100-year wave force, 336
60° dislocations, 17, 82, 88
abrasion, 337
accommodation processes of basal slip, 165
acoustic emission, 78, 90, 108
across-column cleavage cracks, 278
across-column confinement, 282
across-column cracks, 282, 306,
across-column loading, 275
across-column strength, 246, 249, 275
activation energy, 71, 84, 95, 111, 118, 131
activation volume, 114, 182
activity of pyramidal slip systems, 158
activity of slip systems, 168
adiabatic heating, 291, 348
adiabatic softening, 291
affine self-consistent model, 160
air bubbles, 38
air-hydrate crystals, 37
albedo, 363
aligned first-year sea ice, 246
along-column confinement, 282
along-column confining stress, 282,
along-column strength, 244, 275
ammonia dihydrate, 181
amorphous forms of ice, 5
Andrade creep, 108
Andrade law, 104, 107
anisotropic ice, 129, 153, 154, 156, 172,
apparent activation energy, 342
apparent contact area, 349
apparent fracture toughness, 204, 341
applied stress tensor, 280
arctic and antarctic sea ice
aligned first-year sea ice, 246
brine-drainage channels, 43, 223
brine pockets, 43, 62, 217, 223,
224, 231
ductile–brittle transition, 118, 119
failure envelope, 275, 278, 376
friction and fracture, 289, 376
indentation failure, 345
microstructure, 45, 70, 237, 255, 273
multiscale fracture and frictional
sliding, 386
nested envelopes, 377
pressure–area relationship, 349, 352
S2 growth texture, 246, 273
SHEBA faults, 371
SHEBA stress states, 377
Arctic Ocean, 1, 45, 190, 361
aspect ratio, 344
atmospheric ice, 219, 221, 241, 243
atmospheric icing, 31
atmospheric impurities, 113
atomic packing factor, 9
audible report, 240
avalanches, 206
bands, 89
basal activity, 162
basal dislocations, 77
basal planes, 214,
basal screw dislocations, 77, 87
basal shear bands, 163
basal slip, 18, 77, 127, 228
basal slip lines, 77
bend strength, 213, 224
bend test, 213
Bernal–Fowler ice rules, 9
biaxial compressive strength, 270
biaxial loading, 270, 274
paths, 274
Bjerrum defects, 15, 82, 88,
blowout, 297
blue zone, 347, 348
boundary diffusion, 126
Brazil test, 213,
brine drainage channels, 43,
224, 249
brine pockets, 43, 62, 217, 224, 231
brittle behavior, 240
brittle compressive failure, 237
brittle compressive strength of confined ice
biamxial loading, 270, 274
biaxial loading paths, 274
comb-crack mechanism, 300,
confinement strengthening, 276
confinement weakening, 276, 280
Coulombic faults, 272, 278, 282, 314
failure envelope, 275, 278, 376
failure surfaces, 286
fracture and friction, 289
plastic faults, 272, 282, 292, 308, 314
post-terminal failure, 267
pressure-cell method, 267
proportional loading, 267
triaxial test, 267
true triaxial loading, 268
wing cracks and comb cracks, 294
brittle failure modes, 342
blue zone, 347, 356
continuous, 337
high-pressure zone, 348, 356
local loads, 349
non-simultaneous failure, 349
pressure–area curve, 351
strain-rate softening, 240, 243, 338
transition strain rate, 239, 309, 331
transition velocity, 341
brittle failure surface, 288
brittle fracture mode
Coulombic faulting, 282, 348
intergranular, 320
spalling, 278, 304, 343
splitting, 327
transgranular, 216
brittle-like failure mode
plastic faulting, 292, 308, 348
brittle-to-ductile transition, 226, 242, 320, 337, 386
bubbly ice, 30, 37
buckling, 306
stress, 369
bulk modulus, 58
Burgers’ vector b, 16, 89
c-axis alignment, 45
calving of icebergs, 1, 212
cellular material, 207
ceramics, 247
chemical compounds, 34
circumferential cracking, 343
circumferentially notched tensile bars, 198
cleavage, 214, 216
climb, 16
basal dislocations, 122
dislocations, 125
CO₂ hydrate, 180
cohesion, 289, 290, 311
cohesive strength, 228, 260, 311,
coincident site lattice, 22
collective dislocation motion, 91, 94
columnar ice, 162, 219, 246, 273
cracks (cont.)
micro-plates, 297, 300
most dangerous flaw, 352
nucleation, 39, 212, 229
control, 229
parent, 252,
primary, 251, 294
propagation, 228, 231
control, 228
secondary, 251, 255, 266, 282, 296, 324, 366
splay, 299
systems, 194, 195
tip creep, 197
tip stress state, 193
transgranular, 216
velocities, 231
wing, 252, 258, 294, 361, 366, 372
creep damage, 250
creep relaxation, 258
creep zone, 324
crevasses, 212,
critical cracks, 229
critical flaw, 231
critical grain size, 221, 222,
critical loading rate, 197,
critical nucleus, 39
critical size, 228
critical strain rate, 320
critical stress for crack propagation, 192
cross-slip, 16, 18, 77, 89, 95, 123
crushing, 343, 345
force, 354
crystalline forms of ice, 5
crystals, 125
growth, 40
plasticity, 362
structure of ice Ih, 6
crystal structure
ice Ic, 5

