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Introduction

In this book, we present a new, general, and complete theory of observability
and observation, deriving from our papers [18, 19, 32]. This theory is entirely
in the deterministic setting. Let us mention here that there are several papers
preceding these three that exploit the same basic ideas with weaker results.
See [16, 17], in collaboration with H. Hammouri.

A list of all main notations is given in an index, page 221.

1. Systems under Consideration

We are concerned with general nonlinear systems of the form:

(�)

dx

dt
= f (x, u),

y = h(x, u),
(1)

typically denoted by �, where x , the state, belongs to X, an n-dimensional,
connected, Hausdorff paracompact differentiable manifold, y, the output,
takes values in Rdy , and u, the control variable, takes values in U ⊂ Rdu .

For the sake of simplicity, we take U = Rdu or U = I du , where I ⊂ R is a
closed interval. But typically U could be any closed submanifold of Rdu

with a boundary, a nonempty interior, and possibly with corners. Unless
explicitly stated, X has no boundary.

The set of systems will be denoted by S = F × H, where F is the set
of u-parametrized vector fields f , and H is the set of functions h. In gen-
eral, except when explicitly stated, f and h are C∞. However, depending
on the context, we will have to consider also analytic systems (Cω), or
Cr systems, for some r ∈ N . Thus, if necessary, the required degree of
differentiability will be stated, but in most cases the notations will remain
S, F, H.

The simplest case is when U is empty, the so-called “uncontrolled case.”
In that situation, we will be able to prove more results than in the general case.
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2 Introduction

Usually, in practical situations, the output function h of the system does not
depend on u.Unfortunately, from the theoretical point of view, this assumption
is very awkward and leads to clumsy statements. For that reason, we will
currently assume that h depends on the control u.

2. What Is Observability?

The preliminary definition we give here is the oldest one; it comes from the
basic theory of linear control systems.

Roughly speaking, “observability” stands for the possibility of reconstruct-
ing the full trajectory from the observed data, that is, from the output trajectory
in the uncontrolled case, or from the couple (output trajectory, control tra-
jectory) in the controlled case. In other words, observability means that the
mapping

initial − state → output − trajectory

is injective, for all fixed control functions. More precise definitions will be
given later in the book.

3. Summary of the Book

1. When the number dy of observations is smaller than or equal to the num-
ber du of controls, then the relevant observability property is very rigid and
is not stable under small perturbations, for germs of systems. Because of that
rigidity, this observability property can be given a simple geometric charac-
terization. This is the content of the paper [18] and the purpose of Chapter 3.

2. If, on the contrary, dy > du, a remarkable phenomenon happens: The
observability becomes generic, in a very strong sense, and for very general
classes of control functions.

In Chapter 4, we state and prove a cornucopia of genericity results about
observability as we define it. The most important of these results are contained
in paper [19]. Some of these results present real technical difficulties.

3. The singular case: in the preceding two cases, the initial − state →
output − trajectory mapping is regular. What happens if it becomes singular?
This problem is too complex. In classical singularity theory, there is a useful
and manageable concept of mapping with singularities: that of a “finite map-
ping.” It is interesting that, in the uncontrolled analytic case, this concept can
be extended to our initial − state → output − trajectory mappings, accord-
ing to a very original idea of P. Jouan. This idea leads to the very interesting
results of paper [32]. The controlled case is very different: If the system is
singular, then it is not controllable. In this case, we also have several results,
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4. The New Observability Theory Versus the Old Ones 3

giving a complete solution of the observation problem. These developments
form the content of Chapter 5.

4. Observers: An observer is a device that performs the practical task of
state reconstruction. In all cases mentioned above, (1, 2, 3), an asymptotic ob-
server can be constructed explicitly, under the guise of a differential equation
that estimates the state of the system asymptotically. The estimation error
has an arbitrarily large exponential decay. This is the so-called “high gain
construction.”

This construction is an adaptation to the nonlinear case of the
“Luenberger,” or of the “extended Kalman filter” method. The last one per-
forms very well in practice. We will present these topics in Chapter 6.

5. Output stabilization: this study can be applied to output stabilization in
the preceding cases 1, 2, and 3 above. One of our main results in [32] states
that one can stabilize asymptotically a system via an asymptotic observer,
using the output observations only, if one can stabilize it asymptotically using
smooth state feedback.

