing in the equation. For linear difference equations, the number
of linearly independent solutions is equal to the order of the equation.

A difference equation is linear if it can be put in the following form:

yk+n + a1 (k) yk+n−1 + a2 (k) yk+n−2 + · · · + an−1 (k) yk+1 + an (k) yk = Rk, (1.2)

where ai(k), i = 1, 2, 3, . . . , n and Rk are given functions of k.

EXAMPLES

(a) yk+1 – 3yk + yk–1 = 6e−k (second-order, linear)
(b) yk+1 = y2

k (first-order, nonlinear)
(c) yk+2 = sin(yk) (second-order, nonlinear)

The solution of a difference equation is a function yk = φ(k) that reduces the
equation to an identity.
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2 Finite Difference Equations

1.2 Linear Difference Equations with Constant Coefficients

Linear difference equations with constant coefficients can be solved in much the same
way as linear differential equations with constant coefficients. The characteristics of
the two types of solutions are similar but not identical.

Consider the nth-order homogeneous finite difference equation with constant
coefficients:

yk+n + a1yk+n−1 + a2yk+n−2 + · · · + anyk = 0, (1.3)

where a1, a2, . . . , an are constants. The general solution of such an equation has the
form:

yk = crk, (1.4)

where c and r are constants. Substitution of Eq. (1.4) into Eq. (1.3) yields, after
factoring out the common factor crk,

f (r) ≡ rn + a1rn−1 + a2rn−2 + · · · + an−1r + an = 0. (1.5)

Here, f(r) is an nth-order polynomial and thus has n roots ri, i = 1, 2, . . . , n. For each
ri we have a solution:

yk = cir
k
i , (1.6)

where ci is an arbitrary constant. The most general solution may be found by super-
position.

1.2.1 Distinct Roots

If the characteristic roots of Eq. (1.5) are distinct, then a fundamental set of solutions
is

y(i)k = rk
i , i = 1, 2, . . . ,n

and the general solution of the homogeneous equation is

yk = c1rk
1 + c2rk

2 + · · · + cnrk
n, (1.7)

where c1, c2, . . . , cn are n arbitrary constants.

EXAMPLE. Find the general solution of

yk+3 − 7yk+2 + 14yk+1 − 8yk = 0.

Let yk = crk. Substitution into the difference equation yields the characteristic
equation

r3 − 7r2 + 14r − 8 = 0

or

(r − 1) (r − 2) (r − 4) = 0.

The characteristic roots are r = 1, 2, and 4. Therefore, the general solution is

yk = A + B2k + C4k,

where A, B, and C are arbitrary constants.
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1.2 Linear Difference Equations with Constant Coefficients 3

1.2.2 Repeated Roots

Now consider the case where one or more of the roots of the characteristic equation
are repeated. Suppose the root r1 has multiplicity m1, the root r2 has multiplicity m2,
and the root r� has multiplicity m� such that

m1 + m2 + · · · + m� = n. (1.8)

The characteristic equation can be written as

(r − r1)
m1 (r − r2)

m2 · · · (r − r�)
m
� = 0. (1.9)

Corresponding to a repeated root of the characteristic polynomial (1.9) of multiplic-
ity m, the solution is

yk = (
A1 + A2k + A3k2 + · · · Amkm−1) rk, (1.10)

where A1, A2, . . . , Am are arbitrary constants.

EXAMPLE. Consider the general solution of the equation

yk+2 − 6yk+1 + 9yk = 0.

The characteristic equation is

r2 − 6r + 9 = 0 or (r − 3)2 = 0.

Thus, there is a repeated root r = 3, 3. The general solution is

yk = (A + Bk) 3k.

1.2.3 Complex Roots

Since the coefficients of the characteristic polynomial are real, complex roots must
appear as complex conjugate pairs. Suppose r and r* (* = complex conjugate) are
roots of the characteristic equation; then, corresponding to these roots the solutions
may be written as

y(1)k =rk, y(2)k =(r∗)k.

If a real solution is desired, these solutions can be recasted into a real form. Let r =
Reiθ , then an alternative set of fundamental solutions is

y(1)k = Rk cos (kθ ) , y(2)k = Rk sin (kθ ) .

If r and r* are repeated roots of multiplicity m, then the set of fundamental solutions
corresponding to these roots is

y(1)k = Rk cos (kθ ) y(m+1)
k = Rk sin (kθ )

y(2)k = kRk cos (kθ ) y(m+2)
k = kRk sin (kθ )

...
...

y(m)k = km−1Rk cos (kθ ) y(2m)
k = km−1Rk sin (kθ ) .

(1.11)
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4 Finite Difference Equations

EXAMPLE. Find the general solution of

yk+2 − 4yk+1 + 8yk = 0.