Index

creep
activation energy, 71, 84, 95, 111, 118, 131
Andrade creep, 109
behavior at low stresses, 109
diffusion creep, 103, 125, 126
effect of confining pressure, 114
effect of grain size, 107, 112
effect of liquid phase, 127
effect of particles and impurities, 113
glide-controlled mechanism, 124
Harper–Dorn creep, 125,
melt-free pure ice, 111
primary creep, 103, 104, 161
rate-controlling processes, 95, 122, 124
recovery creep, 115
secondary creep, 103, 109, 111, 112, 113, 122, 311
stress exponent, 109, 116, 128, 160, 179, 187
superplastic flow, 112, 125
tertiary creep, 103, 115, 129
damage, 66, 68, 203, 224, 249, 262, 266, 294, 328, 347
deflection, 57, 160
density, 10
detonation, 113
dependent elastic stiffness constants, 66
debris-laden ice, 113,
decohesions, 231
def ormation grades, 79, 96, 155
def ormation matrix, 66
def ormation textures, 139
def ormation twins, 22
delayed elastic strain, 103
densification, 37, 160
density, 8, 207
destabilization, 297, 304
deviatoric stresses, 109
diamond anvil cell, 182
diamond-shaped patterns, 362
differential stress, 270
diffusion
dislocation climb, 90, 95, 125
self-diffusion, 70, 123
volume diffusion coefficient, 122
diffusion of acids, 72
diffusion coefficient, 70, 71
diffusion creep, 103, 125, 126
diffusion of gases, 70, 72
dimensional analysis, 352, 356
directional viscosity, 154
direct tensile test, 214
dirty ice, 330
dislocation motion
avalanches, 78, 90, 92, 94, 107, 108, 230
basal slip, 18, 77, 127, 228
climb, 90, 95
collective motion, 91, 94
cross-slip, 16, 18, 77, 89, 95, 123
dislocation mobility, 82, 87,
dislocation velocity, 87, 88
glide-controlled mechanism, 124
mobile dislocations, 78, 82, 95
Orowan equation, 92, 124
prismatic slip, 161, 243
dislocations, 12, 70, 73
60° dislocations, 17, 82, 88
avalanches, 78, 90, 92, 94, 107, 108, 230
basal dislocations, 77
basal screw dislocations, 77, 87
climb, 90, 95
density, 15, 21
dissociation, 18, 89
density, 13, 86, 88, 164
excess dislocations, 95, 143
interstitial prismatic loop, 14
Index

