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Preface 

The subject of this work is the state-based verification of concurrent programs. 
It is published in two volumes. The leading theme of these volumes is the 
development of so-called compositional techniques for the verification of con

current programs from noncom positional techniques. There are three reasons 

for this. 
First of all, compositional verification techniques reduce the verification of 

large programs to the independent verification of their parts. Consequently, 

compositional verification represents one of the hopeful directions for the 
verification of really large programs. 

Secondly, compositional techniques for the verification of concurrent pro
grams originate from noncom positional techniques, and can, therefore, be 

better understood once a firm grasp of the latter has been obtained. 
Thirdly, compositional techniques for program verification are well suited to 

top-down program development. However, there are many classes of programs 
for which noncompositional techniques lead to shorter and clearer proofs. 
Therefore, when faced with the difficult task of proving concurrent programs 
correct, one needs to master both kinds of techniques. 

This explains why in the two volumes both noncompositional and composi
tional techniques are developed. 

This volume offers a self-contained presentation from first principles of the 
main techniques for the state-based verification of concurrent programs, fo
cussing on proofs of partial correctness, in variance properties and termination. 
It presents a mathematical semantically-oriented theory for the verification of 
concurrent programs, which is based on Floyd's inductive assertion method. 

It covers noncompositional as well as compositional methods, relating Floyd's 

method to the classical noncompositional Hoare logics for shared-variable 
concurrency and synchronous message passing, and presents an in-depth anal
ysis of the two main compositional proof methods which are currently used: 

ix 
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x Preface 

Misra & Chandy's assumption-commitment paradigm for synchronous message 

passing, and Jones' rely-guarantee paradigm for shared-variable concurrency. 

Also a family of so-called communication-closed-layer transformation principles 
is developed. Whenever applicable, these transformation principles clarify the 

structure of correctness proofs considerably. This especially holds for certain 
classes of network protocols, e.g., those described in [Ray88]. 

The companion volume, Compositional Theory of Concurrency, presents a 
self-contained description of the main compositional Hoare logics for reactive 
systems as well as for real-time distributed message passing, for both syn
chronous and asynchronous communication. It illustrates these compositional 
techniques by correctness proofs for a number of industrially-inspired medium

size applications, and shows how to obtain machine support for the application 
of these techniques using the Prototype Verification System PVS. 

The material contained in the two volumes offers an integrated account of 

the subject matter of around 15 dissertations and approximately 100 papers, 
and leads up to state-of-the-art research in the area of compositional methods 

for concurrent program verification. 

Since many themes in the two volumes have not been discussed before in 
any textbook, we first list the new ones below. 

The leading new themes of this volume are: 

1. A clear separation between the mathematical theory of program verifica
tion, which is semantic in nature, and syntactically-formulated axiomatic 
approaches to program verification. 

2. A detailed account of the development from noncompositional to com
positional proof methods for concurrent program verification; this de
velopment is part of the above-mentioned mathematical theory, and 
includes comprehensive accounts of the assumption-commitment and 
rely-guarantee paradigms. 

3. Partial-order based transformation principles for concurrency, constitut
ing the communication-closed-layers paradigm. 

The leading themes of the companion volume are: 

4. Compositional Hoare logics for reactive and distributed real-time sys

tems. 
5. Applications of these compositional techniques to the verification of hy

brid systems, arbitration and atomic broadcast protocols, control systems 

for chemical batch processing, and a stable storage medium. 
6. Electronic tool support for the correct construction of distributed real

time systems using the Prototype Verification System PVS. 
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Preface Xl 

Next, each of these themes is briefly discussed. 

1. The mathematical theory of concurrency developed in this volume is based 
on Floyd's inductive assertion method. The main advantages we see in such a 
mathematical theory are: 

(i) it highlights essential concepts without syntactic overhead, 

(ii) most semantic steps can be directly verified by dedicated tool support, 

and 

(iii) it allows simple soundness and semantic completeness proofs. 

We often mix Floyd's method and Hoare logic, for instance when developing 

a compositional theory of concurrency in a context of inductive assertions. 
Then inductive-assertion-based methods for the sequential parts of a pro
gram are combined with compositional proof rules for deducing properties 
of the parallel composition of these parts. For all these methods and logics 
rigorous proofs of their soundness and (semantic) completeness are given,! 
together with many examples of their application. 

