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1

Introduction

1.1 History

In physics and chemistry making a direct calculation to determine the structure
or properties of a system is frequently very difficult. Rather, one assumes at the
outset an ideal or asymptotic form and then applies adjustments and corrections to
make the calculation adhere to what is believed to be a more realistic picture of
nature. The practice is no different in molecular structure calculation, but there has
developed, in this field, two different “ideals” and two different approaches that
proceed from them.

The approach used first, historically, and the one this book is about, is called the
valence bond (VB) method today. Heitler and London[8], in their treatment of the
H2 molecule, used a trial wave function that was appropriate for two H atoms at
long distances and proceeded to use it for all distances. The ideal here is called the
“separated atom limit”. The results were qualitatively correct, but did not give a
particularly accurate value for the dissociation energy of the H−H bond. After the
initial work, others made adjustments and corrections that improved the accuracy.
This is discussed fully in Chapter 2. A crucial characteristic of the VB method is
that the orbitals of different atoms must be considered as nonorthogonal.

The other approach, proposed slightly later by Hund[9] and further developed
by Mulliken[10] is usually called the molecular orbital (MO) method. Basically,
it views a molecule, particularly a diatomic molecule, in terms of its “united atom
limit”. That is, H2 is a He atom (not a real one with neutrons in the nucleus) in which
the two positive charges are moved from coinciding to the correct distance for the
molecule.1 HF could be viewed as a Ne atom with one proton moved from the
nucleus out to the molecular distance, etc. As in the VB case, further adjustments
and corrections may be applied to improve accuracy. Although the united atom limit
is not often mentioned in work today, its heritage exists in that MOs are universally

1 Although this is impossible to do in practice, we can certainly calculate the process on paper.
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4 1 Introduction

considered to be mutually orthogonal. We touch only occasionally upon MO theory
in this book.

As formulated by Heitler and London, the original VB method, which was easily
extendible to other diatomic molecules, supposed that the atoms making up the
molecule were in (high-spin)Sstates. Heitler and Rumer later extended the theory
to polyatomic molecules, but the atomicS state restriction was still, with a few
exceptions, imposed. It is in this latter work that the famous Rumer[11] diagrams
were introduced. Chemists continue to be intrigued with the possibility of correlat-
ing the Rumer diagrams with bonding structures, such as the familiar Kekul´e and
Dewar bonding pictures for benzene.

Slater and Pauling introduced the idea of using whole atomic configurations
rather thanS states, although, for carbon, the difference is rather subtle. This, in
turn, led to the introduction of hybridization and the maximum overlap criterion
for bond formation[1].

Serber[12] and Van Vleck and Sherman[13] continued the analysis and intro-
duced symmetric group arguments to aid in dealing with spin. About the same time
the Japanese school involving Yamanouchi and Kotani[14] published analyses of
the problem using symmetric group methods.

All of the foregoingworkwasof necessity fairly qualitative, andonly the smallest
of molecular systems could be handled. After WWII digital computers became
available, and it was possible to test many of the qualitative ideas quantitatively.

In 1949 Coulson and Fisher[15] introduced the idea of nonlocalized orbitals to
the VB world. Since that time, suggested schemes have proliferated, all with some
connection to the original VB idea. As these ideas developed, the importance of
the spin degeneracy problem emerged, and VB methods frequently were described
and implemented in this context. We discuss this more fully later.

As this is being written at the beginning of the twenty-first century, even small
computers have developed to the point whereab initioVB calculations that required
“supercomputers” earlier can be carried out in a few minutes or at most a few hours.
The development of parallel “supercomputers”, made up of many inexpensive per-
sonal computer units is only one of the developments that may allow one to carry
out ever more extensiveab initioVB calculations to look at and interpret molecular
structure and reactivity from that unique viewpoint.

1.2 Mathematical background

Data on individual atomic systems provided most of the clues physicists used
for constructing quantum mechanics. The high spherical symmetry in these cases
allows significant simplifications that were of considerable usefulness during times
when procedural uncertainties were explored and debated. When the time came
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to examine the implications of quantum mechanics for molecular structure, it was
immediately clear that the lower symmetry, even in diatomic molecules, causes
significantly greater difficulties than those for atoms, and nonlinear polyatomic
molecules are considerably more difficult still. The mathematical reasons for this
arewell understood, but it is beyond the scopeof this book to pursue thesequestions.
The interested reader may investigate many of the standard works detailing the
properties of Lie groups and their applications to physics. There are many useful
analytic tools this theory provides for aiding in the solution of partial differential
equations, which is the basic mathematical problem we have before us.