dislocations (cont.)
jogs, 123
kinetics, 213
line energy, 16
line (strain) energy, 16
loops, 71
mixed, 14
mobility, 82, 87,
multiplication, 24, 79, 89, 94, 96
non-basal edge dislocations, 20, 77
partial dislocations, 18, 22, 89
pile-ups, 229,
prismatic loop, 14, 18
screw, 14, 89
slip system, 17, 122, 123, 155, 157, 160, 174
sources, 79, 85
statistical dislocations, 95, 143
vacancy prismatic loop, 9, 14
velocity, 87, 88
displacement field, 194
double-cantilever beams, 198
double subscript notation, 274
driving force, 131, 136
ductile behavior, 239
ductile–brittle analysis, 353
ductile failure of columnar S2 ice, 119
ductile failure surface, 286
ductile-to-brittle transition, 118, 119, 190, 226, 239,
241, 293, 321
arctic sea ice, 63
competition between creep and fracture, 321
critical strain rate, 320
critical strain rate compression, 320
critical strain rate tension, 226
ice–structure interaction, 114
inelastic zone, 196, 323
micromechanical model, 321
vs. confinement, 328, 344, 375
vs. damage, 249, 262, 266, 294, 328
vs. grain size, 326, 327
vs. size, 329
vs. temperature, 328
ductility, 223, 226
dynamic compressive strength, 243
dynamic constants, 54
dynamic failure, 232
dynamic instability, 291
dynamic loading, 231
dynamic recrystallization, 62, 118, 129, 130, 142,
175, 183
dynamic strength, 231, 244
dynamic Young’s modulus, 63
ynamics of dislocations, 86, 96
edge dislocations, 13, 86, 88, 164
edge-loaded plates, 342
effect of confining pressure, 114
effect of grain size, 107, 112
effect of impurities, 80
effect of liquid phase 127
effect of particles and impurities, 113
effect of temperature, 111
effective shear stress, 260, 266
elastic anisotropy, 58, 64
elastic buckling, 297, 369
elastic compliance constants, 52, 54
elastic constants, 66
elastic energy, 137, 191
elastic limit, 323
elastic mismatch, 229,
elastic moduli, 54
elastic stiffness constants, 52
elastically isotropic, 58
elasto-viscoplastic, 160
electron back-scatter diffraction, 144
elongation, 226,
Enceladus, 51
crack growth, 238, 245
energy release rate, 300, 301
engineered ceramics, 226
enhancement factor, 129, 172, 173
entrapped brine, 43
equilibrium, 191
equilibrium melting point, 269, 286
equivalent stress, 114
etch pitting, 21
Euler, 306
Euler buckling, 238, 279, 306
Europa, 1, 51, 190, 212, 236, 237,
eutectic, 217
evolution of Coulombic faults, 294
excess dislocations, 95, 143
fabric, 41, 45
fabric survival, 275, 278, 376
biaxial loading, 270, 274
columnar ice, 162, 219, 246, 273
faulted ice, 309,
granular ice, 200, 218, 254, 297
nested envelopes, 379
post-terminal, 267, 308, 310
sea ice, 31, 43, 62, 200, 204, 224, 225, 231, 278, 297,
301, 302, 309
sea ice cover, 236, 361
failure process, 251
failure surfaces, 286
columnar ice, 162, 219, 246, 273
granular ice, 200, 218, 254, 297
fast crack propagation, 212
fast Fourier transform, 154, 159, 162
fatigue of ice, 250
fatigue sharpening, 198
faulting-to-spalling transition, 278
faults
conjugate sets, 272
Coulombic, 272, 278, 282, 314
diamond-shaped patterns, 362
healing, 290, 310, 311, 376
leads, 361
left-lateral lineaments, 368
oriented features, 361
plastic, 272, 282, 292, 308, 314
faults (cont.)
 rhomboidal-shaped openings, 364
 right-lateral lineaments, 368
SHEBA, 369, 377
stacking, 18, 22, 90
strike-slip, 368, 374
structural defects, 373, 375
feather cracks, 299
fibers, 202
Fick’s law, 70
field fluctuations, 175
field study, 203
finely grained ice, 109, 125, 183
firm, 30, 207
and bubbly ice, 160
first cracks, 344
flexural strength, 213
floating ice cover, 205, 237
floating ice sheet, 30
flow law for basal slip, 84
flow of ice II, 182
flow parameters, 184
fluid cushions, 238
Fourier points, 162
fractal analysis, 353
fractal dimension, 353
fractal hierarchy, 354
fracture and friction, 289
fracture mechanics
 circumferentially notched tensile bars, 198
 compact tensile specimens, 198
 crack-extension force, 192
 crack-tip stress state, 193
double-cantilever beam, 198
fracture toughness, 190, 195, 228, 375
Griffith energy balance concept,
 190, 191
linear elastic, 190, 207, 212
modes of crack propagation, 193
notched beams, 198
notch-tip acuity, 198
pyramidal and conical indentations, 198
resistance to growth, 196
ring test, 198, 213,
 short rods with chevron notches, 198
 strain energy release rate, 193, 194
 stress intensity factor, 194, 229, 323
toughness, 190, 195, 228, 375
fracture path, 207
fracture toughness \(K_{IC}\), 190, 195,
 228, 375
snow, 64, 206
 vs. cyclic loading, 83, 205, 249
 vs. damage, 203,
 vs. external water, 203
 vs. grain size, 200
 vs. growth texture, 201, 204
 vs. particulates and fibers, 386
 vs. porosity, 201,
 vs. size, 203,
 vs. temperature, 199
fracture path, 207
fracture toughness \(K_{IC}\), 190, 195,
 228, 375
snow, 64, 206
 vs. cyclic loading, 83, 205, 249
 vs. damage, 203,
 vs. external water, 203
 vs. grain size, 200
 vs. growth texture, 201, 204
 vs. particulates and fibers, 386
 vs. porosity, 201,
 vs. size, 203,
 vs. temperature, 199

