ESTIMATING MARKET POWER AND STRATEGIES

This book presents, compares, and develops various techniques for estimating market power – the ability to set price profitably above marginal cost – and strategies – the game-theoretic plans used by firms to compete with rivals. The authors start by examining static model approaches to estimating market power. They extend the analysis to dynamic models. Finally, they develop methods to estimate firms’ strategies directly and examine how these strategies determine market power. A detailed technical appendix reviews the relevant information-theoretic and other econometric models that are used throughout. Questions and detailed answers for students and researchers are provided in the book for easy use.

Jeffrey M. Perloff is a professor in and Chair of the Department of Agricultural and Resource Economics at the University of California, Berkeley. He has written the textbooks Modern Industrial Organization (coauthored with Dennis Carlton) and Microeconomics. Professor Perloff has been an editor of Industrial Relations and an associate editor of the American Journal of Agricultural Economics. He is currently an associate editor of the Journal of Productivity Analysis and edits the Journal of Industrial Organization Education. A Fellow of the American Agricultural Economics Association, his economic research covers industrial organization, marketing, labor, trade, and econometrics. He has consulted with a number of nonprofit organizations and government agencies, including the Federal Trade Commission and the Departments of Commerce, Justice, and Agriculture.

Larry S. Karp is a professor in the Department of Agricultural and Resource Economics at the University of California, Berkeley. Professor Karp has served on the editorial boards of Journal of Environmental Economics and Management, Journal of Economic Dynamics and Control, American Journal of Agricultural Economics, and Review of International Economics. His research emphasis is environmental and resource economics, trade policy, and industrial organization, and he has consulted for federal and state agencies and private litigation on antitrust and environmental issues.

Amos Golan is a professor in the Department of Economics at American University. He cowrote Maximum Entropy Econometrics: Robust Elimination with Limited Data (with George Judge and Douglas Miller). Professor Golan has been a guest editor of the Journal of Econometrics and Econometric Reviews, and he is an associate editor of Econometric Reviews and Entropy and serves on the editorial board of Foundations and Trends in Econometrics. He has consulted for nonprofit organizations and government agencies including the Departments of Treasury and Agriculture, as well as the U.S. Navy and U.S. Air Force. Professor Golan’s main research covers theoretical and applied econometrics and statistics, with specialties in the new field of information-theoretic and entropy econometrics.
Estimating Market Power and Strategies

JEFFREY M. PERLOFF
University of California, Berkeley

LARRY S. KARP
University of California, Berkeley

AMOS GOLAN
American University
For our parents

Mimi and Harvey Perloff
Rachel and Samuel Karp
Shulamith Katz and Nachum Golan
Contents

Foreword xi

1 Introduction and Overview 1
 Three Main Questions 1
 Structure–Conduct–Performance 3
 Static Models 5
 Dynamics 7
 Strategies 11

2 Structure–Conduct–Performance 13
 Measures of Market Performance 14
 Rate of Return 14
 Price–Cost Margins 18
 Tobin’s q 19
 Measures of Market Structure 19
 Firm Size Distribution 20
 Concentration Measures 20
 Concentration Statistics 20
 Problems with Using Concentration Measures 22
 Summary Statistic Biases 23
 Barriers to Entry 24
 Unionization 25

The Relationship of Structure to Performance 25
 Rates of Return and Industry Structure 25
 Price–Cost Margins and Industry Structure 27
 Price–Average Cost Margins 27
 Price–Marginal Cost Margins 28
 Other Explanatory Variables 30

International Studies of Performance and Structure 30
Contents

Performance and Structure in Individual Industries 31
Measurement and Statistical Problems 31
Conceptual Problems 32
A Modern Structure–Conduct–Performance Approach 34
Theory 34
 - Exogenous Sunk Cost 35
 - Endogenous Sunk Costs 37
Empirical Research 39
Summary 40
Problems 40