2. That the hierarchical decomposition of programs into smaller ones is imper

ative to master the complexity of large programs is now generally recognised. 
In 1965 Edsger W. Dijkstra formulated this principle [Dij65b], which consists 

of reducing the development and verification problem of a program to that 
of its constituent (i.e., top-level) subprograms by starting from its top-level 
specification and verifying that specification on the basis of the specifications 
of those subprograms. The development and verification of the latter then 
proceed in essentially the same way, until no further decomposition is nec
essary. 

Essential for this strategy is that the specification of a large program is 
verified on the basis of the specifications of its constituent subprograms, only, 
i.e., without any knowledge of the interior construction of those subprograms 
[Zwi89]. And this is the principle of compositional program verification. 

To make this verification strategy possible, systems and their parts are 
specified using predicates over only their observable behaviour. Such spec
ifications are called assertional. Consequently, assertional specifications of 
the constituent components of a program never depend on any additional 
knowledge about the underlying execution mechanism of these components. 

To be precise, compositional verification that a program P satisfies an 
assertional specification cp involves two kinds of proof techniques: 

I In the experience of the senior author literally every alleged proof method for concur
rency, which reached his desk and had not been proven complete, turned out to be 
incomplete, and every such proof method, which had not been proven sound, turned out 
to be unsound. 
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XlI Preface 

(i) Basic techniques for proving that a program P, which is not decom
posed any further, satisfies qJ. 

(ii) Compositional proof techniques to handle the case that P is composed 
of parts PI, ... ,Pn, i.e., P = oplang(PI,'" ,Pn), n ~ 1, with oplang 

some operator of the programming language. 

For the latter kind of program operators we define compositional proof 
rules, i.e., logical inference rules of the form: 

"From PI satisfies qJI and ... Pn satisfies qJn infer P satisfies qJ." [Zwi89] 

The characteristic feature of a compositional proof rule is its so-called 
compositional proof (reduction) step. This step consists essentially of a proof 
that qJ follows from some combination of qJI, ... ,qJn' This proof amounts 
to checking the validity of a finite number of implications involving the 

predicates occurring in CPI, ... ,qJn and qJ, and therefore does not involve any 
representation of Pi at all ! 

Observe that the latter is imposed by the condition "without any knowl
edge of the interior construction of those subprograms" in the formulation of 
compositional program verification. 

Consequently, a compositional proof rule for a program operator oplang 

(PI,'" ,Pn) has, essentially, the following form: 

for i = 1, ... ,n, Pi satisfies qJi, 
opspec(qJl,'" ,qJn,qJ) 

Oplang (PI, ... ,Pn) satisfies qJ, 

where qJI, ... ,qJn, qJ express assertional specifications, and opspec (qJI,'" ,qJn) 
expresses a compositional proof (reduction) step. 

Apart from rules such as the above, one needs additional proof rules to 
adapt one specification to another. Since these rules do not depend on the 
structure of the actual programs involved, they reduce to the case n = 1 in 
the formulation of compositional proof rules above, and can, therefore, also 
be regarded as compositional proof rules. 

Now a compositional proof method for establishing program correctness 
consists of basic rules, dealing with constructs which are not decomposed 
any further, and compositional proof rules, which deal with constructs which 
are decomposed, and with adaptation of specifications. 

In the present volume this compositional theory is formulated as an exten
sion of Floyd's inductive assertion method, and includes the first textbook 
treatments of the assumption-commitment (A-C) and rely-guarantee (R-G) 
paradigms. In general, compositional proof techniques have the advantage 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-80608-4 - Concurrency Verification: Introduction to Compositional and 
Noncompositional Methods
Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech,
Mannes Poel and Job Zwiers
Frontmatter
More information

http://www.cambridge.org/9780521806084
http://www.cambridge.org
http://www.cambridge.org


Prelace X111 

that they allow a systematic top-down development of programs from their 

specification, which is correct by construction, as illustrated by many exam

ples in this and in the companion volumes. Moreover, the A-C and R-G 

paradigms allow for the development of open systems, i.e., systems whose 

environment is not yet known, but possibly specified; this is also illustrated. 

Another advantage of compositional techniques is that as soon as tradi

tional techniques suffice to establish the correctness of a component of a 

process P, these techniques can be "plugged into" the compositional proof 

strategy described above. For instance, in case the components of P can be 

successfully checked using automatic verification tools (e.g., for model check

ing), the top-level compositional verification of P only requires, additionally, 

a number of compositional proof steps (in the above sense) to be carried 

out [KL93, DJS95]. If applicable, this is a very practical way of formally 

verifying really complex systems. 