Index

fragmentation, 238
pattern, 387
fragments, 353
friction, 258, 347
and fracture, 376
coefficient, 311, 322, 325, 380
frictional crack sliding, 262, 266, 278
frictional drag, 297, 300
frictional heating, 313
frictional melting, 70
frictional sliding, 68, 237, 247, 261, 278, 282, 289, 302, 375, 376
full-field approach, 153
formulation, 162
model, 159
solutions, 175
fundamental elastic constants, 52, 57
gas hydrates, 180
geometric selection, 40
geometrical analysis, 352
geometrical factor, 194
geometrically necessary dislocations, 143
glacier flow modeling, 111
glacier ice, 102, 111, 113, 139, 198, 271
glacier icefalls and crevasses, 1
glaciars, 30, 175
crevasses, 212,
densification, 37, 160
glacier flow modeling, 111
glacier icefall model, 172, 175
ice cores, 139, 171
microstructure, 30, 32, 70, 206, 225, 231, 237, 255, 273
glacier ice sheets, 23, 30, 104, 116, 125, 127, 130, 136, 154, 171
temperate glacier, 111, 139, 140, 143
texture, 34, 45, 62, 201
textures in polar ice sheets, 171
glass, 356
glaze, 31
Glen’s law, 122
glide-controlled mechanism, 124
glide set, 18,
global climate, 1, 376
global loads, 236, 349
gouge-like material, 276
grain boundaries, 22, 68, 70, 108, 323
boundary diffusion, 126
bulging, 138
creaks, 321, 369
diffusivity, 72
dislocation, 23
migration, 127
rate, 128, 134
mobility, 132
sliding, 23, 102, 112, 115, 119, 123, 125, 226, 229, 230, 304
superplastic flow, 112, 125
Index