3 Industry Models of Market Power 42
Structural Approach 43
 - Interpretations of λ 45
 - Identification 47
 - Estimation and Hypothesis Tests 50
Taxes: An Application 51
Nonparametric and Reduced-Form Models 53
 - Comparative Statics 53
 - Hall’s Reduced-Form Approach 55
Oligopsony 58
 - Structural Oligopsony Model 58
 - Hall’s Reduced-Form Oligopsony Model 59
How Well These Methods Work 59
 - Tests Based on Cost Evidence 60
 - Oligopoly Simulations 60
 - Structural Model 62
 - Hall’s Reduced-Form Model 65
Empirical Comparisons 69
Summary 70
Problems 72

4 Differentiated-Product Structural Models 74
Residual Demand 75
Neoclassical Demand System 77
 - Multilevel Demand Specifications 77
 - An Almost Ideal Demand System Example 78
Estimation 80
 - Identification 80
 - Instruments 81
Hypothesis Tests 82
Random Parameter Model 83
 - Linear Random Utility Model 83
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating the Random-Parameter Model</td>
<td>86</td>
</tr>
<tr>
<td>Market Power</td>
<td>89</td>
</tr>
<tr>
<td>Summary</td>
<td>91</td>
</tr>
<tr>
<td>Problems</td>
<td>91</td>
</tr>
<tr>
<td>5 Strategic Reasons for a Dynamic Estimation Model</td>
<td>93</td>
</tr>
<tr>
<td>Supergames</td>
<td>94</td>
</tr>
<tr>
<td>Empirical Implications</td>
<td>98</td>
</tr>
<tr>
<td>Models of Repeated Games with Trigger Strategies</td>
<td>99</td>
</tr>
<tr>
<td>Models of Repeated Games with Continuous Strategies</td>
<td>104</td>
</tr>
<tr>
<td>Summary</td>
<td>108</td>
</tr>
<tr>
<td>Problems</td>
<td>109</td>
</tr>
<tr>
<td>6 Dynamic Games Involving Economic Fundamentals</td>
<td>113</td>
</tr>
<tr>
<td>Fundamental Reasons for Dynamics</td>
<td>114</td>
</tr>
<tr>
<td>Production Fundamentals</td>
<td>114</td>
</tr>
<tr>
<td>Demand Fundamentals</td>
<td>116</td>
</tr>
<tr>
<td>A Dynamic Game with a Quasi-Fixed Input</td>
<td>117</td>
</tr>
<tr>
<td>Open-Loop Rules</td>
<td>121</td>
</tr>
<tr>
<td>Time Consistency of Open-Loop Rules</td>
<td>122</td>
</tr>
<tr>
<td>Different Approaches to Obtaining Necessary Conditions</td>
<td>123</td>
</tr>
<tr>
<td>Subgame Perfection and Markov Strategies</td>
<td>125</td>
</tr>
<tr>
<td>Differentiable Markov Perfect Strategies</td>
<td>127</td>
</tr>
<tr>
<td>A Sticky Price Model</td>
<td>128</td>
</tr>
<tr>
<td>Multiplicity of Equilibria</td>
<td>130</td>
</tr>
<tr>
<td>Selecting a Particular Equilibrium</td>
<td>132</td>
</tr>
<tr>
<td>Comparing Open-Loop and Markov Equilibria</td>
<td>132</td>
</tr>
<tr>
<td>Markov Perfect Equilibria and Conjectural Variations</td>
<td>135</td>
</tr>
<tr>
<td>Empirical Implications</td>
<td>136</td>
</tr>
<tr>
<td>Different Ways to Interpret Open-Loop Equilibrium</td>
<td>140</td>
</tr>
<tr>
<td>Summary</td>
<td>141</td>
</tr>
<tr>
<td>Problems</td>
<td>142</td>
</tr>
<tr>
<td>7 Estimation of Dynamic Games Involving Economic Fundamentals</td>
<td>147</td>
</tr>
<tr>
<td>Overview of Two Examples</td>
<td>147</td>
</tr>
<tr>
<td>The Sticky Price Model</td>
<td>149</td>
</tr>
<tr>
<td>The Dynamic Programming Equation</td>
<td>151</td>
</tr>
<tr>
<td>The Euler Equation for a Special Case</td>
<td>152</td>
</tr>
<tr>
<td>Other Approaches to Deriving the Euler Equation</td>
<td>153</td>
</tr>
<tr>
<td>The Estimation Model</td>
<td>154</td>
</tr>
<tr>
<td>The General Model</td>
<td>155</td>
</tr>
<tr>
<td>An Additional Assumption about Demand</td>
<td>156</td>
</tr>
<tr>
<td>Random Demand Shifters</td>
<td>157</td>
</tr>
</tbody>
</table>
Contents