1.2.1 Schrödinger’s equation

Schrödinger’s space equation, which is the starting point of most discussions of
molecular structure, is the partial differential equation mentioned above that we
must deal with. Again, it is beyond the scope of this book to give even a review of
the foundations of quantum mechanics, therefore, we assume Schr¨odinger’s space
equation as our starting point. Insofar as we ignore relativistic effects, it describes
the energies and interactions that predominate in determining molecular structure.
It describes in quantum mechanical terms the kinetic and potential energies of the
particles, how they influence the wave function, and how that wave function, in
turn, affects the energies. We take up the potential energy term first.

Coulomb’s law

Molecules consist of electrons and nuclei; the principal difference between a
molecule and an atom is that the latter has only one particle of the nuclear sort.
Classical potential theory,which in this caseworks forquantummechanics, says that
Coulomb’s law operates between charged particles. This asserts that the potential
energy of a pair of spherical, charged objects is

V(|�r1 − �r2|) = q1q2

|�r1 − �r2| = q1q2

r12
, (1.1)

whereq1 andq2 are the charges on the two particles, andr12 is the scalar distance
between them.

Units

A short digression on units is perhaps appropriate here. We shall use either Gaussian
units in this book or, much more frequently, Hartree’s atomic units. Gaussian units,
as far as we are concerned, are identical with the old cgs system of units with the
added proviso that charges are measured in unnamedelectrostatic units, esu. The
value of|e| is thus 4.803206808× 10−10 esu. Keeping this number at hand is all
that will be required to use Gaussian units in this book.
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Hartree’s atomic units are usually all we will need. These are obtained by as-
signing mass, length, and time units so that the mass of the electron,me = 1, the
electronic charge,|e| = 1, and Planck’s constant, ¯h = 1. An upshot of this is that the
Bohr radius is also 1. If one needs to compare energies that are calculated in atomic
units (hartrees) with measured quantities it is convenient to know that 1 hartree is
27.211396 eV, 6.27508× 105 cal/mole, or 2.6254935× 106 joule/mole. The reader
should be cautioned that one of the most common pitfalls of using atomic units is
to forget that the charge on the electron is−1. Since equations written in atomic
units have nomes,es, orh̄s in them explicitly, their being all equal to 1, it is easy
to lose track of the signs of terms involving the electronic charge. For the moment,
however, we continue discussing the potential energy expression in Gaussian units.

The full potential energy

One of the remarkable features of Coulomb’s law when applied to nuclei and
electrons is its additivity. The potential energy of an assemblage of particles is
just the sum of all the pairwise interactions in the form given in Eq. (1.1). Thus,
consider a system withK nuclei, α = 1, 2, . . . , K having atomic numbersZα.
We also consider the molecule to haveN electrons. If the molecule is uncharged
as a whole, then

∑
Zα = N. We will use lower case Latin letters,i, j, k, . . . , to

label electrons and lower case Greek letters,α, β, γ, . . . , to label nuclei. The full
potential energy may then be written

V =
∑
α<β

e2ZαZβ

rαβ

−
∑
iα

e2Zα

riα
+

∑
i< j

e2

ri j
. (1.2)

Many investigations have shown that any deviations from this expression that occur
in reality are many orders of magnitude smaller than the sizes of energies we need
be concerned with.2 Thus, we consider this expression to represent exactly that part
of the potential energy due to the charges on the particles.

The kinetic energy

The kinetic energy in the Schr¨odinger equation is a rather different sort of quantity,
being, in fact, a differential operator. In one sense, it is significantly simpler than
the potential energy, since the kinetic energy of a particle depends only upon what
it is doing, and not on what the other particles are doing. This may be contrasted
with the potential energy, which depends not only on the position of the particle in
question, but on the positions of all of the other particles, also. For our molecular

2 The first correction to this expression arises because the transmission of the electric field from one particle to
another is not instantaneous, but must occur at the speed of light. In electrodynamics this phenomenon is called
aretarded potential. Casimir and Polder[16] have investigated the consequences of this for quantum mechanics.
The effect within distances around 10−7 cm is completely negligible.
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system the kinetic energy operator is

T = −
∑

α

h̄2

2Mα

∇2
α −

∑
i

h̄2

2me
∇2
i , (1.3)

whereMα is the mass of theαth nucleus.

The differential equation

The Schr¨odinger equation may now be written symbolically as

(T + V)� = E�, (1.4)

whereE is the numerical value of the total energy, and� is the wave function.
When Eq. (1.4) is solved with the various constraints required by the rules of
quantum mechanics, one obtains the total energy and the wave function for the
molecule. Other quantities of interest concerning the molecule may subsequently
be determined from the wave function.

It is essentially this equation about which Dirac[17] made the famous (or infa-
mous, depending upon your point of view) statement that all of chemistry is reduced
to physics by it:

The general theory of quantum mechanics is now almost complete, the imperfections that
still remain being in connection with the exact fitting in of the theory with relativity ideas.
These give rise to difficulties only when high-speed particles are involved, and are therefore
of no importance in the consideration of atomic and molecular structure and ordinary
chemical reactions. . .. The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much too
complicated to be soluble. . ..

