
Concurrency Verification

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Cambridge Tracts in Theoretical Computer Science 54

Editorial Board

S. Abramsky, Computer Laboratory, OxJord University
P. H. Aczel, Department oj Computer Science, University oj Manchester
J. W. de Bakker, Centrum voor Wiskunde en InJormatica, Amsterdam
Y. Gurevich, Microsqft Research
J. V. Tucker, Department oj Mathematics and Computer Science, University College oj Swansea

Titles in the series

1. G. Chaitin Algorithmic InJormation Theory
2. 1. C. Paulson Logic and Computation
3. M. Spivey Understanding Z
5. A. Ramsey Formal Methods in Artificial Intelligence
6. S. Vickers Topology via Logic
7. l-Y. Girard, Y. Lafont & P. Taylor ProoJs and Types
8. 1 Clifford Formal Semantics & Progmatics Jor Natural Language Processing
9. M. Winslett Updating Logical Databases

10. K. McEvoy & J. V. Tucker (eds) Theoretical Foundations oj VLSI Design
11. T. H. Tse A Unifying Framework Jor Structured Analysis and Design Models
12. G. Brewka Nonmonotonic Reasoning
14. S. G. Hoggar Mathematics Jor Computer Graphics
15. S. Dasgupta Design Theory and Computer Science
17. J. C. M. Baeten (ed) Applications oj Process Algebra
18. J. C. M. Baeten & w. P. Weijland Process Algebra
19. M. Manzano Extensions oj First Order Logic
21. D. A. Wolfram The Clausal Theory oj Types
22. V. Stoltenberg-Hansen, I. Lindstrom & E. Griffor Mathematical Theory oj Domains
23. E.-R. Olderog Nets, Terms and Formulas
26. P. D. Mosses Action Semantics
27. W. H. Hesselink Programs, Recursion and Unbounded Choice
28. P. Padawitz Deductive and Declarative Programming
29. P. Glirdenfors (ed) BelieJ Revision
30. M. Anthony & N. Biggs Computational Learning Theory
31. T. F. Melham Higher Order Logic and Hardware Verification
32. R. 1. Carpenter The Logic oj Typed Feature Structures
33. E. G. Manes Predicate TransJormer Semantics
34. F. Nielson & H. R. Nielson Two Level Functional Languages
35. 1. Feijs & H. J onkers Formal Specification and Design
36. S. Mauw & G. J. VeItink (eds) Algebraic Specification oj Communication Protocols
37. V. Stavridou Formal Methods in Circuit Design
38. N. Shankar Metamathematics, Machines and Gode/'s ProoJ
39. 1 B. Paris The Uncertain Reasoner's Companion
40. J. Dessel & J. Esparza Free Choice Petri Nets
41. l-J. Ch. Meyer & W. van der Hoek Epistemic Logic Jor AI and Computer Science
42. 1 R. Hindley Basic Simple Type Theory
43. A. Troelstra & H. Schwichtenberg Basic ProoJ Theory
44. J. Barwise & J. Seligman InJormation Flow
45. A. Asperti & S. Guerrini The Optimal Implementation oj Functional Programming Languages
46. R. M. Amadio & P.-L. Curien Domains and Lambda-Calculi
47. W.-P. de Roever & K. Engelhardt Data Refinement
48. H. Kleine Biining & T. Lettman Propositional Logic
49. 1. Novak & A. Gibbons Hybrid Graph Theory and Network Analysis
51. H. Simmons Derivation and Computation
52. A. S. Troelstra & H. Schwictenberg Basic ProoJ Theory (Second Edition)
53. P. Blackburn, M. de Rijke & Y. Venema Modal Logic
54. W.-P. de Roever, F. de Boer, U. Hannemann, 1 Hooman, Y. Lakhnech, M. Poe! & J. Zwiers

Concurrency Verification

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Concurrency Verification
Introduction to Compositional and

Noncompositional Methods

Willem-Paul de Roever

Frank de Boer

Ulrich Hannemann

Jozef Hooman

Yassine Lakhnech

Mannes Poel

Job Zwiers

!~'"'' CAMBRIDGE
::: UNIVERSITY PRESS

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge cb2 8ru, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521806084

© Cambridge University Press 2001

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2001

A catalogue record for this publication is available from the British Library

[Insert Library of Congress data if available from input material]

isbn 978-0-521-80608-4 Hardback
isbn 978-0-521-16932-5 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in

this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate. Information regarding prices, travel

timetables, and other factual information given in this work is correct at
the time of first printing but Cambridge University Press does not guarantee

the accuracy of such information thereafter.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Contents

Preface page ix

Part I: Introduction and Overview 1

1 Introduction 2

1.1 Central Questions 2
1.2 Structure of this Chapter 2
1.3 Basic Concepts of Concurrency 3
1.4 Why Concurrent Programs Should be Proved Correct 8
1.5 The Approach of this Book 33
1.6 Compositionality 46
1.7 From Noncomp. to Compo Proof Methods - a historical perspective 62