3. Partial-order-based transformation principles for concurrency unify such 

different theories as, e.g., 

(i) Lipton's theory of left and right movers for reasoning about synchro

nisation primitives [Lip75], 

(ii) Elrad & Francez' principle of "Communication-Closed Layers" for 

transforming distributed programs [EF82], and 

(iii) Mazurkiewicz' trace theory [Maz89], one of the first satisfactory 

partial-order theories for reasoning about truly concurrent systems. 

These transformation principles embody the point of view that, in order to 

explain and clarify how a network of processes functions, as opposed to 

its mere verification, the structure of its correctness proof should reflect the 

structure of its original design process rather than that of the resulting final 

program. These principles for explaining and clarifying complex network 

protocols have been demonstrated on the basis of many correctness proofs, 

notably for Gallager, Humblet & Spira's distributed spanning-tree algorithm 

[GHS83]. 

4. The compositional Hoare logics for reactive systems discussed in the com

panion volume include, amongst others, Hoare logics for Misra & Chandy's 

assumption-commitment formalism [MC81] for distributed communication, 

Jones' rely-guarantee formalism [Jon83] for shared-variable concurrency, 

and Pandya & Joseph's presupposition-affirmation formalism [PJ91], which 

are all proved to be sound (completeness proofs are only discussed in this 

volume). 

Moreover, a logic is presented for reasoning compositionally about dis

tributed real-time reactive systems, which is subsequently applied and pro-
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XIV Preface 

vided with PVS-based machine support, as described in the second half of 
the companion volume. 

5. In the last three chapters of that volume the emphasis is on illustrating the 
systematic top-down derivation of distributed programs from their specifi
cations. The resulting programs are correct by construction. This process 
of program derivation is therefore called the verify-while-develop paradigm. 

This paradigm can be regarded as the "inversion" of a compositional proof 
method, in which a development step coincides with the application of a 
compositional rule in which its conclusion and hypotheses are interchanged. 
For, as a consequence of using compositional techniques, each compositional 
proof (reduction) step (as defined above) can be viewed as the verification of 

a design step, which only involves reasoning about (the assertional specifi
cation of) that particular step and does not involve any future design steps. 
This explains why in the above definition of compositional proof techniques 
we stipulated that in a compositional proof step "no additional knowledge 
about the underlying execution mechanism of the relevant parts is allowed". 
For, without that clause, reasoning about a particular design step might 
have involved reasoning about future design steps, and we want these two 
stages to be independent. This also explains why compositional techniques 
can be viewed as the proof-theoretical analogue of hierarchically-structured 
program development. 

6. A compositional formalism is developed for specifying distributed real
time systems, in which program constructs and assertional specifications are 
combined within a single "mixed" framework. This formalism is formally 
defined within PVS. The resulting machine-checked theory supports system
atic top-down derivation of distributed algorithms, as explained above, and 
is illustrated by the correct construction of a distributed real-time control 
system for chemical batch processing. 

This does not imply that machine-checked proofs are free from error. E.g., 
an error might be introduced by the use of inconsistent axioms, a bug in 
the proof-checker or a bug in the underlying hardware. Yet the probability 
of such errors leading to the machine outputting that a faulty system is 
correct, is small when compared with hand-checked proofs, and decreases 
as proof-checkers become more experienced. 

Occasionally we refer to properties which in general cannot be proved 
in a compositional set-up, such as termination properties of semaphores 
[Pnu77, Pnu8S]. These do not constitute the main focus of our work, and are, 
amongst others, discussed in [Fra86] and Manna & Pnueli's manuscript for the 
Progress book [MP99]. These properties depend on assumptions of so-called 
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weak and strong fairness, which in essence imply termination of the constructs 

involved, provided corresponding fairness properties of the underlying schedul

ing mechanisms are satisfied. As such, weak and strong fairnesses are abstrac

tions of real-time properties of these mechanisms, since they do not state when 

a construct is executed. Since for practical applications the execution speed 

of such constructs obviously matters, the principal focus of our companion 
volume is on applications of compositional theories for real-time concurrency. 

The structure of this volume 

This volume consists of five parts. 

Part I consists of Chapter 1. In this chapter such central questions are 

answered as: 

• How important is verification for the development of correct software? 
• Why does one need to give correctness proofs for concurrent programs? 

Must these be formal? Or even machine checked? 