396

Index

covers, 250
films, 72
forces, 190, 241
ice Ic, 5
ice Ih, 5
ice II, 179, 182
ice III, 179, 182
ice V and VI, 184
ice-infested waters, 236
ice loading, 336
ice-sheet flow model, 172, 175
ice sheets, 175
ice shelves, 212
ice–structure interaction, 114
ice thickness distribution, 236
ice–water interfacial energy, 23
icebergs, 190, 202, 225, 342, 347
icy satellites, 91, 179
Enceladus, 51
Europa, 190, 212, 236, 237, Triton, 51
impact
 crater dimensions, 356
 cratering, 355
 indentation, 355
 impurities, 32, 33
 indentation, 269
 failure, 336
 transition strain rate, 340
 velocity, 337
indented walls, 345
inelastic deformation, 206, 219, 239
inelastic zone, 196, 323
inhomogeneous deformation, 369
interaction tensor, 157
interference colors, 32
intergranular cracks, 320
interlocking of asperities, 313
intermediate principal stress, 272, 276
intermittency, 379
internal friction, 23, 82, 279, 289
 coefficient, 290, 379
 internal stress field, 77, 79, 89,
 123, 164
interstitial, 10–11, 71
interstitial prismatic loop, 14
intra-crystalline dislocation glide, 102, 125
intra-crystalline fields, 162
intragranular field fluctuations, 154, 159
intragranular stresses, 172
ionic and Bjerrum defects, 11
isotropic hardening, 107
jogs, 123

Klc vs. cyclic loading, 205
Klc vs. damage, 203
Klc vs. external water, 203
Klc vs. grain size, 200
Klc vs. growth texture, 201
Klc vs. particulates and fibers, 202

grain growth, 23, 128, 130, 131, 132, 136, 171
and recrystallization, 30
in glacial ice, 132
grains, 90
anisotropy, 175
nucleation, 130
refinement, 201, 240
size, 183
granular ice, 200, 218, 254, 297
granular material, 270
Griffith, 258
Griffith’s energy balance concept, 190, 191
GRIP ice core, 167
growth, 40
texture, 31, 40, 58, 204, 222
twins, 22
hailstones, 31
Hall–Petch form, 219
Hall–Petch law, 108
Hall–Petch strengthening, 219, 222
hard particles, 24
Harder–Dorn creep, 125, 126
healing, 290, 310, 311, 376
Hertzian-like cone-shaped cracks, 356
Hertzian stresses, 299
hexagonal unit cell, 25
Hibernia, 236
hierarchy of events, 353
hierarchy theory of complexity, 387
high-angle boundary, 22
high-density ice, 5
high-pressure ices, 179
ammonia–water system, 186
effect of grain size in creep, 107, 112
flow parameters, 184
ice II, 179, 182
ice III, 179, 182
ice V and VI, 184
methane hydrates, 185
planetary ices, 7, 188
rheology, 184
stress exponent, 109, 116, 124, 128, 160, 179, 183, 187
high-pressure zones, 348, 349
high-speed photography, 252
higher-confinement faults, 272,
 Hill’s criterion, 120, 274, 286
 Hill’s method, 58
homogeneous equivalent medium (HEM), 156, 159
homogenization, 155
Hook’s law, 52, 53, 66
horsetail cracks, 299
hot spots, 348
Hurst exponent, 381
hydrate crystals, 30, 38
hydrogen bonds, 7, 208
hydrostatic axis, 286,
 ice, 164
 breaking, 212
cores, 139, 171
oceanic salt budget, 236
off-shore structures, 236
optical microscopy, 32
orientation distribution function, 165, 172
orientation gradients, 137, 143
orientation tensor, 166
oriented features, 361
Orowan equation, 92, 124
Orowan form, 219
Orowan strengthening, 219, 222
orthotropic material, 172
orthotropic symmetry, 58
Ostwald ripening, 38
outer Solar System, 46, 180
outward bending, 260
pack ice, 363
paleoclimatology, 1
pancake ice, 212
parallelism of ends, 238
partial dislocations, 18, 22, 89
particle-stimulated nucleation, 138
passive proportional loading, 267, path independence, 275
Peierls barrier, 87, 88
penny-shaped flaws, 228
physical characteristics, 9
pinning pressure, 132, planes, 26, 82
plane strain, 195, 205, 229, 371
fracture toughness, 195
plane stress, 194
plastic anisotropy, 156
plastic faults, 272, 282, 292, 308, 314
plastic strain, 239
plastic work, 204
plastically orthotropic material, 274
plasticity, 376
point defects, 71, 82
Poisson’s ratio, 55, 61, 62, 63, 64, 66, 191
polar ice sheets, 23, 30, 104, 116, 125, 127, 130, 136, 154, 171
polycrystal anisotropy, 154
compliances, 60
deformation and recrystallation textures, 62
growth textures, 58
polygonization, 134
polynomial flow law, 160
porosity, 63, 200, 201, 224, 225, 247, 249
post-terminal envelope, 310
post-terminal failure, 267, 308
potential energy, 191
power-law creep, 124
precursors, 229
preferred crystal orientation, 30, 103
pre-melting, 231
pressure-area relationship, 349, 351, 352
pressure-cell method, 267
pressure hardening, 271, 272
pressure-induced plasticity, 243, 286
pressure melting, 269
pressure ridges, 31, 212
pre-straining, 203, 226
primary creep, 103, 104, 161
principal directions, 287
principal strains, 53, 55
principal stresses, 53, 267, 274, 289, 321, 345, 381
direction, 374
prismatic activity, 169
prismatic glide, 77
prismatic loop, 14, 18
prismatic planes, 214
prismatic slip systems, 161
process zone, 297
proportional loading, 267
proton disorder, 10, 11
protonic defects, 10, 11
protonic rearrangement, 16
pykrete, 202
pyramidal activity, 169
pyramidal and conical indentation, 198
pyramidal slip, 97, 161
quasi-liquid layer, 24
quasi-static failure, 237
radial cracking, 343
radial isotropy, 9, rafting, 31
Raman spectroscopy, 34
randomly oriented polycrystals, 58
rate-controlling processes, 95, 122, 124
rate of unloading, 250
recovery creep, 115
recovery processes, 127, 143
recrystallization, 34, 68, 104, 243, 292, 348
continuous, 128
dynamic, 62, 118, 129, 130, 142, 175, 183
energy, 130
grain boundary bulging, 138
grain boundary migration, 127
grain nucleation, 130
grains, 226, 272, 282, 347
microstructure, 291
migration, 115, 116, 135, 137, 142
particle-stimulated nucleation, 138
rotation, 134, 135, 171, 172
static, 130, 144
textures, 115, 129, 139, 171
reference resolved shear stress, 157
reference stresses, 160
relative shear displacement, 364
representative volume element (RVE), 155
resistance to growth, 196
Reuss’ method, 58
rheology of high-pressure ices, 184
rheology of planetary ices, 7, 188
rhomboidal-shaped openings, 364
right-lateral lineaments, 368
rime, 31
ring test, 198, 213,
Index