Part II: The Inductive Assertion Method 71

2 Floyd's Inductive Assertion Method for Transition Diagrams 72
2.1 Objectives of Part II 72
2.2 Structure of this Chapter 75
2.3 Sequential Transition Diagrams and Systems 76
2.4 Specification and Correctness Statements 82
2.5 A Proof Method for Partial Correctness 88
2.6 Soundness 92
2.7 Semantic Completeness of the Inductive Assertion Method 93
2.8 Proving Convergence 98
2.9 Proving Absence of Runtime Errors 104
2.10 Historical Notes 111

3 The Inductive Assertion Method for Shared-Variable
Concurrency 119

3.1 Objective and Structure of this Chapter 119
3.2 A Characterisation of Concurrent Execution 121

v

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

VI Contents

3.3 Is this Characterisation of Concurrent Execution Justified? 132

3.4 The Generalisation of Floyd's Approach to Nondeterministic

Interleavings 134

3.5 Concurrent Transition Systems with Shared Variables 137

3.6 Proving Convergence for Shared-Variable Concurrency 188

3.7 Proving Deadlock Freedom 203

3.8 Proving Absence of Runtime Errors 206

3.9 Historical Notes 208

4 The Inductive Assertion Method for Synchronous Message

Passing 221
4.1 Objective and Introduction 221

4.2 Structure of this Chapter 223

4.3 Syntax and Semantics of Synchronous Transition Diagrams 223

4.4 Proof Methods for Partial Correctness 227

4.5 Semantic Completeness 249

4.6 Technical Note: Modifications Towards Compositionality 264

4.7 A Modular Method for Proving Convergence 269

4.8 Verifying Deadlock Freedom 277

4.9 Proving Absence of Runtime Errors 279

4.10 Historical Notes 282

5 Expressibility and Relative Completeness 291

5.1 Objective 291

5.2 Structure of this Chapter 292

5.3 Syntactic Notions 292

5.4 Partial Correctness of Syntactic Transition Diagrams 298

5.5 Relative Completeness of Floyd's Inductive Assertion Method 300

5.6 Relative Completeness of the Method of Owicki & Gries 309

5.7 Relative Completeness of the Method of Apt, Francez & de Roever312

5.8 Historical Notes 316

Picture Gallery 319

6

6.1

6.2

6.3

6.4

6.5

Part III: Compositional Methods based on Assertion Networks 353

Introduction to Compositional Reasoning

Motivation

Introduction to Part III and to this Chapter
Assume-Guarantee-based Reasoning

Assumption-Commitment-based Reasoning

Rely-Guarantee-based Reasoning

354

354

356
359

361

363

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Contents Vll

7 Compositional Proof Methods: Synchronous Message Passing 367
7.1 Objective and Introduction 367
7.2 Structure of the Chapter 368
7.3 Top-level Synchronous Message Passing 369
7.4 A Compositional Proof Method for Nested Parallelism 379
7.5 Assumption-Commitment -based Reasoning 397
7.6 Historical Notes 429

8 Compositional Proof Methods: Shared-Variable Concurrency 438
8.1 Introduction and Overview 438
8.2 Concurrent Transition Diagrams 439
8.3 Top-Level Shared-Variable Concurrency 440
8.4 The Rely-Guarantee Method 447
8.5 Historical Notes 479

Part IV: Hoare Logic 487

9 A Proof System for Sequential Programs Using Hoare Triples 488
9.1 Introduction and Overview of Hoare Logics 488
9.2 Structure of this Chapter 497
9.3 Syntax and Informal Meaning of GCL + Programs 498
9.4 Semantics of GCL + 501
9.5 A Proof System for GCL + Programs 506
9.6 Soundness and Relative Completeness 511
9.7 Proof Outlines 517
9.8 Alternative Definitions of Proof Outlines 521
9.9 Examples of Verification during Program Development 522
9.10 Historical Notes 526

10 A Hoare Logic for Shared-Variable Concurrency 531
10.1 Introduction and Overview 531
10.2 Syntax and Informal Meaning of SVL Programs 532
10.3 Semantics of SVL + 537
10.4 A Proof System for SVL Programs 540
10.5 An Extended Example: Concurrent Garbage Collection 563
10.6 Completeness of the Owicki & Gries Method 584

11 A Hoare Logic for Synchronous Message Passing 600
11.1 Structure of this Chapter 600
11.2 Syntax and Informal Meaning of DML Programs 601
11.3 Semantics of DML 606
11.4 A Hoare Logic for Synchronous Message Passing 608
11.5 Soundness and Relative Completeness of this Hoare Logic 630