• Which style of proof is more appropriate, a compositional or a noncom po
sitional one? 

In order to answer these questions, three concurrent algorithms are discussed, 
in increasing order of difficulty: Peterson's mutual exclusion algorithm, a 
concurrent garbage collector due to Dijkstra, Lamport and others, and a 

distributed mutual-exclusion algorithm due to Szymanski. This discussion 

leads up to the conclusion of Dijkstra that "To believe that correct solutions 
of such problems can be found without a very careful justification is optimism on 
the verge of foolishness." 

Next the approach taken in this volume is explained. It is a state-based, 
property-oriented, dual-language, and semantically-oriented approach. The 
concept of compositionality is explained in relation to the verify-while-develop 
paradigm, machine verification, and the problem how to specify program mod
ules; also the complexity of compositional reasoning as well as its advantages 
and disadvantages are discussed. Chapter 1 ends with a short account of the 
history of the development from noncom positional to compositional methods 
for program verification. 

Part II consists of Chapters 2-5. 
In Chapters 2, 3 and 4 semantical formulations are given of Floyd's inductive 

assertion method for, respectively, a simple model of sequential programming, 
that of sequential transition systems, for shared-variable concurrency in the 
style of Owicki & Gries, and for synchronous message passing in the styles of 
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Apt, Francez & de Roever and of Levin & Gries. This set-up of interpreting 
the inductive assertion method semantically allows for a simple and intuitive 
formulation of program verification methods, which is based on the systematic 
generation of so-called verification conditions. These are the basic mathematical 
properties of the underlying state spaces of a program that should be satisfied 
for that program to be correct. Therefore, this approach leads to the formu
lation of a mathematical basis for state-based program verification. The focus 
here is on proving partial correctness, absence of deadlock, absence of runtime 
errors, and termination properties. All proposed program verification methods 
are proved to be sound and complete. The examples discussed include the cor
rectness proofs for various mutual-exclusion algorithms, amongst others, that 

of Szymanski (discussed in Chapter 1) and Lamport's ticket algorithm, and a 
correctness proof for Francez & Rodeh's distributed greatest-common-divisor 
algorithm. 

In Chapters 2-4 the kind of completeness investigated is that of semantic 
completeness. In semantic completeness proofs one disregards the expressibility 
of predicates in any formal language, and only focusses on their mathematical 
content, i.e., one regards them as boolean functions. Chapter 5 investigates 
the expressibility of these boolean functions in the language of first-order 
predicate logic over the standard model of the natural numbers, establishing 

that all boolean functions which have been used within the verification methods 
discussed in Chapters 2-4 can be expressed in this logic. This leads to so-called 
relatively-complete syntactical formulations of the main verification methods 
discussed, in which all valid properties of the natural numbers are assumed to 
be axioms. These formulations are needed for establishing relative completeness 
of the Hoare logics discussed in later chapters. 

Part III consists of Chapters 6-S. It discusses various compositional proof 
methods for the verification of concurrent programs, and culminates in com
prehensive accounts of Misra & Chandy's assumption-commitment paradigm 
(in order to reason compositionally about synchronous message passing) and 
Jones' rely-guarantee paradigm (for reasoning compositionally about shared
variable concurrency) [MCS1, JonSl, Jon83] in, respectively, Chapters 7 and 8. 
Chapter 6 contains a general introduction to the subject of compositionality 
and concurrency, and in particular, to the A-C and R-G paradigms. For all 
these methods soundness and (semantic) completeness proofs are given. The 
examples discussed include a top-down derivation of a distributed priority 
queue, and correctness of mutual-exclusion as well as array-search algorithms. 

Part IV consists of Chapters 9-11, and discusses Hoare logics for the 
programming models discussed in Part II. Soundness and relative completeness 
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of these logics is deduced from the corresponding soundness and semantic 
completeness results from Part II, in combination with the expressibility results 

from Chapter 5. 

In Chapter 9 Hoare logic is presented as a structured syntactic formulation 

of the various inductive assertion methods formulated in Part II, reflecting 

the algebraic structure of the programs whose proof is given. In particular, 

the semantics of a program is defined as the semantics of its corresponding 
transition system; therefore, programs can be regarded as a structured notation 
for transition systems. Moreover, for every program operator we introduce 
within the inductive assertion method an operator upon proofs such that the 
proof of a program displays the same structure as the program itself. As a 
consequence, a correctness proof of a program in Hoare logic corresponds to a 
proof using the inductive assertion method for its associated transition system, 
and vice versa, with the added difference that a proof in Hoare logic now 

reflects the algebraic structure of the program in question. This leads to an 

identification of concepts which, until now, were regarded as being different. 