399

sheets of cracks, 306
shock resistance, 202
short rods with chevron notches, 198
shuffle set, 18
single crystals, 214, 227, 241
singular stress field, 322
sintering, 36, 37
and densification, 30
size, 203, 207, 225, 302, 329
size distribution, 353
size effect, 204
slabs, 270,
slenderness, 369
sliding lineaments, 373
slip, 129
activity, 161
bands, 89, 92, 94
direction, 77
line, 15, 18, 92, 362,
system, 17, 122, 123, 155, 157, 160, 174
slip-stick behavior, 67, 68
snow, 64, 206
elastic properties, 64
fracture toughness, 190, 195, 204, 341, 375
microstructure, 32, 70, 206, 225, 237, 255, 273
porosity, 63, 200, 201, 224, 225, 247, 249
transition to firm, 64
snow and firm, 64
solidification, 30
solubility of foreign species, 11
solutes, 11
space group, 7
spallation, 278, 304, 343, 355
specimen shape, 238
splay cracks, 299
split Hopkinson pressure bar, 244
splitting, 327
stable growth, 195, 196
stable vs. unstable crack propagation, 195
stacking fault, 18, 22, 90
static approximation, 155
static recrystallization, 130, 144
static and Taylor models, 168
statistical analysis, 352
statistical dislocations, 95, 143
stiffness constants, 66
stiffness of loading frame, 237
stiff systems, 237
stored energy, 130
strain
deformation gradients, 79, 96, 155
delayed elastic strain, 103
inhomogeneities, 172
plane strain, 195, 205, 229, 371
principal, 53, 55
strain-rate tensor, 372
strain accommodation, 174
strain energy release rate, 193, 194
strain hardening, 291
strain-induced textures, 153
strain-rate fields, 159