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

V111 Contents

11.6 Technical Note: Modifications Towards Compositionality 638

Part V: Layered Design

12 Transformational Design and Hoare Logic
12.1 Introduction and Overview
12.2 Structure of this Chapter
12.3 Syntax and Informal Meaning of SVL ++ Programs
12.4 The Semantics of SVL ++ Programs
12.5 Partial Orders and Temporal Logic
12.6 The Communication-Closed-Layers Laws
12.7 The Two-Phase Commit Protocol
12.8 Assertion-Based Program Transformations
12.9 Loop Distribution
12.10 Set-partitioning Revisited
12.11 Historical Notes

Bibliography

Glossary of Symbols

Index

653

654
654
660
660
662
663
676
688
694
696
700
704

710

747

761

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Preface

The subject of this work is the state-based verification of concurrent programs.
It is published in two volumes. The leading theme of these volumes is the
development of so-called compositional techniques for the verification of con

current programs from noncom positional techniques. There are three reasons

for this.
First of all, compositional verification techniques reduce the verification of

large programs to the independent verification of their parts. Consequently,

compositional verification represents one of the hopeful directions for the
verification of really large programs.

Secondly, compositional techniques for the verification of concurrent pro
grams originate from noncom positional techniques, and can, therefore, be

better understood once a firm grasp of the latter has been obtained.
Thirdly, compositional techniques for program verification are well suited to

top-down program development. However, there are many classes of programs
for which noncompositional techniques lead to shorter and clearer proofs.
Therefore, when faced with the difficult task of proving concurrent programs
correct, one needs to master both kinds of techniques.

This explains why in the two volumes both noncompositional and composi
tional techniques are developed.

This volume offers a self-contained presentation from first principles of the
main techniques for the state-based verification of concurrent programs, fo
cussing on proofs of partial correctness, in variance properties and termination.
It presents a mathematical semantically-oriented theory for the verification of
concurrent programs, which is based on Floyd's inductive assertion method.

It covers noncompositional as well as compositional methods, relating Floyd's

method to the classical noncompositional Hoare logics for shared-variable
concurrency and synchronous message passing, and presents an in-depth anal
ysis of the two main compositional proof methods which are currently used:

ix

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

x Preface

Misra & Chandy's assumption-commitment paradigm for synchronous message

passing, and Jones' rely-guarantee paradigm for shared-variable concurrency.

Also a family of so-called communication-closed-layer transformation principles
is developed. Whenever applicable, these transformation principles clarify the

structure of correctness proofs considerably. This especially holds for certain
classes of network protocols, e.g., those described in [Ray88].

The companion volume, Compositional Theory of Concurrency, presents a
self-contained description of the main compositional Hoare logics for reactive
systems as well as for real-time distributed message passing, for both syn
chronous and asynchronous communication. It illustrates these compositional
techniques by correctness proofs for a number of industrially-inspired medium

size applications, and shows how to obtain machine support for the application
of these techniques using the Prototype Verification System PVS.

The material contained in the two volumes offers an integrated account of

the subject matter of around 15 dissertations and approximately 100 papers,
and leads up to state-of-the-art research in the area of compositional methods

for concurrent program verification.

Since many themes in the two volumes have not been discussed before in
any textbook, we first list the new ones below.

The leading new themes of this volume are:

1. A clear separation between the mathematical theory of program verifica
tion, which is semantic in nature, and syntactically-formulated axiomatic
approaches to program verification.

2. A detailed account of the development from noncompositional to com
positional proof methods for concurrent program verification; this de
velopment is part of the above-mentioned mathematical theory, and
includes comprehensive accounts of the assumption-commitment and
rely-guarantee paradigms.

3. Partial-order based transformation principles for concurrency, constitut
ing the communication-closed-layers paradigm.

The leading themes of the companion volume are:

4. Compositional Hoare logics for reactive and distributed real-time sys

tems.
5. Applications of these compositional techniques to the verification of hy

brid systems, arbitration and atomic broadcast protocols, control systems

for chemical batch processing, and a stable storage medium.
6. Electronic tool support for the correct construction of distributed real

time systems using the Prototype Verification System PVS.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Preface Xl

Next, each of these themes is briefly discussed.

1. The mathematical theory of concurrency developed in this volume is based
on Floyd's inductive assertion method. The main advantages we see in such a
mathematical theory are:

(i) it highlights essential concepts without syntactic overhead,

(ii) most semantic steps can be directly verified by dedicated tool support,

and

(iii) it allows simple soundness and semantic completeness proofs.

We often mix Floyd's method and Hoare logic, for instance when developing

a compositional theory of concurrency in a context of inductive assertions.
Then inductive-assertion-based methods for the sequential parts of a pro
gram are combined with compositional proof rules for deducing properties
of the parallel composition of these parts. For all these methods and logics
rigorous proofs of their soundness and (semantic) completeness are given,!
together with many examples of their application.