In Chapter 10 a so-called proof-outline logic is presented for nested shared

variable concurrency. A proof outline is a systematic annotation of the control 
points of a program with assertions, which satisfy the verification conditions 
generated by the inductive assertion method. Because proof outlines annotate 
program text, they utilise additional information about the underlying execu
tion mechanism, and therefore any logic based on them is noncompositional. 
They satisfy the following property: whenever the assertions associated with the 
initial control points of a (concurrent) program are satisfied, and that program 

is executed, the states arising during its computation satisfy the assertions an
notating the control points encountered. Proof-outline logics therefore capture 
properties of intermediate states arising during program execution. Conse
quently, they are appropriate for proving correctness of concurrent programs, 
because the interaction between the processes of such programs depends on the 
values of their intermediate states. As illustration of these concepts, correctness 
is proved of the concurrent garbage collector from Chapter 1. 

In Chapter 11 we present the noncompositional Hoare logics of Apt, Francez 
& de Roever and of Levin & Gries for synchronous message passing. The logic 
of the latter is applied in order to derive a compositional parallel composition 
rule for synchronous message passing. The examples include a correctness 
proof of a set-partitioning algorithm. 

The last part of this volume is Part v. It consists of Chapter 12, and 

introduces various communication-closed-layer transformation principles for 
concurrency (both for shared-variable concurrency and for a simple form of 
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asynchronous message passing). As already stated, these transformation prin

ciples express the point of view that, in order to clarify how a network of 

distributed processes functions, the structure of its correctness proof should re

flect the structure of its original design process rather than that of the resulting 
final program. Whenever applicable, these principles lead to a much clearer 
proof structure which has the additional advantage of clarifying the resulting 
network algorithm. This is illustrated on the basis of correctness proofs for 
a running example in this volume, that of a simple set-partitioning algorithm, 
and for the two-phase-commit protocol. 

The structure of the companion volume 

Next we give a brief description of the structure of our companion volume. 
The latter can be studied independently from this volume. 

The companion volume consists of three parts: Part I presents a concise self
contained introduction to Hoare logics for sequential programming, shared
variable concurrency and synchronous message passing. In Part II various 
compositional Hoare logics for concurrency are presented, and in Part III a 
number of industrially-inspired medium-size applications are described togeth
er with techniques for machine support for checking compositional verification 
principles for concurrency using PVS. 

Its principal focus is the illustration through many examples of compositional 
techniques in correctness proofs for concurrent programs. As a result, no 
attention is paid to completeness proofs (the latter being a focus of the 
present volume). However, we still give soundness proofs to explain why these 
techniques work. 

Part I consists of Chapters 1-3, and discusses Hoare logics for a simple pro
gramming language for guarded commands, and its classical noncompositional 
extensions to shared-variable concurrency and synchronous message passing. 

Part II consists of Chapters 4-7. 
Chapter 4 presents a compositional Hoare logic for proving partial correct

ness of programs which communicate through synchronous message passing 
and feature nested parallelism. The soundness proof for this logic illustrates the 

problems which must be solved to obtain such compositional Hoare logics in 

general, and serves as a contrast with its considerably simpler seman tical char
acterisation within an inductive-assertion-style framework which is presented 
in Chapter 7 of this volume. 

Chapter 5 presents various compositional Hoare logics for reactive programs 
which communicate through synchronous message passing. The purpose of 
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reactive programs is primarily to maintain an ongoing relationship with the 
environment, rather than to produce a final value upon termination [HP85]. 
These Hoare logics are variants of: 

(i) Misra & Chandy's assumption-commitment and Pandya & Joseph's 
presupposition-affirmation formalisms, and 

(ii) so-called trace-invariant logics. 

In these logics the communication interface of a process is specified using 
invariants over the communication histories of that process. The focus here is 
on proving both invariance properties, such as deadlock freedom, and certain 
progress properties, such as chatter freedom and divergence freedom, which 
can be proved compositionally. Chatter freedom ensures that the number of 
consecutive communications in a computation is finite, whereas divergence 
freedom ensures finiteness of the number of consecutive internal actions. In 
case the relation between an action and its resulting reaction within a reactive 
program is expressed by execution of a loop body, it is important that this loop 
body terminates. To prove this, establishing chatter and divergence freedom of 
that loop body are important, because together these properties imply that no 
infinite computations are generated - this is called weak total correctness. Once 
the latter has been proved, establishing total correctness requires additional 
deadlock (and runtime-error) freedom proofs. 