rocks and minerals, 247, 256, 267, 272, 290, 291, 297, 303, 331
Ronne Ice Shelf, 201
rotation recrystallization, 134, 135, 171, 172
roughness, 313, 381
S1 ice, 45
growth texture, 247
S2 ice, 45, 119, 273, 274, 275
growth texture, 246
S3 ice, 45, 273
growth texture, 246
saline ice, 119, 224
salinity, 62, 217, 223, 246, 249, 262
salt-water ice, 197, 249, 326
saw-cuts, 314
scale, 386
scale effect, 3
scale independence, 387
scale independent fracture physics, 387
scale invariance, 91, 92, 93, 94, 162, 354
scaling laws, 384
scanning electron microscopy, 32
Schmid factor, 172
Schmid law, 80
Schmid tensor, 157
Schmidt projection, 166
screw dislocation, 14, 89
sea ice, 31, 43, 62, 200, 204, 224, 225, 231, 278, 297, 301, 302, 309
bend strength, 213, 224
compressive strength, 243, 270
Coulombic faults, 272, 278, 282, 314
cover, 236, 361
ductility, 223, 226
failure envelope, 275, 278, 376
fracture toughness, 190, 195, 204, 341, 375
growth, 41
linear kinematic features, 362
microstructure, 32, 30, 32, 70, 206, 225, 231, 237, 255,
273, 291
nested failure envelopes, 377
scaling laws, 384
tensile strength, 213,
thermal gradient, 336
viscous flow, 382, 384
sea salts, 39
second moments, 159
second-order model, 154, 173
second-order self-consistent method, 159
second-phases, 202
secondary creep, 103, 109, 111, 112, 113, 122, 311
self-consistent approach, 122, 155, 175
self-diffusion, 70, 123
shards, 255, 270
shear crevasses, 193
shear faults, 240, 266, 272
shear modulus, 230
SHEBA, 369, 377
faults, 371
stress states, 377, 379

Cambridge University Press
978-0-521-80620-6 - Creep and Fracture of Ice
Erland M. Schulson and Paul Duval
Index
More information
Index