This result is “semi-global”: One can do this on arbitrarily large compacta.
Let us note that, in cases 1 and 2, the initial − state → output − trajectory
mapping is always immersive. In that case, the stabilizing feedback can be
arbitrary. But, if the initial − state → output − trajectory mapping is not
immersive, then it has to belong to a certain special ring of functions. These
results are developed in Chapter 7.

6. In the last chapter, Chapter 8, we give a summary description of two
applications in the area of chemical engineering. These represent the fallout
from our long cooperation with the Shell company.

The first one, about distillation columns, is of practical interest because dis-
tillation columns really are generic objects in the petroleum and chemical in-
dustries. This application is a perfect illustration of the methods we are propos-
ing for the problems of both observation and dynamic output stabilization.

The second application deals with polymerization reactors, and it consti-
tutes also a very interesting and pertinent illustration. Both applications are
the subjects of the articles [64, 65].

The classical notions of observability are inadequate for our purposes. For
reasons discussed in the next section, Chapter 2 is devoted to the introduction
of new concepts of observability. We hope that our book will vindicate our
iconoclastic gesture of discarding the old observability concepts.

4. The New Observability Theory Versus the Old Ones

As we have said, observability is the injectivity of the mapping: initial −
state → output − trajectory. However, the concept of injectivity per se is
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4 Introduction

very hard to handle mathematically because it is unstable. Hence, we have
to introduce stronger concepts of observability, for example adding to the
injectivity the condition of immersivity (infinitesimal injectivity), as in the
classical theory of differentiable mappings.

In this book, we haven’t discussed any of the other approaches to observ-
ability that have been proposed elsewhere, and we haven’t referenced any of
them. The reason for this is simple: We have no use for either the concepts
nor the results of these other approaches.

In fact, we claim that our approach to observability theory, which is entirely
new, is far superior to any of the approaches proposed so far.

Since we cannot discuss all of them, let us focus on the most popular: the
output injection method.

The output injection method is in the spirit of the feedback linearization
method (popular for the control of nonlinear systems). As for the feedback
linearization, one tries to go back to the well-established theory of linear
systems. First, one characterizes the systems that can be written as a linear
system, plus a perturbation depending on the outputs only (in some coor-
dinates). Second, for these systems only, one applies slight variations of the
standard linear constructions of observer systems. This approach suffers from
terminal defects.

A. It applies to an extremely small class of systems only. In precise math-
ematical terms, it means the following. In situation 2 above, where
observability is generic, it applies to a class of systems of infinite codi-
mension. In case 1, where the observability is nongeneric, it also applies
to an infinite codimension subset of the set of observable systems.

B. Basically, the approach ignores the crucial distinction between the two
cases: 1. dy ≤ du, 2. dy > du .

C. The approach does not take into account generic singularities, and it is
essentially local in scope.

Of course, these defects have important practical consequences in terms of
sensitivity. In particular, in case 2, where the observability property is stable,
the method is unstable.

5. A Word about Prerequisites

In this book, we have tried to keep the mathematical prerequisites to a strict
minimum. What we need are the following mathematical tools: transversality
theory, stratification theory and subanalytic sets, a few facts from several
complex variables theory, center manifold theory, and Lyapunov’s direct and
inverse theorems.
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6. Comments 5

For the benefit of the reader, a summary of the results needed is provided
in the Appendix. It is accessible to those with only a modest mathematical
background.

6. Comments

6.1. Comment about the Dynamic Output Stabilization Problem

At several places in the book, we make the assumption that the state space X,

is just the Euclidean space Rn . If one wants only to estimate the state, this is
not a reasonable assumption: the state space can be anything. However, for the
dynamic output stabilization of systems that are state-feedback stabilizable, it
is a reasonable assumption because the basin of attraction of an asymptotically
stable equilibrium point of a vector field is diffeomorphic to Rn (see [51]).

6.2. Historical Comments

6.2.1. About “Observability”

The observability notion was introduced first in the context of linear systems
theory. In this context, the Luenberger observer, and the Kalman filter were
introduced, in the deterministic and stochastic settings, respectively.

For linear systems, the observability notion is independent of the control
function (either the initial − state → output − trajectory mapping is injec-
tive for all control functions, or it is not injective for each control function).
This is no longer true for nonlinear systems. Moreover, as we show in this
book, in the general case where dy ≤ du, observability (for all inputs) is not
at all a generic property. For these reasons (and certainly also just for tract-
ability), several weaker different notions of observability have been intro-
duced, which are generic and which agree with the old observability notion
in the special case of linear systems. In this setting, there is the pioneer
work [24]. As we said, these notions are totally inadequate for our purposes,
and we just forget about them.

