Contents

Preface
page xi

Acknowledgements
page xii

1 Introduction
1
References
3

2 Structure of ice
5
2.1 Introduction
5
2.2 Crystal structure of ice Ih
6
2.3 Point defects
10
2.4 Line defects: dislocations
12
2.5 Planar defects
22
2.6 Volumetric defects
24
Appendix A Miller–Bravais indices for hexagonal crystals
25
References
26

3 Microstructure of natural ice features
30
3.1 Introduction
30
3.2 Experimental techniques
31
3.3 The microstructure of ice within glaciers and polar ice sheets
36
3.4 Floating ice sheets
39
3.5 Terminology and classification
45
3.6 Summary
46
References
46

4 Physical properties: elasticity, friction and diffusivity
51
4.1 Introduction
51
4.2 Elastic properties of ice Ih single crystals
51
4.3 Elastic properties of polycrystals
57
4.4 Friction coefficient of ice on ice at low sliding speeds
67
4.5 Molecular diffusion in ice
70
References
73
Contents

5 Plastic deformation of the ice single crystal 77
 5.1 Introduction 77
 5.2 Plastic deformation of the ice crystal 78
 5.3 Dynamics of dislocations 86
 5.4 Rate-controlling processes for basal slip 94
 5.5 Conclusions 96
 References 97

6 Ductile behavior of polycrystalline ice: experimental data and physical processes 101
 6.1 Introduction 101
 6.2 Deformation behavior of isotropic granular ice 102
 6.3 Deformation of columnar ice 119
 6.4 Rate-controlling processes in the creep of polycrystalline ice 122
 6.5 Grain growth and recrystallization 130
 6.6 Textures in glaciers and polar ice sheets 139
 References 144

7 Modeling the ductile behavior of isotropic and anisotropic polycrystalline ice 153
 7.1 Introduction 153
 7.2 Modeling the behavior of isotropic and anisotropic ice 154
 7.3 Flow laws for secondary creep of isotropic ice 160
 7.4 Modeling transient creep 160
 7.5 Modeling viscoplastic behavior of columnar ice with the FFT model 162
 7.6 Modeling texture development with the VPSC tangent model 165
 7.7 Modeling mechanical behavior of anisotropic ice 172
 7.8 Modeling with self-consistent models 173
 References 175

8 Rheology of high-pressure and planetary ices 179
 8.1 Introduction 179
 8.2 Experimental methods 181
 8.3 Viscoelasticity of ice II and III 182
 8.4 Viscoelasticity of ice V and VI 184
 8.5 Comparison of ices 184
 8.6 Flow of methane clathrate hydrates 185
 8.7 Flow of ice in the ammonia–water system 186
 8.8 Conclusions 187
 References 188
Contents

9 Fracture toughness of ice 190
 9.1 Introduction 190
 9.2 Principles of fracture mechanics 190
 9.3 Measurement of fracture toughness 196
 9.4 Measured values of K_{ic} 199
 9.5 The role of surface energy 205
 9.6 Fracture toughness of snow 206
 9.7 Comparison with other materials 207
References 208

10 Brittle failure of ice under tension 212
 10.1 Introduction 212
 10.2 Methods of measurement 213
 10.3 Single crystals 214
 10.4 Polycrystals 215
 10.5 Ductile-to-brittle transition 226
 10.6 Strength-limiting mechanisms 227
References 232

11 Brittle compressive failure of unconfined ice 236
 11.1 Introduction 236
 11.2 Measurement of brittle compressive strength 237
 11.3 Ductile versus brittle behavior: an overview 239
 11.4 Single crystals 241
 11.5 Polycrystals 243
 11.6 Failure process 251
 11.7 Wing-crack mechanics 258
 11.8 Strength-limiting mechanism 261
References 262

12 Brittle compressive failure of confined ice 266
 12.1 Introduction 266
 12.2 Experimental methods 267
 12.3 Granular ice 270
 12.4 Columnar ice 273
 12.5 Failure surfaces 286
 12.6 Relationship between compressive fracture and friction 289
 12.7 Nature of plastic faults 291
 12.8 Nature of Coulombic shear faults 293
 12.9 Nature of spalling 304
 12.10 Post-terminal failure of faulted ice 308
References 314
<table>
<thead>
<tr>
<th>13</th>
<th>Ductile-to-brittle transition under compression</th>
<th>320</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.1 Introduction</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>13.2 Competition between creep and fracture</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>13.3 Micromechanical model</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>13.4 Comparison with experiment</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>13.5 Dirty ice</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>13.6 Application to rocks and minerals</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>14</td>
<td>Indentation fracture and ice forces on structures</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>14.1 Introduction</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>14.2 Ductile-to-brittle transition</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>14.3 Brittle failure modes</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>14.4 Non-simultaneous failure and local vs. global loads</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>14.5 Pressure–area relationship</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>14.6 Impact failure</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>357</td>
</tr>
<tr>
<td>15</td>
<td>Fracture of the ice cover on the Arctic Ocean</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>15.1 Introduction</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>15.2 Formation of sliding lineaments/shear faults</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>15.3 Rheological behavior of the winter ice cover: friction and fracture</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>15.4 Ductile-to-brittle transition</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>15.5 Is the physics of fracture independent of scale?</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>391</td>
</tr>
</tbody>
</table>