The characteristic equation is

r2 − 4r + 8 = 0.

The roots are r = 2 ± 2i = 2
√

2 e±i(π /4). Therefore, the general solution (can be
verified by direct substitution) is

yk = A(2
√

2)k cos
(π

4
k
)

+ B(2
√

2)k sin
(π

4
k
)
,

where A and B are arbitrary constants.

1.3 Finite Difference Solution as an Approximate Solution
of a Boundary Value Problem

A concrete example will now illustrate the inherent difficulties of using the finite dif-
ference solution to approximate the solution of a boundary value problem governed
by partial differential equations.

Suppose the frequencies of the normal acoustic wave modes of a one-
dimensional tube of length L as shown in Figure 1.1 is to be determined. The tube
has two closed ends and is filled with air. The governing equations of motion of the
air in the tube are the linearized momentum and energy equations, as follows:

ρ0
∂u
∂t

+ ∂p
∂x

= 0 (1.12)

∂p
∂t

+ γ p0
∂u
∂x

= 0, (1.13)

where ρ0, p0, and γ are, respectively, the static density, the pressure, and the ratio of
specific heats of the air inside the tube; and u is the velocity. The boundary conditions
are

At x = 0,L; u = 0. (1.14)

Upon eliminating p from (1.12) and (1.13), the equation for u is

∂2u
∂t2

− a2 ∂
2u
∂x2

= 0, (1.15)

where a = (γp0/ρ0)1/2 is the speed of sound.

Figure 1.1. A one-dimensional tube with closed ends.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80678-7 - Computational Aeroacoustics: A Wave Number Approach
Christopher K. W. Tam
Excerpt
More information

http://www.cambridge.org/9780521806787
http://www.cambridge.org
http://www.cambridge.org


1.3 Finite Difference Solution 5

1.3.1 Analytical Solution

To find the normal acoustic modes of the tube, consideration will be given to solutions
of the form:

u (x, t) = Re[û(x)e−iωt], (1.16)

where Re[ ] is the real part of [ ]. Substitution of Eq. (1.16) into Eqs. (1.15) and (1.14)
yields the following eigenvalue problem:

d2û
dx2

+ ω
2

a2
û = 0 (1.17)

û(0) = û(L) = 0. (1.18)

The two linearly independent solutions of Eq. (1.17) are

û (x) = A sin
(ωx

a

)
+ B cos

(ωx
a

)
. (1.19)

On imposing boundary conditions (1.18), it is found that

B = 0, and A sin
(
ωL
a

)
= 0.

For a nontrivial solution A cannot be zero, this leads to,

sin
(ωx

a

)
= 0 or

ωL
a

= nπ (n = integer).

Therefore,

ωn = nπa
L
, (n = 1, 2, 3, . . .) (1.20)

is the eigenvalue or eigenfrequency. The eigenfunction or mode shape is obtained
from Eq. (1.19); i.e.,

ûn (x) = sin
(nπx

L

)
, n = 1, 2, 3, . . . . (1.21)

1.3.2 Finite Difference Solution

Now consider solving the normal mode problem by finite difference approximation.
For this purpose, the tube is divided into M equal intervals with a spacing of �x =
L/M as shown in Figure 1.2. � is the spatial index (� = 0 to M). Both second- and
fourth-order standard central difference approximation will be used.

(
∂2u
∂x2

)
�

= u�+1 − 2u� + u�−1

(�x)2
+ O(�x2) (1.22)

(
∂2u
∂x2

)
�

= −u�+2 + 16u�+1 − 30u� + 16u�−1 − u�−2

12 (�x)2
+ O(�x4). (1.23)
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6 Finite Difference Equations

Figure 1.2. The computation grid for finite difference solution.

1.3.2.1 Second-Order Approximation
On replacing the spatial derivative of Eq. (1.15) by Eq. (1.22), the finite difference
equation to be solved is

d2u�
dt2

− a2

(�x)2
(u�+1 − 2u� + u�−1) = 0. (1.24)

Eq. (1.24) is a second-order finite difference equation, the same order as the original
partial differential equation. For a unique solution, two boundary conditions are
required. This is given by the boundary conditions of the physical problem, Eq.
(1.14); i.e.,

u0 = 0, uM = 0. (1.25)

On following Eq. (1.16), a separable solution of a similar form is sought,

u� (t) = Re
[
ũ�e

−iωt] . (1.26)

Substitution of Eq. (1.26) into Eqs. (1.24) and (1.25) leads to the following eigenvalue
problem:

ũ�+1 +
[
ω2 (�x)2

a2
− 2

]
ũ� + ũ�−1 = 0 (1.27)

ũ0 = 0, ũM = 0. (1.28)