strain-rate fluctuations, 172
strain-rate hardening, 218, 239, 291
strain-rate softening, 240, 243, 338
strain vectors, 287
strength of ceramics, 247
strength of ice V, 184
strength of ice VI, 184
strength of methane hydrate, 185
stress, 108, 126
concentration, 190
deviatoric stress, 109
effective shear stress, 260, 266
equivalent stress, 114
hydrostatic axis, 286,
intensity factor, 194, 229, 323
internal stress field, 77, 79, 89, 123, 164
intragranular stress, 172
lattice friction stress, 87
plane stress, 194
principal stresses, 53, 267, 274, 289, 321, 345, 381
reference resolved shear stress, 157
relaxation, 324
stress components, 194
stress concentrators, 243, 379
stress exponent, 109, 116, 124, 128, 160, 179, 183, 187
stress–strain curve, 239, 240, 252
stress tensor, 194
yield stress, 79
strike-slip faults, 368, 374
Stroh’s analysis, 230
structural defects, 373, 375
sub-boundaries, 22, 72, 228,
sub-critical crack growth, 212
sublimation, 33
substructure, 43
super-cooling, 39
superplastic flow, 112, 125
superplasticity, 226
surface defects, 73
surface diffusion coefficient, 73
surface energy, 23, 191, 206
surface roughness, 313
surfaces, 23, 73, 228
energy, 23, 191, 206
roughness, 313
tangent approach, 156, 158
tangent approximation, 154
tangent modulus, 56
Taylor model, 155, 169
Taylor orientation factor, 230
temperate glacier, 111, 139, 140, 143
temperature, 328
tensile strength, 213,
bend test, 213
Brazil test, 213,
crack-nucleation control, 229
crack-propagation control, 228
critical cracks, 229
critical grain size, 221, 222,
decohesions, 231
direct tensile test, 214
dislocation avalanches, 78, 90, 92, 94, 107, 108
dislocation pile-ups, 229,
dynamic strength, 231, 244
elastic mismatch, 229,
grain boundary sliding, 23, 102, 115, 119, 123, 125,
226, 229, 230, 304
mechanisms, 227, 261
ring test, 198, 213,
Stroh’s analysis, 230
thermal expansion mismatch, 229
vs. brine content, 223
vs. damage, 323
vs. grain size, 218
vs. growth texture, 222
vs. pre-strain, 226
vs. size, 225
vs. strain rate, 217
vs. temperature, 216
Zener’s analysis, 230
tension and compression textures, 139
terminal failure, 240, 242, 269, 282, 308, 311, 345
stress, 240, 251, 261
tertiary creep, 103, 115, 129
texture, 34, 45, 62, 201
anisotropic ice, 129, 153, 154, 156, 172,
deformation textures, 139
development, 154
enhancement factor, 129, 172, 173
glaciers, 139
growth texture, 58, 94, 201, 204, 222, 246, 247
ices, 158, 169, 172
multi-pole textures, 140
orientation distribution function, 165, 172
orientation tensor, 166
polar ice sheets, 171
preferred crystal orientation, 103
recrystallization textures, 115, 129, 139, 171
strain-induced textures, 153
strength, 166
temperate glacier, 111, 139, 140, 143
tension and compression textures, 139
thermal cracks, 212, 369
thermal expansion, 8
coefficient, 8
mismatch, 229
thermal gradient, 336
thermal mismatch, 229
thermal shocking, 196
thermal softening, 239, 291
thermal super-cooling, 43
thermodynamics, 191
thrust faults within glaciers, 292
tilt boundary, 22, 134
tilt sub-boundaries, 90
Titanic, 349
topography of Coulombic faults, 381
torsional modulus, 56, 57,
toughness, 195
transformation matrix, 56
transient creep, 160
transitional behavior, 214
transition strain rate, 239, 309, 331, 339
under compression, 324
vs. fresh-water and salt-water ice, 325
transition velocity, 341
transmission electron microscopy, 21, 32
transmission X-ray diffraction, 21
transverse isotropy, 65
triaxial compressive strength, 280, 282
triaxial high-pressure apparatus, 181
triaxial loading, 267, 270, 280
triaxial state of stress, 245, 267
triaxial strength, 270, 282, 286
triaxial test, 267
triaxial yield stress, 121
Triton, 51
true triaxial loading, 268,
twist boundary, 22, 134
unconfined ice, 237
unidirectional solidification, 41,
uniform strain-rate approximation, 155
unit cell, 6
unloading, 115
unstable growth, 196
vacancy, 10
vacancy prismatic loop, 9, 14
vibration of compliant structure, 337
viscoplastic anisotropy, 153
viscoplastic self-consistent (VPSC) model, 154
viscosity, 383
viscous flow, 382, 384
viscous-plastic mechanics, 376
Voigt’s method, 58
volume, 114
volume diffusion coefficient, 122
volumetric defects, 24
von Mises criterion, 286
vorticity, 371
VPSC model, 129, 158, 168
warm ice, 203
water, 203, 313
water ice, 1–2, 5
Weibull’s theory, 352
wing cracks, 196, 251, 252, 258, 294, 361, 366, 372
and comb cracks, 294
growth, 259
mechanics, 261
mechanism, 274
X-ray microanalysis, 32
X-ray microtomography, 32
X-ray topography, 21, 22, 31, 77, 92, 93
yield drop, 78
yield stress, 79
Young’s modulus, 56, 57, 64, 191, 207
Zener’s analysis, 230
zero-point entropy, 9