2. That the hierarchical decomposition of programs into smaller ones is imper

ative to master the complexity of large programs is now generally recognised.
In 1965 Edsger W. Dijkstra formulated this principle [Dij65b], which consists

of reducing the development and verification problem of a program to that
of its constituent (i.e., top-level) subprograms by starting from its top-level
specification and verifying that specification on the basis of the specifications
of those subprograms. The development and verification of the latter then
proceed in essentially the same way, until no further decomposition is nec
essary.

Essential for this strategy is that the specification of a large program is
verified on the basis of the specifications of its constituent subprograms, only,
i.e., without any knowledge of the interior construction of those subprograms
[Zwi89]. And this is the principle of compositional program verification.

To make this verification strategy possible, systems and their parts are
specified using predicates over only their observable behaviour. Such spec
ifications are called assertional. Consequently, assertional specifications of
the constituent components of a program never depend on any additional
knowledge about the underlying execution mechanism of these components.

To be precise, compositional verification that a program P satisfies an
assertional specification cp involves two kinds of proof techniques:

I In the experience of the senior author literally every alleged proof method for concur
rency, which reached his desk and had not been proven complete, turned out to be
incomplete, and every such proof method, which had not been proven sound, turned out
to be unsound.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

XlI Preface

(i) Basic techniques for proving that a program P, which is not decom
posed any further, satisfies qJ.

(ii) Compositional proof techniques to handle the case that P is composed
of parts PI, ... ,Pn, i.e., P = oplang(PI,'" ,Pn), n ~ 1, with oplang

some operator of the programming language.

For the latter kind of program operators we define compositional proof
rules, i.e., logical inference rules of the form:

"From PI satisfies qJI and ... Pn satisfies qJn infer P satisfies qJ." [Zwi89]

The characteristic feature of a compositional proof rule is its so-called
compositional proof (reduction) step. This step consists essentially of a proof
that qJ follows from some combination of qJI, ... ,qJn' This proof amounts
to checking the validity of a finite number of implications involving the

predicates occurring in CPI, ... ,qJn and qJ, and therefore does not involve any
representation of Pi at all !

Observe that the latter is imposed by the condition "without any knowl
edge of the interior construction of those subprograms" in the formulation of
compositional program verification.

Consequently, a compositional proof rule for a program operator oplang

(PI,'" ,Pn) has, essentially, the following form:

for i = 1, ... ,n, Pi satisfies qJi,
opspec(qJl,'" ,qJn,qJ)

Oplang (PI, ... ,Pn) satisfies qJ,

where qJI, ... ,qJn, qJ express assertional specifications, and opspec (qJI,'" ,qJn)
expresses a compositional proof (reduction) step.

Apart from rules such as the above, one needs additional proof rules to
adapt one specification to another. Since these rules do not depend on the
structure of the actual programs involved, they reduce to the case n = 1 in
the formulation of compositional proof rules above, and can, therefore, also
be regarded as compositional proof rules.

Now a compositional proof method for establishing program correctness
consists of basic rules, dealing with constructs which are not decomposed
any further, and compositional proof rules, which deal with constructs which
are decomposed, and with adaptation of specifications.

In the present volume this compositional theory is formulated as an exten
sion of Floyd's inductive assertion method, and includes the first textbook
treatments of the assumption-commitment (A-C) and rely-guarantee (R-G)
paradigms. In general, compositional proof techniques have the advantage

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Prelace X111

that they allow a systematic top-down development of programs from their

specification, which is correct by construction, as illustrated by many exam

ples in this and in the companion volumes. Moreover, the A-C and R-G

paradigms allow for the development of open systems, i.e., systems whose

environment is not yet known, but possibly specified; this is also illustrated.

Another advantage of compositional techniques is that as soon as tradi

tional techniques suffice to establish the correctness of a component of a

process P, these techniques can be "plugged into" the compositional proof

strategy described above. For instance, in case the components of P can be

successfully checked using automatic verification tools (e.g., for model check

ing), the top-level compositional verification of P only requires, additionally,

a number of compositional proof steps (in the above sense) to be carried

out [KL93, DJS95]. If applicable, this is a very practical way of formally

verifying really complex systems.

3. Partial-order-based transformation principles for concurrency unify such

different theories as, e.g.,

(i) Lipton's theory of left and right movers for reasoning about synchro

nisation primitives [Lip75],

(ii) Elrad & Francez' principle of "Communication-Closed Layers" for

transforming distributed programs [EF82], and

(iii) Mazurkiewicz' trace theory [Maz89], one of the first satisfactory

partial-order theories for reasoning about truly concurrent systems.

These transformation principles embody the point of view that, in order to

explain and clarify how a network of processes functions, as opposed to

its mere verification, the structure of its correctness proof should reflect the

structure of its original design process rather than that of the resulting final

program. These principles for explaining and clarifying complex network

protocols have been demonstrated on the basis of many correctness proofs,

notably for Gallager, Humblet & Spira's distributed spanning-tree algorithm

[GHS83].