Estimation Using the Dynamic Programming Equation 158
A Related Dynamic Oligopoly Model 162
A Dynamic Model with Advertising 163
The Open-Loop Equilibrium to the Advertising Model 164
The Markov Perfect Equilibrium to the Advertising Model 166
The Hybrid Model 168
Estimation of Markov Perfect Equilibria 170
Summary 178
Problems 179

8 Estimation of Market Power Using a Linear-Quadratic Model 181
Assumptions and Definitions 182
The Static Analog 183
The Dynamic Model 184
Implications of the Linear-Quadratic Structure 185
The Recursive Structure of the Solution 186
The Principle of Certainty Equivalence 187
Properties of the Equilibria 189
Equilibrium Conditions Used for Estimation 192
Necessary Conditions for the Open-Loop Equilibrium 193
Necessary Conditions for the Markov Perfect Equilibrium 195
Additional Restrictions and Testing 197
Empirical Applications 198
Coffee 198
Rice 199
Estimation Results 200
Classical Estimates 200
Bayesian Estimates 202
Simulations 204
Summary 205
Appendix 8A: Derivation of Restrictions 206
The Open-Loop Restrictions 206
The Markov Perfect Restrictions 207
Problems 208

9 Estimating Strategies: Theory 211
Related Studies 213
Mixed Strategies 217
Oligopoly Game 219
The Strategies and the Game 219
Econometric Adjustments for the Game 220
The Estimation Model 221
Classical Maximum Entropy Formulation for the Multinomial Problem
Incorporating the Sample Information
Incorporating the Nonsample, Game-Theoretic Information
Properties of the Estimators
The GME-Nash Estimator: Hypothesis Testing
Summary
Appendix 9A: Proof that the GME-Nash Estimator Is Consistent
Problems
10 Estimating Strategies: Case Studies
Airlines Game
Airlines Model
Estimates
Comparing Estimators
Hypothesis Tests
Sampling and Sensitivity Experiments
Airlines Summary
Cola Game
Cola Model
Estimates
Basic Statistics and Tests of the Cola Market
Lerner Measures of Market Power
Effects of the Exogenous Variables
Cola Summary
Summary
Appendix 10A: Expected Lerner Measure
Problems
Statistical Appendix
Bibliography
Answers
Index
The purpose of this book is to show how to estimate a variety of traditional and new empirical industrial organization models of market power: the ability to raise price above marginal cost. We review the literature and methods to date, and focus on our work, particularly on dynamic models and estimating firms’ strategies.

The book is appropriate for graduate students and researchers who have at least a basic understanding of theoretical industrial organization and standard econometric techniques. The chapters on dynamic models require a basic knowledge of dynamic optimization. A technical appendix at the end of the book reviews basic econometric techniques and covers in detail information-theoretic techniques, which we use in the last two chapters of the book.

We believe that it is crucial that economists be able to estimate and explain market power and determine firms’ strategies. Economic theory alone cannot tell us how much market power firms exercise or which strategies they use. Thus, empirical work is critical if we are to understand how markets function. This work is also of importance for many policy purposes such as writing and enforcing antitrust and merger laws, regulating markets, facilitating entry, encouraging or discouraging product differentiation or advertising, or predicting the effects of taxes and other policies.

We are grateful to Scott Parris, the world’s most patient editor; Dennis Carlton for permission to use the material in Chapter 2; four anonymous referees for many useful suggestions; Hugo Salgado for thoughtful advice; Alastair Hall for reviewing the Statistical Appendix; Glenn Woroch for comments on an early version; and our many colleagues who helped with much of the underlying research.

JP, LK, and AG