Two linearly independent solutions of finite difference equation (1.27) in the form
of Eq. (1.4) can easily be found. The characteristic equation is

r2 +
[
ω2 (�x)2

a2
− 2

]
r + 1 = 0. (1.29)

The two roots of Eq. (1.29) are complex conjugates of each other. The absolute
value is equal to unity. Thus, the general solution of Eq. (1.27) may be written in the
following form:

ũ� = A sin (��)+ B cos (��) , (1.30)

where

� = cos−1

[
1 − ω

2 (�x)2

2a2

]
. (1.31)

Upon imposition of boundary conditions (1.28), it is easy to find

B = 0, A sin (�M) = 0.
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1.3 Finite Difference Solution 7

For a nontrivial solution, it is required that sin(θM) = 0. Hence,

�M = nπ, n = 1, 2, 3, . . .

or

cos−1

[
1 − ω

2 (�x)2

2a2

]
= nπ

M
.

This yields

ωn = 2
1
2 a
�x

(
1 − cos

(nπ
M

)) 1
2
, n = 1, 2, 3, . . . (1.32)

and from solution (1.30), the eigenfunction or mode shape is

ũ� = sin (��) = sin
(

nπ�
M

)
. (1.33)

Now, it is instructive to compare finite difference solutions (1.32) and (1.33) with
the exact solution of the original partial differential equations (1.20) and (1.21). One
obvious difference is that the exact solution has infinitely many eigenfrequencies and
eigenfunctions, whereas the finite difference solution supports only a finite number
(2M) of such modes. Furthermore, ωn of Eq. (1.32) is a good approximation of the
exact solution only for nπ/M � 1. In other words, a second-order finite difference
approximation provides good results only for the low-order long-wave modes. The
error increases quickly as n increases.

1.3.2.2 Fourth-Order Approximation
If the fourth-order approximation of Eq. (1.23) is used instead of Eq. (1.22), it is
easy to show that the governing finite difference equation for ũ� is

ũ�+2 − 16ũ�+1 +
(

30 − 12ω2 (�x)2

a2

)
ũ� − 16ũ�−1 + ũ�−2 = 0. (1.34)

The two physical boundary conditions of Eq. (1.15) are

ũ0 = 0, ũM = 0. (1.35)

Now, Eq. (1.34) is a fourth-order finite difference equation. There are four linearly
independent solutions. In order to have a unique solution, four boundary conditions
are necessary. However, only two physical boundary conditions are available. To
ensure a unique solution of the fourth-order finite difference equation, two extra
(nonphysical) boundary conditions need to be created. Also, two of the four solutions
of Eq. (1.34) are spurious solutions unrelated to the physical problem. Therefore,
the use of high-order approximation will result in

(A) Possible generation of spurious numerical solutions.
(B) A need for extra boundary conditions or special boundary treatment.

These are definite disadvantages in the use of a high-order scheme to approximate
partial differential equations. Are there any advantages? To show that there could
be an advantage, note that the eigenfunction of the finite difference equation (1.33)
is identical to the exact eigenfunction (1.21). As it turns out, the eigenfunction (1.33)
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8 Finite Difference Equations

Figure 1.3. Comparison of normal mode
frequencies. ___________, exact, Eq.
(1.20); — — — —, fourth-order, Eq.
(1.37); ······· , second-order, Eq. (1.32).

of the second-order approximation is also the eigenfunction of the fourth-order
approximation, namely, the solution of Eqs. (1.34) and (1.35) is

ũ� = sin
(

nπ�
M

)
, n = 1, 2, 3, . . . . (1.36)

These eigenfunctions satisfy boundary conditions (1.35). On the substitution of solu-
tion (1.36) into Eq. (1.34), it is easy to find that the corresponding eigenfrequency is
given by

ωn = a

(�x) 6
1
2

[
15 − 16 cos

(nπ
M

)
+ cos

(
2nπ
M

)] 1
2

. (1.37)

It is straightforward to find that frequency formula (1.37) is a much improved
approximation to the exact eigenfrequency of formula (1.20) than formula (1.32)
of the second-order method. Figure 1.3 shows a comparison for the case M = 100.
This result illustrates the fact that, when the problems of spurious waves and extra
boundary conditions are adequately taken care of, a high-order method does give
more accurate numerical results.

1.4 Finite Difference Model for a Surface of Discontinuity

How best to transform a boundary value problem governed by partial differential
equations into a computation problem governed by difference equations is not always
obvious. The task is even more difficult if the original problem involves a surface of
discontinuity. There is a lack of discussion in the literature about how to model a
discontinuity in the context of finite difference. The purpose of this section is to show
how one such model may be set up. At the same time, this model will demonstrate that
the finite difference formulation of boundary value problems may support spurious
boundary modes. These modes might have no counterpart in the original problem.
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1.4 Finite Difference Model for a Surface of Discontinuity 9

Figure 1.4. Schematic diagram showing (a) the incident, reflected, and transmitted sound
waves at a fluid interface, (b) the slightly deformed fluid interface.