4. The compositional Hoare logics for reactive systems discussed in the com

panion volume include, amongst others, Hoare logics for Misra & Chandy's

assumption-commitment formalism [MC81] for distributed communication,

Jones' rely-guarantee formalism [Jon83] for shared-variable concurrency,

and Pandya & Joseph's presupposition-affirmation formalism [PJ91], which

are all proved to be sound (completeness proofs are only discussed in this

volume).

Moreover, a logic is presented for reasoning compositionally about dis

tributed real-time reactive systems, which is subsequently applied and pro-

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

XIV Preface

vided with PVS-based machine support, as described in the second half of
the companion volume.

5. In the last three chapters of that volume the emphasis is on illustrating the
systematic top-down derivation of distributed programs from their specifi
cations. The resulting programs are correct by construction. This process
of program derivation is therefore called the verify-while-develop paradigm.

This paradigm can be regarded as the "inversion" of a compositional proof
method, in which a development step coincides with the application of a
compositional rule in which its conclusion and hypotheses are interchanged.
For, as a consequence of using compositional techniques, each compositional
proof (reduction) step (as defined above) can be viewed as the verification of

a design step, which only involves reasoning about (the assertional specifi
cation of) that particular step and does not involve any future design steps.
This explains why in the above definition of compositional proof techniques
we stipulated that in a compositional proof step "no additional knowledge
about the underlying execution mechanism of the relevant parts is allowed".
For, without that clause, reasoning about a particular design step might
have involved reasoning about future design steps, and we want these two
stages to be independent. This also explains why compositional techniques
can be viewed as the proof-theoretical analogue of hierarchically-structured
program development.

6. A compositional formalism is developed for specifying distributed real
time systems, in which program constructs and assertional specifications are
combined within a single "mixed" framework. This formalism is formally
defined within PVS. The resulting machine-checked theory supports system
atic top-down derivation of distributed algorithms, as explained above, and
is illustrated by the correct construction of a distributed real-time control
system for chemical batch processing.

This does not imply that machine-checked proofs are free from error. E.g.,
an error might be introduced by the use of inconsistent axioms, a bug in
the proof-checker or a bug in the underlying hardware. Yet the probability
of such errors leading to the machine outputting that a faulty system is
correct, is small when compared with hand-checked proofs, and decreases
as proof-checkers become more experienced.

Occasionally we refer to properties which in general cannot be proved
in a compositional set-up, such as termination properties of semaphores
[Pnu77, Pnu8S]. These do not constitute the main focus of our work, and are,
amongst others, discussed in [Fra86] and Manna & Pnueli's manuscript for the
Progress book [MP99]. These properties depend on assumptions of so-called

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Preface xv

weak and strong fairness, which in essence imply termination of the constructs

involved, provided corresponding fairness properties of the underlying schedul

ing mechanisms are satisfied. As such, weak and strong fairnesses are abstrac

tions of real-time properties of these mechanisms, since they do not state when

a construct is executed. Since for practical applications the execution speed

of such constructs obviously matters, the principal focus of our companion
volume is on applications of compositional theories for real-time concurrency.

The structure of this volume

This volume consists of five parts.

Part I consists of Chapter 1. In this chapter such central questions are

answered as:

• How important is verification for the development of correct software?
• Why does one need to give correctness proofs for concurrent programs?

Must these be formal? Or even machine checked?

• Which style of proof is more appropriate, a compositional or a noncom po
sitional one?

In order to answer these questions, three concurrent algorithms are discussed,
in increasing order of difficulty: Peterson's mutual exclusion algorithm, a
concurrent garbage collector due to Dijkstra, Lamport and others, and a

distributed mutual-exclusion algorithm due to Szymanski. This discussion

leads up to the conclusion of Dijkstra that "To believe that correct solutions
of such problems can be found without a very careful justification is optimism on
the verge of foolishness."

Next the approach taken in this volume is explained. It is a state-based,
property-oriented, dual-language, and semantically-oriented approach. The
concept of compositionality is explained in relation to the verify-while-develop
paradigm, machine verification, and the problem how to specify program mod
ules; also the complexity of compositional reasoning as well as its advantages
and disadvantages are discussed. Chapter 1 ends with a short account of the
history of the development from noncom positional to compositional methods
for program verification.