6.2.2. About Universal Inputs

Let us say that a control function separates two states, if the corresponding
output trajectories, from these two initial states, do not coincide.

For a nonlinear system, a universal input is a control function that separates
all the couples of states that can be separated by some control.

We want to mention a pioneer work by H. J. Sussmann [47], in which it is
proved, roughly speaking, that “universal inputs do exist.” For this purpose,
the author made use of the properties of subanalytic sets, in a spirit very
similar to the one in this book.
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6 Introduction

6.2.3. About the Applications

In Chapter 8, we present two applications from chemical engineering science.
There are already several other applications of our theory in many fields, but
we had to choose.

The two applications we have chosen look rather convincing, because
they are not “academic,” and some refinements of the theory are really used.
Moreover, these two applications, besides their illustrative character, are very
important in practice and have been addressed by research workers in control
theory, using other techniques, for many years. It is hard to give an exhaustive
list of other studies (related to control and observation theory) on distillation
columns and polymerization reactors. However, let us give a few references
that are significant:

For distillation columns: [58], [61], [62].
For polymerization reactors: [56], [57], [60], [59].

Regarding distillation columns, it would be very interesting (and probably
very difficult) to study the case of azeotropic distillations, which is not ad-
dressed in this volume. It seems that all the theory collapses in this case of
azeotropic distillations.
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Part I

Observability and Observers
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2

Observability Concepts

In this chapter, we will state and explain the various definitions of observability
that will be used in this book (see Section 4 in Chapter 1).

1. Infinitesimal and Uniform Infinitesimal Observability

The space of control functions under consideration will just be the space
L∞[U ] of all measurable bounded, U -valued functions u : [0, Tu[→ U, de-
fined on semi-open intervals [0, Tu[ depending on u. The space of our output
functions will be the space L[Rdy ] of all measurable functions y : [0, Ty[→
Rdy , defined on the semi-open intervals [0, Ty[. Usually, input and output
functions are defined on closed intervals. However, this is irrelevant. The
following considerations led us to work with semi-open intervals. For any
input û ∈ L∞[U ] and any initial state x0, the maximal solution of the Cauchy
problem for positive times

dx̂

dt
= f (x̂(t), û(t)), x̂(0) = x0

is defined on a semi-open interval [0, e(û, x0)[, where 0 < e(û, x0) ≤ Tû . If
e(û, x0) < Tû, then, e(û, x0) is the positive escape time of x0 for the time
dependent vector field f (., û(t)). It is well known that, for all û ∈ L∞[U ],
the function x0 → e(û, x0) ∈ R̄∗

+ is lower semi-continuous (R̄∗
+ = {a|0 <

a ≤ ∞}).

Definition 1.1. The input-output mapping P of � is defined as follows:

P : L∞[U ] × X → L[Rdy ], (û, x0) → P(û, x0),

where P(û, x0) is the function ŷ : [0, e(û, x0)[→ Rdy defined by

ŷ(t) = h(x̂(t), û(t)).

The mapping Pû : X → L[Rdy ] is Pû(x0) = P(û, x0).
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10 Observability Concepts

Definition 1.2.1 A system is called observable if for any triple (û, x1, x2) ∈
L∞[U ] × X × X, x1 �= x2, the set of all t ∈ [0, min(e(û, x1), e(û, x2))[ such
that P(û, x1)(t) �= P(û, x2)(t) has positive measure.

Now, we define the “first variation” of �, or the “lift of � on TX.” The
mapping f : X × U → T X induces the partial tangent mapping TX f : T X ×
U → T T X (tangent bundle of T X ). Then, if ω denotes the canonical invo-
lution of T T X (see [1]), ω ◦ TX f defines a parametrized vector field on T X,

also denoted by TX f. Similarly, the function h : X × U → Rdy has a differen-
tial dX h : T X × U → Rdy .The first variation of� is the input–output system:

(T �)

{
dξ
dt = TX f (ξ, u) = TX fu(ξ ),

η = dX h(ξ, u) = dX hu(ξ ).
(2)

Its input–output mapping is denoted by d P, and the trajectories of (1) and
(2) are related as follows:

If ξ : [0, Tξ [→ T X is a trajectory of (2) associated with the input û, the pro-
jection π (ξ ) : [0, Tξ [→ X is a trajectory of � associated with the same input.
Conversely, if ϕt (x0, û) : [0, e(û, x0)[→ X is the trajectory of � starting from
x0 for the input û, the map x →ϕτ (x, û) is a diffeomorphism from a neighbor-
hood of x0 onto its image, for all τ ∈ [0, e(û, x0)[. Let TXϕτ : Tx0 X → Tz X,

z = ϕτ (x0, û) be its tangent mapping. Then, for all ξ0 ∈ Tx0 X :

eT �(û, ξ0) = e�(û, π (ξ0)) = e�(û, x0),

and, for almost all τ ∈ [0, e(û, x0)[:

d P(û, ξ0)(τ ) = dX h(TXϕτ (û, ξ0), û(τ )) = dX
(
Pτ

�,û

)
(ξ0). (3)

The right-hand side of these equalities (3) is the differential of the function
Pτ

�,û : V → Rdy , where V is the open set:

V = {x ∈ X |0 < τ < e(û, x)}, and Pτ
�,û(x) = P(û, x)(τ ).

For any a > 0, let L∞
loc([0, a[; Rdy ) denote the space of measurable func-

tions v : [0, a[→ Rdy which are locally in L∞. For all û ∈ L∞(U ), x0 ∈ X,

the restriction of d P to {û} × Tx0 X defines a linear mapping:

d Pû,x0
: Tx0 X → L∞

loc([0, e(û, x0)[; Rdy ),

d Pû,x0
(ξ0)(t) = d P(û, ξ0)(t).

(4)

1 In nonlinear control theory, the notion of observability defined here is usually referred to as
“uniform observability.” Let us stress that it is just the old basic observability notion used for
linear systems.
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2. The Canonical Flag of Distributions 11

Definition 1.3. The system � is called infinitesimally observable at (û, x) ∈
L∞[U ] ×X if the linear mapping d Pû,x is injective. It is called infinitesimally
observable at û ∈ L∞[U ] if it is infinitesimally observable at all pairs (û, x),
x ∈ X, and called uniformly infinitesimally observable if it is infinitesimally
observable at all û ∈ L∞[U ].

Remark 1.1. In view of the relation 3 above, the fact that the system is in-
finitesimally observable at û ∈ L∞[U ] means that the mapping Pû : X →
L[Rdy ] is an immersion of X into L[Rdy ] (as was stated, Pû is differentiable
in the following sense: we know that e(û, x) ≥ e(û, x0) − ε in a neighbor-
hood Uε of x0. Then Pû is differentiable in the classical sense from Uε into
L∞([0, e(û, x0) − ε]; Rdy ). Pû is an immersion in the sense that these differ-
ential maps are injective).

This notion of uniform infinitesimal observability is the one which makes
sense in practice, when dy ≤ du . In most of the examples from real life we
know of, when dy ≤ du, the system is uniformly infinitesimally observable.

A very frequent situation in practice is the following: The physical state
space for x is an open subset X̌ of X, and X̌ is positively invariant under the
dynamics of �. The trajectories x̂(t) that are unobservable take their values
in the boundary ∂ X̌ , and the corresponding controls û(t) take their values
in ∂U. In particular, this will be the case for the first example we show in
Chapter 8.

2. The Canonical Flag of Distributions

In this section, we assume that dy = 1. As above, set: hu(x) = h(x, u),
fu(x) = f (x, u). Associated with the system �, there is a family of flags
{D0(u) ⊃ D1(u) ⊃ . . . ⊃ Dn−1(u)} of distributions on X (parametrized by
the value u ∈ U of the control). D0(u) = Ker(dX hu(x)), where dX denotes
again the differential with respect to the x variable only. For 0 ≤ k < n − 1:

Dk+1(u) = Dk(u) ∩ Ker
(
dX

(
Lk+1

fu
(hu)

))
,

where L fu
is the Lie derivative operator on X, w.r.t. the vector field fu . Let

us set:

D(u) = {D0(u) ⊃ D1(u) ⊃ . . . ⊃ Dn−1(u)}. (5)

This u-dependent flag of distributions is not regular in general (i.e., Di (u)
does not have the constant rank n − i − 1).
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