As usual, soundness proofs are provided. 
Chapter 6 presents a sound rely-guarantee formalism for reasoning compo

sitionally about shared-variable concurrency. 
Semantic versions of these proof systems for establishing partial correctness 

are proved semantically complete in this volume. 
In Chapter 7 an assumption-commitment-style Hoare logic is developed 

for reasoning compositionally about real-time synchronous and asynchronous 
message passing. 

Part III consists of Chapters 8-10, and has been discussed under points 5 
and 6 on page xiv. 

Chapter 8 applies the compositional proof system for distributed real-time 
of Chapter 7 to hybrid systems and bus protocols. In particular, a system 
for chemical batch processing is derived, as well as a distributed real-time 
arbitration protocol inspired by the IEEE 896 Futurebus specification. 

In Chapter 9: 

• a mixed formalism is defined in which programs and specifications are 
combined to a unified framework, 
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• subsequently, this mixed formalism is formulated inside PVS (for Prototype 

Verification System) [ORS92], and 

• applied to the machine-supported verification of the chemical batch process

ing system from Chapter 8, and a membership protocol. 

Chapter 10 extends the formalism of Chapter 7 for reasoning compositionally 

about distributed real-time to fault tolerance. In particular, a correctness proof 

is given for the reliable storage of data, called stable storage, which uses 

multiple disks. 

Instructions for classroom use 

The material in these textbooks has been developed and tried out during 

classroom use for over 10 years in the Netherlands and Germany: at the 

Eindhoven University of Technology, at the University of Utrecht, and at the 

Christian-Albrechts University at Kiel. The courses given on their basis vary 

from quarter courses of 18 hours duration to semester courses of up to 52 

hours duration, and include numerous shorter compact courses given at various 

schools. Outlines of possible courses are discussed below, using the chapter 

dependencies given in Figures 0.1 and 0.2. 

/1.6-- 1.8 

~II.6~ 
/I.3~ /LlO--Ll2 

Ll -- 1.2 ~ / 1.5 -- 1.9 '\.. / II.8 

1.4 ~ • 1.11 -I1.~=_::.9' 7 ~ 11.9 

1.6 -- I.7 II.10 

Fig. 0.1. Chapter dependencies: 1.j refers to Chapter j of this volume, whereas 
ILk refers to Chapter k of the companion volume. 

/II.8 

ILl -- IL2 ~ II.3 -- IL~:=-::!,L7 ~ IL9 

IL6 ILlO 

Fig. 0.2. Chapter dependencies for a course exclusively based on the companion 
volume. 
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1. An 1S-hours introductory course on the mathematical foundations of 

program verification, covering Chapters 1.2, 1.3, 1.4 and 1.9 (possibly 

dropping the sections on deadlock-freedom, runtime-error freedom and 

termination proofs). 
2. A one-semester course on the mathematical foundations of composi

tional program verification, covering Parts I, II and III of this volume. 

3. A one-semester course on the verification of programs communicating 

via shared variables, covering Sections 2-6 of Chapter 1.1, and Chapters 

1.2, 1.3, (1.5), 1.9, 1.10, 1.12 and/or 11.6, discussing Chapter 1.5 only in 

the exercise sessions. 
4. A one-semester course on the verification of distributed message passing 

programs, covering Sections 2-5 of Chapter 1.1, and Chapters 1.2, 1.4, 

(1.5), 1.9, 1.11, II.4 and 11.5, discussing Chapter 1.5 only in the exercise 

sessions. 
5. A course on compositional logics for program verification, exclusively 

based on the companion volume (which can be studied independently). 

6. A 52-hours course on verification of concurrency, covering this volume 

and Chapters 11.4, 11.5 and 11.6, with or without Chapters 1.5 or 1.12. 

Corrections 

It is inevitable that these books contain errors. Please be so kind as to e-mail any 

errors or remarks to bkmaiI2@informatik.uni-kiel.de. A list with corrections 

can be found under: http://www.informatik.uni-kiel.de/inf/deRoever/ . 

Technical Notes 

Some sections are called technical notes; these can be skipped upon first 
reading, and are aimed at the already technically-skilled reader. 
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