Part II consists of Chapters 2-5.
In Chapters 2, 3 and 4 semantical formulations are given of Floyd's inductive

assertion method for, respectively, a simple model of sequential programming,
that of sequential transition systems, for shared-variable concurrency in the
style of Owicki & Gries, and for synchronous message passing in the styles of

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

XVI Preface

Apt, Francez & de Roever and of Levin & Gries. This set-up of interpreting
the inductive assertion method semantically allows for a simple and intuitive
formulation of program verification methods, which is based on the systematic
generation of so-called verification conditions. These are the basic mathematical
properties of the underlying state spaces of a program that should be satisfied
for that program to be correct. Therefore, this approach leads to the formu
lation of a mathematical basis for state-based program verification. The focus
here is on proving partial correctness, absence of deadlock, absence of runtime
errors, and termination properties. All proposed program verification methods
are proved to be sound and complete. The examples discussed include the cor
rectness proofs for various mutual-exclusion algorithms, amongst others, that

of Szymanski (discussed in Chapter 1) and Lamport's ticket algorithm, and a
correctness proof for Francez & Rodeh's distributed greatest-common-divisor
algorithm.

In Chapters 2-4 the kind of completeness investigated is that of semantic
completeness. In semantic completeness proofs one disregards the expressibility
of predicates in any formal language, and only focusses on their mathematical
content, i.e., one regards them as boolean functions. Chapter 5 investigates
the expressibility of these boolean functions in the language of first-order
predicate logic over the standard model of the natural numbers, establishing

that all boolean functions which have been used within the verification methods
discussed in Chapters 2-4 can be expressed in this logic. This leads to so-called
relatively-complete syntactical formulations of the main verification methods
discussed, in which all valid properties of the natural numbers are assumed to
be axioms. These formulations are needed for establishing relative completeness
of the Hoare logics discussed in later chapters.

Part III consists of Chapters 6-S. It discusses various compositional proof
methods for the verification of concurrent programs, and culminates in com
prehensive accounts of Misra & Chandy's assumption-commitment paradigm
(in order to reason compositionally about synchronous message passing) and
Jones' rely-guarantee paradigm (for reasoning compositionally about shared
variable concurrency) [MCS1, JonSl, Jon83] in, respectively, Chapters 7 and 8.
Chapter 6 contains a general introduction to the subject of compositionality
and concurrency, and in particular, to the A-C and R-G paradigms. For all
these methods soundness and (semantic) completeness proofs are given. The
examples discussed include a top-down derivation of a distributed priority
queue, and correctness of mutual-exclusion as well as array-search algorithms.

Part IV consists of Chapters 9-11, and discusses Hoare logics for the
programming models discussed in Part II. Soundness and relative completeness

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Preface XVll

of these logics is deduced from the corresponding soundness and semantic
completeness results from Part II, in combination with the expressibility results

from Chapter 5.

In Chapter 9 Hoare logic is presented as a structured syntactic formulation

of the various inductive assertion methods formulated in Part II, reflecting

the algebraic structure of the programs whose proof is given. In particular,

the semantics of a program is defined as the semantics of its corresponding
transition system; therefore, programs can be regarded as a structured notation
for transition systems. Moreover, for every program operator we introduce
within the inductive assertion method an operator upon proofs such that the
proof of a program displays the same structure as the program itself. As a
consequence, a correctness proof of a program in Hoare logic corresponds to a
proof using the inductive assertion method for its associated transition system,
and vice versa, with the added difference that a proof in Hoare logic now

reflects the algebraic structure of the program in question. This leads to an

identification of concepts which, until now, were regarded as being different.

In Chapter 10 a so-called proof-outline logic is presented for nested shared

variable concurrency. A proof outline is a systematic annotation of the control
points of a program with assertions, which satisfy the verification conditions
generated by the inductive assertion method. Because proof outlines annotate
program text, they utilise additional information about the underlying execu
tion mechanism, and therefore any logic based on them is noncompositional.
They satisfy the following property: whenever the assertions associated with the
initial control points of a (concurrent) program are satisfied, and that program

is executed, the states arising during its computation satisfy the assertions an
notating the control points encountered. Proof-outline logics therefore capture
properties of intermediate states arising during program execution. Conse
quently, they are appropriate for proving correctness of concurrent programs,
because the interaction between the processes of such programs depends on the
values of their intermediate states. As illustration of these concepts, correctness
is proved of the concurrent garbage collector from Chapter 1.

In Chapter 11 we present the noncompositional Hoare logics of Apt, Francez
& de Roever and of Levin & Gries for synchronous message passing. The logic
of the latter is applied in order to derive a compositional parallel composition
rule for synchronous message passing. The examples include a correctness
proof of a set-partitioning algorithm.

The last part of this volume is Part v. It consists of Chapter 12, and

introduces various communication-closed-layer transformation principles for
concurrency (both for shared-variable concurrency and for a simple form of

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

XV111 Preface

asynchronous message passing). As already stated, these transformation prin

ciples express the point of view that, in order to clarify how a network of

distributed processes functions, the structure of its correctness proof should re

flect the structure of its original design process rather than that of the resulting
final program. Whenever applicable, these principles lead to a much clearer
proof structure which has the additional advantage of clarifying the resulting
network algorithm. This is illustrated on the basis of correctness proofs for
a running example in this volume, that of a simple set-partitioning algorithm,
and for the two-phase-commit protocol.