They are not generally known or expected. If one of these spurious boundary modes
grows in time, then this could lead to numerical instability or a divergent solution.

Consider the transmission of sound through the interface of two fluids of
densities ρ(1) and ρ(2) and sound speeds a(1) and a(2), respectively, as shown in
Figure 1.4a. It is known that refraction takes place at such an interface.

Superscripts (1) and (2) will be used to denote the flow variables above and
below the interface. For small-amplitude incident sound waves, it is sufficient to use
the linearized Euler equations and interface boundary conditions. Let y = ς(x, t) be
the location of the interface. The governing equations are

y ≥ 0,
∂u(1)

∂t
= − 1

ρ(1)
∂p(1)

∂x
(1.38)

∂v(1)

∂t
= − 1

ρ(1)
∂p(1)

∂y
(1.39)

∂p(1)

∂t
+ γ p(1)

(
∂u(1)

∂x
+ ∂v

(1)

∂y

)
= 0 (1.40)

y ≤ 0
∂u(2)

∂t
= − 1

ρ(2)
∂p(2)

∂x
(1.41)

∂v(2)

∂t
= − 1

ρ(2)
∂p(2)

∂y
(1.42)

∂p(2)

∂t
+ γ p(2)

(
∂u(2)

∂x
+ ∂v

(2)

∂y

)
= 0. (1.43)

The dynamic and kinematic boundary conditions at the interface are

y = 0, p(1) = p(2) (1.44)

∂ζ

∂t
= v(1) = v(2). (1.45)
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10 Finite Difference Equations

For static equilibrium, the pressure balance condition is

p(1) = p(2) or ρ(1)(a(1))2 = ρ(2)(a(2))2. (1.46)

1.4.1 The Transmission Problem

Consider a plane acoustic wave of angular frequency ω incident on the interface at
an angle of incidence θ as shown in Figure 1.4. The appropriate solution of Eqs.
(1.38) to (1.40) may be written in the following form:

⎡
⎣ u(1)

v(1)

p(1)

⎤
⎦

incident

= Re

⎧⎪⎪⎨
⎪⎪⎩A

⎡
⎢⎢⎣

− sin θ
ρ(1)a(1)

− cos θ
ρ(1)a(1)

1

⎤
⎥⎥⎦ e−iω(sin θx+cos θy+a(1)t)/a(1)

⎫⎪⎪⎬
⎪⎪⎭ , (1.47)

where A is the amplitude and Re{} is the real part of. The reflected wave in region
(1) has a form similar to Eq. (1.47), which may be written as

⎡
⎣ u(1)

v(1)

p(1)

⎤
⎦

reflected

= Re

⎧⎪⎪⎨
⎪⎪⎩R

⎡
⎢⎢⎣

− sin θ
ρ(1)a(1)

cos θ
ρ(1)a(1)

1

⎤
⎥⎥⎦ e−iω(sin θx−cos θy+a(1)t)/a(1)

⎫⎪⎪⎬
⎪⎪⎭ , (1.48)

where R is the amplitude of the reflected wave. The transmitted wave in region (2)
must have the same dependence on x and t as the incidence wave. Let

⎡
⎣ u(2)

v(2)

p(2)

⎤
⎦

transmitted

= Re

⎧⎨
⎩
⎡
⎣ û(y)

v̂(y)
p̂(y)

⎤
⎦ e−iω(sin θx+a(1)t)/a(1)

⎫⎬
⎭ . (1.49)

By substituting Eq. (1.49) into Eqs. (1.41) to (1.43), it is easy to find after some simple
elimination,

d2 p̂
∂y2

+ ω2(
a2
)2

⎡
⎣1 −

(
a(2)

a(1)

)2

sin2 θ

⎤
⎦ p̂ = 0. (1.50)

On solving Eq. (1.50), the transmitted wave with an amplitude T may be written as

⎡
⎣ u(2)

v(2)

p(2)

⎤
⎦

transmitted

= Re

⎧⎪⎪⎨
⎪⎪⎩T

⎡
⎢⎢⎣

− sin θ
ρ(2)a(1)

− [1−(a(2)/a(1) )2 sin2 θ]1/2

ρ(2)a(2)

1

⎤
⎥⎥⎦ e−iω{sin θx+(a(1)/a(2) )[1 −(a(2)/a(1) )2 sin2 θ]1/2y+a(1) t}/a(1)

⎫⎪⎪⎬
⎪⎪⎭ .

(1.51)
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