To some, with what we might call a practical turn of mind, this seems silly. Our
mathematical and computational abilities are not even close to being able to give
useful general solutions to it. To those with a more philosophical outlook, it seems
significant that, at our present level of understanding, Dirac’s statement is appar-
ently true. Therefore, progress made in methods of solving Eq. (1.4) is improving
our ability at making predictions from this equation that are useful for answering
chemical questions.

The Born–Oppenheimer approximation

In the early days of quantum mechanics Born and Oppenheimer[18] showed that
the energy and motion of the nuclei and electrons could be separated approximately.
This was accomplished using a perturbation treatment in which the perturbation
parameter is (me/M)1/4. In actuality, the term “Born–Oppenheimer approximation”
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is frequently ambiguous. It can refer to two somewhat different theories. The first is
the reference above and the other one is found in an appendix of the book by Born
and Huang on crystal structure[19]. In the latter treatment, it is assumed, based
upon physical arguments, that the wave function of Eq. (1.4) may be written as the
product of two other functions

�(�ri , �rα) = φ(�rα)ψ(�ri , �rα), (1.5)

where the nuclear positions�rα given inψ are parameters rather than variables in
the normal sense. Theφ is the actual wave function for nuclear motion and will not
concern us at all in this book. If Eq. (1.5) is substituted into Eq. (1.4), various terms
are collected, and small quantities dropped, we obtain what is frequently called the
Schrödinger equation for theelectronsusing theBorn–Oppenheimer approximation

− h̄2

2me

∑
i

∇2
i ψ + Vψ = E(�rα)ψ, (1.6)

where we have explicitly observed the dependence of the energy on the nuclear
positions by writing it asE(�rα). Equation (1.6) might better be termed the
Schrödinger equation for the electrons using theadiabatic approximation[20].
Of course, the only difference between this and Eq. (1.4) is the presence of the
nuclear kinetic energy in the latter. A heuristic way of looking at Eq. (1.6) is to
observe that it would arise if the masses of the nuclei all passed to infinity, i.e.,
the nuclei become stationary. Although a physically useful viewpoint, the actual
validity of such a procedure requires some discussion, which we, however, do not
give.

We now go farther, introducing atomic units and rearranging Eq. (1.6) slightly,

−1

2

∑
i

∇2
i ψ −

∑
iα

Zα

riα
ψ +

∑
i< j

1

ri j
ψ +

∑
α<β

ZαZβ

rαβ

ψ = Eeψ. (1.7)

This is the equation with which we must deal. We will refer to it so frequently,
it will be convenient to have a brief name for it. It is theelectronic Schr̈odinger
equation, and we refer to it as the ESE. Solutions to it of varying accuracy have been
calculated since the early days of quantum mechanics. Today, there exist computer
programs both commercial and in the public domain that will carry out calculations
to produce approximate solutions to the ESE. Indeed, a program of this sort is
available from the author through the Internet.3 Although not as large as some of
the others available, it will do many of the things the bigger programs will do,
as well as a couple of things they do not: in particular, this program will do VB
calculations of the sort we discuss in this book.

3 The CRUNCH program,http://phy-ggallup.unl.edu/crunch/
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1.3 The variation theorem

1.3.1 General variation functions

If we write the sum of the kinetic and potential energy operators as the Hamiltonian
operatorT + V = H , the ESE may be written as

H� = E�. (1.8)

Oneof the remarkable results of quantummechanics is the variation theorem,which
states that

W = 〈�|H |�〉
〈�|�〉 ≥ E0, (1.9)

where E0 is the lowest allowed eigenvalue for the system. The fraction in
Eq. (1.9) is frequently called theRayleigh quotient. The basic use of this result
is quite simple. One uses arguments based on similarity, intuition, guess-work, or
whatever, to devise a suitable function for�. Using Eq. (1.9) then necessarily gives
us an upper bound to the true lowest energy, and, if we have been clever or lucky,
the upper bound is a good approximation to the lowest energy. The most common
way we use this is to construct a trial function,�, that has a number of parameters
in it. The quantity,W, in Eq. (1.9) is then a function of these parameters, and a
minimization ofW with respect to the parameters gives the best result possible
within the limitations of the choice for�. We will use this scheme in a number of
discussions throughout the book.

1.3.2 Linear variation functions

A trial variation function that has linear variation parameters only is an important
special case, since it allows an analysis giving a systematic improvement on the
lowest upper bound as well as upper bounds for excited states. We shall assume that
φ1, φ2, . . . , represents a complete, normalized (but not necessarily orthogonal) set
of functions for expanding the exact eigensolutions to the ESE. Thus we write

� =
∞∑
i=1

φi Ci , (1.10)

where theCi are the variation parameters. Substituting into Eq. (1.9) we obtain

W =
∑

i j Hi j C∗
i Cj∑

i j Si j C
∗
i Cj

, (1.11)

where

Hi j = 〈φi |H |φ j 〉, (1.12)

Si j = 〈φi |φ j 〉. (1.13)
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We differentiateW with respect to theC∗
i s and set the results to zero to find the

minimum, obtaining an equation for eachC∗
i ,∑

j

(Hi j − WSi j )Cj = 0 ; i = 1, 2, . . . . (1.14)

In deriving this we have used the properties of the integralsHi j = H∗
j i and a similar

result forSi j . Equation (1.14) is discussed in all elementary textbooks wherein it is
shown that aCj = 0 solution exists only if theW has a specific set of values. It is
sometimes called thegeneralized eigenvalue problemto distinguish from the case
whenS is the identity matrix. We wish to pursue further information about theWs
here.

Let us consider a variation function where we have chosenn of the functions,
φi . We will then show that the eigenvalues of then-function problem divide,
i.e., occur between, the eigenvalues of the (n+ 1)-function problem. In making
this analysis we use an extension of the methods given by Brillouin[21] and
MacDonald[22].

Having chosenn of theφ functions to start, we obtain an equation like Eq. (1.14),
but with onlyn× n matrices andn terms,

n∑
j=1

(
Hi j − W(n)Si j

)
C(n)

j = 0 ; i = 1, 2, . . . ,n. (1.15)

It is well known that sets of linear equations like Eq. (1.15) will possess nonzero
solutions for theC(n)

j s only if the matrix of coefficients has a rank less thann.
This is another way of saying that the determinant of the matrix is zero, so we
have ∣∣H − W(n)S

∣∣ = 0. (1.16)

When expanded out, the determinant is a polynomial of degreen in the variable
W(n), and it hasn real roots ifH andS are both Hermitian matrices, andS is
positive definite. Indeed, ifSwere not positive definite, this would signal that the
basis functions were not all linearly independent, and that the basis was defective.
If W(n) takes on one of the roots of Eq. (1.16) the matrixH − W(n)S is of rank
n− 1 or less, and its rows are linearly dependent. There is thus at least one more
nonzero vector with componentsC(n)

j that can be orthogonal to all of the rows. This
is the solution we want.

It is useful to give a matrix solution to this problem. We affix a superscript(n) to
emphasize that we are discussing a matrix solution forn basis functions. SinceS(n)

is Hermitian, it may be diagonalized by a unitary matrix,T = (T †)−1

T †S(n)T = s(n) = diag
(
s(n)
1 , s(n)

2 , . . . , s(n)
n

)
, (1.17)
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where thediagonal elementsofs(n) areall real andpositive, becauseof theHermitian
and positive definite character of the overlap matrix. We may construct the inverse
square root ofs(n), and, clearly, we obtain[

T
(
s(n)

)−1/2]†
S(n)T

(
s(n)

)−1/2 = I . (1.18)

We subjectH (n) to the same transformation and obtain[
T

(
s(n)

)−1/2]†
H (n)T

(
s(n)

)−1/2 = H̄ (n), (1.19)

which is alsoHermitian andmaybediagonalizedbyaunitarymatrix,U.Combining
the various transformations, we obtain

V †H (n)V = h(n) = diag
(
h(n)

1 , h(n)
2 , . . . , h(n)

n

)
, (1.20)

V †S(n)V = I , (1.21)

V = T
(
s(n)

)−1/2
U. (1.22)

We may now combine these matrices to obtain the null matrix

V †H (n)V − V †S(n)Vh(n) = 0, (1.23)

and multiplying this on the left by (V †)−1 = U (s(n))1/2T gives

H (n)V − S(n)Vh(n) = 0. (1.24)

If we write out thekth column of this last equation, we have

n∑
j=1

(
H (n)
i j − h(n)

k S(n)
i j

)
Vjk = 0 ; i = 1, 2, . . . , n. (1.25)

When this is compared with Eq. (1.15) we see that we have solved our prob-
lem, if C(n) is thekth column ofV andW(n) is thekth diagonal element ofh(n).
Thus the diagonal elements ofh(n) are the roots of the determinantal equation
Eq. (1.16).

Now consider the variation problem withn+ 1 functions where we have added
another of the basis functions to the set. We now have the matricesH (n+1) and
S(n+1), and the new determinantal equation∣∣H (n+1) − W(n+1)S(n+1)

∣∣ = 0. (1.26)

We may subject this to a transformation by the (n+ 1)× (n+ 1) matrix

V̄ =
[
V 0
0 1

]
, (1.27)
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andH (n+1) andS(n+1) are modified to

V̄ †H (n+1)V̄ = H̄ (n+1) =




h(n)
1 0 · · · H̄ (n+1)

1n+1

0 h(n)
2 · · · H̄ (n+1)

2n+1
...

...
...

...
H̄ (n+1)

n+11 H̄ (n+1)
n+12 · · · Hn+1

n+1n+1


 (1.28)

and

V̄ †S(n+1)V̄ = S̄(n+1) =




1 0 · · · S̄(n+1)
1n+1

0 1 · · · S̄(n+1)
2n+1

...
...

.. .
...

S̄(n+1)
n+11 S̄(n+1)

n+12 · · · 1


 . (1.29)

Thus Eq. (1.26) becomes

0 =

∣∣∣∣∣∣∣∣∣∣

h(n)
1 − W(n+1) 0 · · · H̄ (n+1)

1n+1 − W(n+1)S̄(n+1)
1n+1

0 h(n)
2 − W(n+1) · · · H̄ (n+1)

2n+1 − W(n+1)S̄(n+1)
2n+1

...
...

...
...

H̄ (n+1)
n+1 1 − W(n+1)S̄(n+1)

n+1 1 H̄ (n+1)
n+1 2 − W(n+1)S̄(n+1)

n+1 2 · · · Hn+1
n+1n+1 − W(n+1)

∣∣∣∣∣∣∣∣∣∣
.

(1.30)

We modify the determinant in Eq. (1.30) by using column operations. Multiply the
i th column by

H̄ (n+1)
i n+1 − W(n+1)S̄(n+1)

i n+1

h(n)
i − W(n+1)

and subtract it from the (n+ 1)th column. This is seen to cancel thei th row element
in the last column. Performing this action for each of the firstn columns, the
determinant is converted to lower triangular form, and its value is just the product
of the diagonal elements,

0 = D(n+1)
(
W(n+1)

)
=

n∏
i=1

[
h(n)
i − W(n+1)

]

×
[
H̄ (n)

n+1n+1 − W(n+1) −
n∑

i=1

∣∣H̄ (n+1)
i n+1 − W(n+1)S̄(n+1)

i n+1

∣∣2
h(n)
i − W(n+1)

]
. (1.31)

Examination shows thatD(n+1)(W(n+1)) is a polynomial inW(n+1) of degreen+ 1,
as it should be.
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We note that none of theh(n)
i are normally roots ofD(n+1),

lim
W(n+1)→h(n)

i

D(n+1) =
∏
j =i

[
h(n)
j − h(n)

i

]∣∣H̄ (n+1)
i n+1 − h(n)

i S̄(n+1)
i n+1

∣∣2, (1.32)

and would be only if theh(n)
i were degenerate or the second factor| · · · |2 were

zero.4

Thus,D(n+1) is zero when the second [· · ·] factor of Eq. (1.31) is zero,

H̄ (n+1)
n+1n+1 − W(n+1) =

n∑
i=1

∣∣H̄ (n+1)
i n+1 − W(n+1)S̄(n+1)

i n+1

∣∣2
h(n)
i − W(n+1)

. (1.33)

It is most useful to consider the solution of Eq. (1.33) graphically by plotting both
the right and left hand sides versusW(n+1) on the same graph and determining
where the two curves cross. For this purpose let us suppose thatn = 4, and we
consider the right hand side. It will have poles on the real axis at each of theh(4)

i .
WhenW(5) becomes large in either the positive or negative direction the right hand
side asymptotically approaches the line

y =
4∑

i=1

(
H̄∗

i 5S̄i 5 + H̄ i 5S̄
∗
i 5 − W(5)

∣∣S̄(5)
i 5

∣∣2).
It is easily seen that the determinant ofS̄ is

|S̄| = 1−
4∑

i=1

∣∣S̄(5)
i 5

∣∣2 > 0, (1.34)

and, if equal to zero,Swould not be positive definite, a circumstance that would
happen only if our basis were linearly dependent. Thus, the asymptotic line of the
right hand side has a slope between 0 and –45◦. We see this in Fig. 1.1. The left
hand side of Eq. (1.33) is, on the other hand, just a straight line of exactly –45◦

slope and aW(5) intercept ofH̄ (5)
5 5. This is also shown in Fig. 1.1. The important

point we note is that the right hand side of Eq. (1.33) has five branches that in-
tersect the left hand line in five places, and we thus obtain five roots. The vertical
dotted lines in Fig. 1.1 are the values of theh(4)

i , and we see there is one of these
between each pair of roots for the five-function problem. A little reflection will
indicate that this important fact is true for anyn, not just the special case plotted in
Fig. 1.1.

4 We shall suppose neither of these possibilities occurs, and in practice neither is likely in the absence of symmetry.
If there is symmetry present that can produce degeneracy or zero factors of the [· · ·]2 sort, we assume that
symmetry factorization has been applied and that all functions we are working with are within one of the closed
symmetry subspaces of the problem.
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Figure 1.1. The relationship between the roots forn = 4 (the abscissa intercepts of the
vertical dotted lines) andn = 5 (abscissas of intersections of solid lines with solid curves)
shown graphically.

The upshot of these considerations is that a series of matrix solutions of the
variation problem, where we add one new function at a time to the basis, will
result in a series of eigenvalues in a pattern similar to that shown schematically in
Fig. 1.2, and that the order of adding the functions is immaterial. Since we suppose
that our ultimate basis (n → ∞) is complete, each of the eigenvalues will become
exact as we pass to an infinite basis, and we see that the sequence ofn-basis
solutions converges to the correct answer from above. The rate of convergence at
various levels will certainly depend upon the order in which the basis functions are
added, but not the ultimate value.

1.3.3 A 2× 2 generalized eigenvalue problem

The generalized eigenvalue problem is unfortunately considerably more compli-
cated than its regular counterpart whenS= I . There are possibilities for acciden-
tal cases when basis functions apparently should mix, but they do not. We can
give a simple example of this for a 2× 2 system. Assume we have the pair of
matrices

H =
[
A B
B C

]
(1.35)
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Figure 1.2. A qualitative graph showing schematically the interleaving of the eigenvalues
for a series of linear variation problems forn = 1, . . . , 5. The ordinate is energy.

and

S=
[

1 s
s 1

]
, (1.36)

where we assume for the argument thats > 0. We form the matrixH ′

H ′ = H − A+ C

2
S,

=
[
a b
b −a

]
, (1.37)

where

a = A− A+ C

2
(1.38)

and

b = B − A+ C

2
s. (1.39)

It is not difficult to show that the eigenvectors ofH ′ are the same as those ofH .
Our generalized eigenvalue problem thus depends upon three parameters,a,

b, ands. Denoting the eigenvalue byW and solving the quadratic equation, we
obtain

W = − sb

(1− s2)
±

√
a2(1− s2) + b2

(1− s2)
. (1.40)
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We note the possibility of an accident that cannot happen ifs = 0 andb = 0: Should
b = ±as, one of the two values ofW is either±a, and one of the two diagonal
elements ofH ′ is unchanged.5 Let us for definiteness assume thatb = asand it is
a we obtain. Then, clearly the vectorC1 we obtain is[

1
0

]
,

and there is no mixing between the states from the application of the variation
theorem. The other eigenvector is simply determined because it must be orthogonal
toC1, and we obtain

C2 =
[−s/

√
1− s2

1/
√

1− s2

]
,

so the other state is mixed. It must normally be assumed that this accident is
rare in practical calculations. Solving the generalized eigenvalue problem results
in a nonorthogonal basis changing both directions and internal angles to become
orthogonal. Thus one basis function could get “stuck” in the process. This should
be contrasted with the case whenS= I , in which basis functions are unchanged
only if the matrix was originally already diagonal with respect to them.

We do not discuss it, but there is ann× n version of this complication. If
there is no degeneracy, one of the diagonal elements of theH-matrix may be
unchanged in going to the eigenvalues, and the eigenvector associated with it is
[0, . . . , 0, 1, 0, . . . , 0]†.

1.4 Weights of nonorthogonal functions

The probability interpretation of the wave function in quantum mechanics obtained
by forming the square of its magnitude leads naturally to a simple idea for the
weights of constituent parts of the wave function when it is written as a linear
combination of orthonormal functions. Thus, if

� =
∑
i

ψi Ci , (1.41)

and〈ψi |ψ j 〉 = δi j , normalization of� requires∑
i

|Ci |2 = 1. (1.42)

If, also, each of theψi has a certain physical interpretation or significance, then
one says the wave function�, or the state represented by it, consists of a fraction

5 NB We assumed this not to happen in our discussion above of the convergence in the linear variation problem.
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|Ci |2 of the state represented byψi . One also says that theweight, wi of ψi in � is
wi = |Ci |2.

No such simple result is available for nonorthogonal bases, such as our VB
functions, because, although they are normalized, they are not mutually orthogonal.
Thus, instead of Eq. (1.42), we would have

∑
i j

C∗
i Cj Si j = 1, (1.43)

if the ψi were not orthonormal. In fact, at first glance orthogonalizing them would
mix together characteristics that one might wish to consider separately in determin-
ing weights. In the author’s opinion, there has not yet been devised a completely
satisfactory solution to this problem. In the following paragraphs we mention some
suggestions that have been made and, in addition, present yet another way of
attempting to resolve this problem.

In Section 2.8 we discuss some simple functions used to represent the H2 mole-
cule. We choose one involving six basis functions to illustrate the various methods.
The overlap matrix for the basis is




1.000 000
0.962 004 1.000 000
0.137 187 0.181 541 1.000 000

−0.254 383 −0.336 628 0.141 789 1.000 000
0.181 541 0.137 187 0.925 640 0.251 156 1.000 000
0.336 628 0.254 383 −0.251 156 −0.788 501 −0.141 789 1.000 000




,

and the eigenvector we analyze is




0.283 129
0.711 721
0.013 795

−0.038 111
−0.233 374

0.017 825




. (1.44)

S is to be filled out, of course, so that it is symmetric. The particular chemical or
physical significance of the basis functions need not concern us here.

The methods below giving sets of weights fall into one of two classes: those
that involve no orthogonalization and those that do. We take up the former group
first.
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Table 1.1.Weights for nonorthogonal basis functions
by various methods.

Chirgwin– Inverse- Symmetric
Coulson overlap orthogon. EGSOa

0.266 999 0.106 151 0.501 707 0.004 998
0.691 753 0.670 769 0.508 663 0.944 675

–0.000 607 0.000 741 0.002 520 0.000 007
0.016 022 0.008 327 0.042 909 0.002 316
0.019 525 0.212 190 0.051 580 0.047 994
0.006 307 0.001 822 0.000 065 0.000 010

a EGSO= eigenvector guided sequential orthogonalization.

1.4.1 Weights without orthogonalization

The method of Chirgwin and Coulson

These workers[23] suggest that one use

wi = C∗
i

∑
j

Si j Cj , (1.45)

although, admittedly, they proposed it only in cases where the quantities were real.
As written, thiswi is not guaranteed even to be real, and when theCi andSi j are real,
it is not guaranteed to be positive. Nevertheless, in simple cases it can give some
idea for weights. We show the results of applying this method to the eigenvector
and overlap matrix in Table 1.1 above. We see that the relative weights of basis
functions 2 and 1 are fairly large and the others are quite small.

Inverse overlap weights

Norbeck and the author[24] suggested that in cases where there is overlap, the
basis functions each can be considered to have a unique portion. The “length” of
this may be shown to be equal to the reciprocal of the diagonal of theS−1 matrix
corresponding to the basis function in question. Thus, if a basis function has a
unique portion of very short length, a large coefficient for it means little. This
suggests that a set ofrelativeweights could be obtained from

wi ∝ |Ci |2/(S−1)i i , (1.46)

where thesewi do not generally sum to 1. As implemented, these weights are
renormalizedso that theydosum to1 toprovideconvenient fractionsor percentages.
This is an awkward feature of this method and makes it behave nonlinearly in some
contexts. Although these first two methods agree as to the most important basis
function they transpose the next two in importance.
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1.4.2 Weights requiring orthogonalization

We emphasize that here we are speaking of orthogonalizing the VB basis not the
underlying atomic orbitals (AOs). This can be accomplished by a transformation
of the overlap matrix to convert it to the identity

N†SN= I . (1.47)

Investigation shows thatN is far from unique. Indeed, ifN satisfies Eq. (1.47),NU
will also work, whereU is any unitary matrix. A possible candidate forN is shown
in Eq. (1.18). If we put restrictions onN, the result can be made unique. IfN is
forced to be upper triangular, one obtains the classicalSchmidt orthogonalization
of the basis. The transformation of Eq. (1.18), as it stands, is frequently called
thecanonical orthogonalizationof the basis. Once the basis is orthogonalized the
weights are easily determined in the normal sense as

wi =
∣∣∣∣∣
∑
j

(N−1)i j Cj

∣∣∣∣∣
2

, (1.48)

and, of course, they sum to 1 exactly without modification.

Symmetric orthogonalization

Löwdin[25] suggested that one find the orthonormal set of functions that most
closely approximates the original nonorthogonal set in the least squares sense and
use these to determine the weights of various basis functions. An analysis shows
that the appropriate transformation in the notation of Eq. (1.18) is

N = T
(
s(n)

)−1/2
T † = S−1/2 = (S−1/2)†, (1.49)

which is seen to be the inverse of one of the square roots of the overlap matrix and
Hermitian (symmetric, if real). Because of this symmetry, using theN of Eq. (1.49)
is frequently called asymmetric orthogonalization. This translates easily into the
set of weights

wi =
∣∣∣∣∣
∑
j

(S1/2)i j Cj

∣∣∣∣∣
2

, (1.50)

which sums to 1 without modification. These are also shown in Table 1.1. We now
see weights that are considerably different from those in the first two columns.
w1 andw2 are nearly equal, withw2 only slightly larger. This is a direct result of
the relatively large value ofS12 in the overlap matrix, but, indirectly, we note that the
hypothesis behind the symmetric orthogonalization can be faulty. A least squares
problem like that resulting in this orthogonalization method, in principle, always
has an answer, but that gives no guarantee at all that the functions produced really
are close to the original ones. That is really the basic difficulty. Only if the overlap
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matrix were, in some sense, close to the identity would this method be expected to
yield useful results.

An eigenvector guided sequential orthogonalization (EGSO)

As promised, with this book we introduce another suggestion for determining
weights in VB functions. Let us go back to one of the ideas behind inverse overlap
weights and apply it differently. The existence of nonzero overlaps between differ-
ent basis functions suggests that some “parts” of basis functions are duplicated in
the sum making up the total wave function. At the same time, consider function 2
(the second entry in the eigenvector (1.44)). The eigenvector was determined using
linear variation functions, and clearly, there is something about function 2 that the
variation theorem likes, it has the largest (in magnitude) coefficient. Therefore, we
take all of that function in our orthogonalization, and, using a procedure analogous
to the Schmidt procedure, orthogonalize all of the remaining functions of the basis
to it. This produces a new set ofCs, and we can carry out the process again with the
largest remaining coefficient. We thus have a stepwise procedure to orthogonalize
the basis. Except for the order of choice of functions, this is just a Schmidt orthog-
onalization, which normally, however, involves an arbitrary or preset ordering.

Comparing these weights to the others in Table 1.1 we note that there is now
one truly dominant weight and the others are quite small. Function 2 is really a
considerable portion of the total function at 94.5%. Of the remaining, only function
5 at 4.8% has any size. It is interesting that the two methods using somewhat the
same idea predict the same two functions to be dominant.

If we apply this procedure to a different state, there will be a different ordering, in
general, but this is expected. The orthogonalization in this procedure is not designed
to generate a basis for general use, but is merely a device to separate characteristics
of basis functions into noninteracting pieces that allows us to determine a set of
weights. Different eigenvalues, i.e., different states, may well be quite different in
this regard.

We now outline the procedure in more detail. Deferring the question of ordering
until later, let us assume we have found an upper triangular transformation matrix,
Nk, that convertsSas follows:

(Nk)
†SNk =

[
Ik 0
0 Sn−k

]
, (1.51)

whereIk is ak × k identity, andwehavedeterminedkof theorthogonalizedweights.
We show how to determineNk+1 from Nk.

Working only with the lower right (n− k) × (n− k) corner of the matrices, we
observe thatSn−k in Eq. (1.51) is just the overlap matrix for the unreduced portion
of the basis and is, in particular, Hermitian, positive definite, and with diagonal
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elements equal to 1. We write it in partitioned form as

Sn−k =
[

1 s
s† S′

]
, (1.52)

where [1 s] is the first row of the matrix. LetMn−k be an upper triangular matrix
partitioned similarly,

Mn−k =
[

1 q
0 B

]
, (1.53)

and we determineq andB so that

(Mn−k)†Sn−kMn−k =
[

1 q + sB
(q + sB)† B†(S′ − s†s)B

]
, (1.54)

=
[

1 0
0 Sn−k−1

]
, (1.55)

where these equations may be satisfied withB the diagonal matrix

B = diag
((

1− s2
1

)−1/2 (
1− s2

2

)−1/2 · · · ) (1.56)

and

q = −sB. (1.57)

The inverse ofMn−k is easily determined:

(Mn−k)
−1 =

[
1 s
0 B−1

]
, (1.58)

and, thus,Nk+1 = NkQk, where

Qk =
[
Ik 0
0 Mn−k

]
. (1.59)

The unreduced portion of the problem is now transformed as follows:

(Cn−k)
†Sn−kCn−k = [(Mn−k)

−1Cn−k]
†(Mn−k)

†Sn−kMn−k[(Mn−k)
−1Cn−k].

(1.60)
Writing

Cn−k =
[
C1
C′

]
, (1.61)

we have

[(Mn−k)−1Cn−k] =
[
C1 + sC′
B−1C′

]
, (1.62)

=
[
C1 + sC′
Cn−k−1

]
. (1.63)

Putting these together, we arrive at the totalN asQ1Q2Q3 · · · Qn−1.
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What we have done so far is, of course, no different from a standard top-down
Schmidt orthogonalization. We wish, however, to guide the ordering with the eigen-
vector. Thisweaccomplish by inserting before eachQk abinary permutationmatrix
Pk that puts in the top position theC1 + sC′ from Eq. (1.63) that is largest in
magnitude. Our actual transformation matrix is

N = P1Q1P2Q2 · · · Pn−1Qn−1. (1.64)

Then the weights are simply as given (for basis functions in a different order) by
Eq. (1.48).Weobserve that choosingC1 + sC′ as the test quantitywhosemagnitude
is maximized is the same as choosing the remaining basis function from the unre-
duced set that at each stage gives the greatest contribution to the total wave function.

There are situations in which we would need to modify this procedure for the
results to make sense. Where symmetry dictates that two or more basis functions
should have equal contributions, the above algorithm could destroy this equality.
In these cases some modification of the procedure is required, but we do not need
this extension for the applications of the EGSO weights found in this book.