The structure of the companion volume

Next we give a brief description of the structure of our companion volume.
The latter can be studied independently from this volume.

The companion volume consists of three parts: Part I presents a concise self
contained introduction to Hoare logics for sequential programming, shared
variable concurrency and synchronous message passing. In Part II various
compositional Hoare logics for concurrency are presented, and in Part III a
number of industrially-inspired medium-size applications are described togeth
er with techniques for machine support for checking compositional verification
principles for concurrency using PVS.

Its principal focus is the illustration through many examples of compositional
techniques in correctness proofs for concurrent programs. As a result, no
attention is paid to completeness proofs (the latter being a focus of the
present volume). However, we still give soundness proofs to explain why these
techniques work.

Part I consists of Chapters 1-3, and discusses Hoare logics for a simple pro
gramming language for guarded commands, and its classical noncompositional
extensions to shared-variable concurrency and synchronous message passing.

Part II consists of Chapters 4-7.
Chapter 4 presents a compositional Hoare logic for proving partial correct

ness of programs which communicate through synchronous message passing
and feature nested parallelism. The soundness proof for this logic illustrates the

problems which must be solved to obtain such compositional Hoare logics in

general, and serves as a contrast with its considerably simpler seman tical char
acterisation within an inductive-assertion-style framework which is presented
in Chapter 7 of this volume.

Chapter 5 presents various compositional Hoare logics for reactive programs
which communicate through synchronous message passing. The purpose of

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Preface XIX

reactive programs is primarily to maintain an ongoing relationship with the
environment, rather than to produce a final value upon termination [HP85].
These Hoare logics are variants of:

(i) Misra & Chandy's assumption-commitment and Pandya & Joseph's
presupposition-affirmation formalisms, and

(ii) so-called trace-invariant logics.

In these logics the communication interface of a process is specified using
invariants over the communication histories of that process. The focus here is
on proving both invariance properties, such as deadlock freedom, and certain
progress properties, such as chatter freedom and divergence freedom, which
can be proved compositionally. Chatter freedom ensures that the number of
consecutive communications in a computation is finite, whereas divergence
freedom ensures finiteness of the number of consecutive internal actions. In
case the relation between an action and its resulting reaction within a reactive
program is expressed by execution of a loop body, it is important that this loop
body terminates. To prove this, establishing chatter and divergence freedom of
that loop body are important, because together these properties imply that no
infinite computations are generated - this is called weak total correctness. Once
the latter has been proved, establishing total correctness requires additional
deadlock (and runtime-error) freedom proofs.

As usual, soundness proofs are provided.
Chapter 6 presents a sound rely-guarantee formalism for reasoning compo

sitionally about shared-variable concurrency.
Semantic versions of these proof systems for establishing partial correctness

are proved semantically complete in this volume.
In Chapter 7 an assumption-commitment-style Hoare logic is developed

for reasoning compositionally about real-time synchronous and asynchronous
message passing.

Part III consists of Chapters 8-10, and has been discussed under points 5
and 6 on page xiv.

Chapter 8 applies the compositional proof system for distributed real-time
of Chapter 7 to hybrid systems and bus protocols. In particular, a system
for chemical batch processing is derived, as well as a distributed real-time
arbitration protocol inspired by the IEEE 896 Futurebus specification.

In Chapter 9:

• a mixed formalism is defined in which programs and specifications are
combined to a unified framework,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

xx Preface

• subsequently, this mixed formalism is formulated inside PVS (for Prototype

Verification System) [ORS92], and

• applied to the machine-supported verification of the chemical batch process

ing system from Chapter 8, and a membership protocol.

Chapter 10 extends the formalism of Chapter 7 for reasoning compositionally

about distributed real-time to fault tolerance. In particular, a correctness proof

is given for the reliable storage of data, called stable storage, which uses

multiple disks.

Instructions for classroom use

The material in these textbooks has been developed and tried out during

classroom use for over 10 years in the Netherlands and Germany: at the

Eindhoven University of Technology, at the University of Utrecht, and at the

Christian-Albrechts University at Kiel. The courses given on their basis vary

from quarter courses of 18 hours duration to semester courses of up to 52

hours duration, and include numerous shorter compact courses given at various

schools. Outlines of possible courses are discussed below, using the chapter

dependencies given in Figures 0.1 and 0.2.

/1.6-- 1.8

~II.6~
/I.3~ /LlO--Ll2

Ll -- 1.2 ~ / 1.5 -- 1.9 '\.. / II.8

1.4 ~ • 1.11 -I1.~=_::.9' 7 ~ 11.9

1.6 -- I.7 II.10

Fig. 0.1. Chapter dependencies: 1.j refers to Chapter j of this volume, whereas
ILk refers to Chapter k of the companion volume.

/II.8

ILl -- IL2 ~ II.3 -- IL~:=-::!,L7 ~ IL9

IL6 ILlO

Fig. 0.2. Chapter dependencies for a course exclusively based on the companion
volume.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

Preface XXI

1. An 1S-hours introductory course on the mathematical foundations of

program verification, covering Chapters 1.2, 1.3, 1.4 and 1.9 (possibly

dropping the sections on deadlock-freedom, runtime-error freedom and

termination proofs).
2. A one-semester course on the mathematical foundations of composi

tional program verification, covering Parts I, II and III of this volume.

3. A one-semester course on the verification of programs communicating

via shared variables, covering Sections 2-6 of Chapter 1.1, and Chapters

1.2, 1.3, (1.5), 1.9, 1.10, 1.12 and/or 11.6, discussing Chapter 1.5 only in

the exercise sessions.
4. A one-semester course on the verification of distributed message passing

programs, covering Sections 2-5 of Chapter 1.1, and Chapters 1.2, 1.4,

(1.5), 1.9, 1.11, II.4 and 11.5, discussing Chapter 1.5 only in the exercise

sessions.
5. A course on compositional logics for program verification, exclusively

based on the companion volume (which can be studied independently).

6. A 52-hours course on verification of concurrency, covering this volume

and Chapters 11.4, 11.5 and 11.6, with or without Chapters 1.5 or 1.12.

Corrections

It is inevitable that these books contain errors. Please be so kind as to e-mail any

errors or remarks to bkmaiI2@informatik.uni-kiel.de. A list with corrections

can be found under: http://www.informatik.uni-kiel.de/inf/deRoever/ .

Technical Notes

Some sections are called technical notes; these can be skipped upon first
reading, and are aimed at the already technically-skilled reader.

Acknowledgements

This book contains pictures of many researchers whose work is discussed. We
thank them for their permission to publish these, and also those people who
provided these pictures. In particular, we are grateful to Manfred Broy for
putting his picture archive at our disposal; Michael van Emde Boas for his
photograph of Peter van Emde Boas and Theo Janssen; Peter van Emde Boas
for his shots of Edsger W. Dijkstra and David Park; Sean Floyd for helping
us to obtain pictures of his father Robert W. Floyd; Gerhard Pfeifer for his
pictures of fiying cranes; Henk Thomas, the photographer of Folia, the weekly

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

XXll Preface

of the University of Amsterdam, for his picture of Peter van Emde Boas;
the editorial staff of this newspaper for the permission to publish it; and the

University of Jena for its picture of Gottlob Frege.

David Tranah and the helpful staff at Cambridge University Press deserve

our gratitude for helping us improve and, finally, publish this book. In

particular, we owe special thanks to Keith Westmoreland for his careful copy
editing and Zoe Naylor for managing to accommodate our request concerning

the cover design.
We would like to thank our students and colleagues, especially, Erika Abra

ham-Mumm, Henning Arndt, Roy Bartsch, Kai Baukus, Steve Brooks, Pierre
Colette, Antonio Cau, Jaco de Bakker, Edsger W. Dijkstra, Michael Felsberg,
Christian Gebken, Oliver Granert, Denise Hodgeson-Mockel, Ralf Huuck,
Lasse Kliemann, Lars Kiihne, Marcel Kyas, Ben Lukoschus, Jan Lukoschus,

Helge Marquardt, Oliver Matz, Jan Meyer, Paritosh Pandya, Jan Paul, Amir

Pnueli, Lasse Rempe, Sven Riesenberg, Fred Schneider, Markus Schneider,

Carsten Scholz, Dirk Scholz, Natarajan Shankar, Michael Siegel, Karsten

Stahl, Anne Strailner, Jan Vianen, Marcus Wieschalla, and Andreas Wortmann

for their help and interest, without which writing this book would have been
impossible.

We especially thank Ben Lukoschus, without whose TEXpertise the different
parts of this book would never have been integrated into a polished monograph
with a uniform typography.

Willem-Paul's special thanks go towards his wife Corinne for her professional
advice and for creating such a convivial and stimulating atmosphere when
receiving his colleagues at home.

Writing this book would have been impossible without the love, support,
and understanding of our partners and children during the many years we have
been working on it, and without the engagement and support of our teachers.
We dedicate this book to all of them.

Christian-Albrechts-Universitat zu Kiel Willem-Paul de Roever
Rijksuniversiteit Utrecht Frank de Boer
Katholieke Universiteit Nijmegen Ulrich Hannemann
Katholieke Universiteit Nijmegen Jozef Hooman
Universite Joseph Fourier, Grenoble Yassine Lakhnech

Universiteit Twente Mannes Poel
Universiteit Twente Job Zwiers

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9780521806084:

