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1

History of variational theory

The principal references for this chapter are:

[5] Akhiezer, N.I. (1962).The Calculus of Variations(Blaisdell, New York).
[26] Blanchard, P. and Br¨uning, E. (1992).Variational Methods in Mathematical Physics

(Springer-Verlag, Berlin).
[78] Dieudonné, J. (1981).History of Functional Analysis(North-Holland, Amsterdam).
[147] Goldstine, H.H. (1980).A History of the Calculus of Variations from the 17th

through the 19th Century(Springer-Verlag, Berlin).
[210] Lanczos, C. (1966).Variational Principles of Mechanics(University of Toronto

Press, Toronto).
[322] Pars, L.A. (1962).An Introduction to the Calculus of Variations(Wiley, New York).
[436] Yourgrau, W. and Mandelstam, S.(1968).Variational Principles in Dynamics and

Quantum Theory, 3rd edition (Dover, New York).

The idea that laws of nature should satisfy a principle of simplicity goes back
at least to the Greek philosophers [436]. The anthropomorphic concept that the
engineering skill of a supreme creator should result in rules of least effort or of most
efficient use of resources leads directly to principles characterized bymathematical
extrema. For example, Aristotle (DeCaelo) concluded that planetary orbits must be
perfect circles, because geometrical perfection is embodied in these curves: “. . . of
lines that return upon themselves the line which bounds the circle is the shortest.
That movement is swiftest which follows the shortest line”. Hero of Alexandria
(Catoptrics) proved perhaps the first scientific minimum principle, showing that
the path of a reflected ray of light is shortest if the angles of incidence and reflection
are equal.
The superiority of circular planetary orbits became almost a religious dogma

in the Christian era, intimately tied to the idea of the perfection of God and of
His creations. It was replaced bymodern celestial mechanics only after centuries in
which the concept of esthetic perfectionof theuniversewasgradually supersededby
a concept of esthetic perfection of a mathematical theory that could account for the
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4 1 History of variational theory

actual behavior of this universe as measured in astronomical observations. Aspects
of value-oriented esthetics lay behind Occam’s logical “razor” (avoid unnecessary
hypotheses), anticipating the later development of observational science and the
search for an explanatory theory that was both as general as possible and as simple
as possible. The path from Aristotle to Copernicus, Brahe, Kepler, Galileo, and
Newton retraces this shift froma priori purity of concepts to mathematical theory
solidly based on empirical science. The resulting theory of classical mechanics
retains extremal principles that are the basis of the variational theory presented
here in Chapter 2.
Variational principles have turned out to be of great practical use in modern

theory. They often provide a compact and general statement of theory, invariant
or covariant under transformations of coordinates or functions, and can be used to
formulate internally consistent computational algorithms. Symmetry properties are
often most easily derived in a variational formalism.

1.1 The principle of least time

The law of geometrical optics anticipated by Heroof Alexandria was formulated
by Fermat (1601–1655) as a principle of least time, consistent with Snell’s law of
refraction (1621). The time for phase transmission from pointP to pointQ along
a pathx(t) is given by

T =
∫ Q

P

ds

v(s)
, (1.1)

whereds is a path element, andv is the phase velocity. Fermat’s principle is that
the value of the integralT should be stationary with respect to any infinitesimal
deviation of the pathx(t) from its physical value. This is valid for geometrical optics
as a limiting case of wave optics. The mathematical statement is thatδT = 0 for
all variations induced by displacementsδx(t). In this and subsequent variational
formulas, differentials defined by the notationδ · · · are small increments evaluated
in the limit that quadratic infinitesimals can be neglected. Thus for sufficiently small
displacementsδx(t), the integralT varies quadratically about its physical value. For
planar reflection consider a ray path fromP : (−d, −h) to the observation point
Q : (−d, h) via an intermediate point (0, y) in the reflection planex = 0. Elapsed
time in a uniform medium is

T(y) =
{√
d2 + (h+ y)2 +

√
d2 + (h− y)2

} /
v, (1.2)

to be minimized with respect to displacements in the reflection plane parametrized
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by y. The angle of incidenceθi is defined such that

sinθi = h+ y√
d2 + (h+ y)2

and the angle of reflectionθr is defined by

sinθr = h− y√
d2 + (h− y)2

.

The law of planar reflection, sinθi = sinθr , follows immediately from

∂T

∂y
= (sinθi − sinθr )/v = 0.

ToderiveSnell’s lawof refraction, consider the ray path frompointP : (−d, −h)
to Q : (d, h) via point (0, y) in a plane that separates media of phase velocity
vi (x < 0) andvr (x > 0). The elapsed time is

T(y) = v−1
i

√
d2 + (h+ y)2 + v−1

r

√
d2 + (h− y)2. (1.3)

The variational condition is

∂T

∂y
= sinθi /vi − sinθr /vr = 0.

This determines parametery such that

sinθi

sinθr
= vi

vr
, (1.4)

giving Snell’s law for uniform refractive media.

1.2 The variational calculus

Derivation of a ray path for the geometrical optics of an inhomogeneous medium,
givenv(r ) as a function of position, requires a development of mathematics beyond
the calculus of Newton and Leibniz. The elapsed time becomes a functionalT [x(t)]
of the pathx(t), which is to be determined so thatδT = 0 for variationsδx(t)
with fixed end-points:δxP = δxQ = 0. Problems of this kind are considered in the
calculus of variations [5, 322], proposed originally by Johann Bernoulli (1696),
and extended to a full mathematical theory by Euler (1744). In its simplest form,
the concept of the variationδx(t) reduces to consideration of a modified function
xε(t) = x(t) + εw(t) in the limit ε → 0. The functionw(t) must satisfy conditions
of continuity that are compatible with those ofx(t). Thenδx(t) = w(t)dε and the
variation of the derivative function isδx′(t) = w′(t)dε.
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The problem posed by Bernoulli is that of thebrachistochrone. If two points are
connected by awire whose shape is given by an unknown functiony(x) in a vertical
plane, what shape function minimizes the time of descent of a bead sliding without
friction from the higher to the lower point? Themass of a beadmoving under gravity
is not relevant. It can easily be verified by trial and error that a straight line does not
give theminimum timeof passage.Always in suchproblems, conditionsappropriate
to physically meaningful solution functions must be specified. Although this is a
vital issue in any mathematically rigorous variational calculus, such conditions
will be stated as simply as possible here, strongly dependent on each particular
application of the theory. Clearly the assumed wire in the brachistochrone problem
must have the physical properties of a wire. This requiresy(x) to be continuous,
but does not exclude a vertical drop. Since no physical wire can have an exact
discontinuity of slope, it is reasonable to require velocity of motion along the wire
to be conserved at any such discontinuity, so that the hypothetical slidingbead does
not come to an abrupt stop or bounce with undetermined loss of momentum. It can
easily be verified that a vertical drop followed by a horizontal return to the smooth
brachistochrone curve always increases the time of passage. Thus such deviations
from continuity of the derivative function do not affect the optimal solution.
Thecalculusof variations [5, 322] is concernedwithproblems inwhicha function

is determined by a stationary variational principle. In its simplest form, the problem
is to find a functiony(x) with specified values at end-pointsx0, x1 such that the
integral J = ∫ x1

x0
f (x, y, y ′)dx is stationary. The variational solution is derived

from

δJ =
∫ {

δy
∂ f

∂y
+ δy ′ ∂ f

∂y ′

}
dx = 0

after integrating by parts to eliminateδy ′(x). Because∫
δy ′ ∂ f

∂y ′dx = δy
∂ f

∂y ′

∣∣∣∣
x1

x0

−
∫

δy
d

dx

∂ f

∂y ′dx,

δJ = 0 for fixed end-pointsδy(x0) = δy(x1) = 0 if

∂ f

∂y
− d

dx

∂ f

∂y ′ = 0. (1.5)

This is a simple example of the general form of Euler’s equation (1744), derived
directly from a variational expression.
Blanchard and Br¨uning [26] bring the history of the calculus of variations into

the twentieth century, as the source of contemporary developments in pure math-
ematics. A search for existence and uniqueness theorems for variational problems
engendered deep studies of the continuity and compactness ofmathematical entities
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that generalize the simple intuitive definitions assumed by Euler and Lagrange. The
seemingly self-evident statement that, for free variations of the functiony(x),∫ (

∂ f

∂y
− d

dx

∂ f

∂y ′

)
δydx= 0

implies Euler’s equation, was first proven rigorously byDuBois-Reymond in 1879.
With carefully stated conditions on the functionsf andy, this made it possible to
prove the fundamental theorem of the variational calculus [26], on the existence of
extremal solutions of variational problems.

1.2.1 Elementary examples

A geodesic problem requires derivation of the shortest path connecting two points
in some system for which distance is defined, subject to constraints that can be
either geometrical or physical in nature. The shortest path between two points in a
plane follows from this theory. The problem is to minimize

J =
∫ x1

x0

f (x, y, y ′)dx =
∫ x1

x0

dx

√
1+

(
dy

dx

)2

,

where

∂ f

∂x
= 0,

∂ f

∂y
= 0,

∂ f

∂y ′ = y ′√
1+ y ′2 .

In this example, Euler’s equation takes the form of the geodesic equation

d

dx

y ′√
1+ y ′2 = 0.

The solution isy ′ = const, or

y(x) = y0
x1 − x
x1 − x0 + y1

x − x0
x1 − x0 ,

a straight line through the pointsx0, y0 andx1, y1.
In Johann Bernoulli’s problem, the brachistochrone, it is required to find the

shape of a wire such that a bead slides from point 0,0 to x1, y1 in the shortest
time T under the force of gravity. The energy equation12mv2 = −mgy implies
v = √−2gy, so that

T =
∫ x1

0

ds

v
=

∫ x1

0
f (y, y ′)dx,



8 1 History of variational theory

where f (y, y ′) =
√

−(1+ y ′2)/2gy. Because∂ f/∂x = 0, the identity

d

dx

(
y ′ ∂ f

∂y ′ − f

)
= y ′

(
d

dx

∂ f

∂y ′ − ∂ f

∂y

)
,

and the Euler equation imply an integral of motion,

y ′ ∂ f
∂y ′ − f = −1√

−2gy(1+ y ′2)
= const.

On combining constants into the single parametera this implies

1+
(
dy

dx

)2

= −2a

y
.

The solution for a bead starting from rest at the coordinate origin is a cycloid,
determined by the parametric equationsx = a(φ − sinφ) and y = a(cosφ − 1).
This curve is generated by a point on the perimeter of a circle of radiusa that
rolls below thex-axis without slipping. The lowest point occurs forφ = π , with
x1 = πa andy1 = −2a. By adding a constantφ0 toφ, a can be adjusted so that the
curve passes through given pointsx0, y0 andx1, y1.

1.3 The principle of least action

Variational principles for classical mechanics originated in modern times with the
principle of least action, formulated first imprecisely by Maupertuis and then as
an example of the new calculus of variations by Euler (1744) [436]. Although not
stated explicitly by either Maupertuis or Euler, stationary action is valid only for
motion in which energy is conserved. With this proviso, in modern notation for
generalized coordinates,

δ

∫ Q

P
p · dq = 0, (1.6)

for a path from system pointP to system pointQ.
For a particle of massmmoving in the (x, y) plane with force per mass (X,Y),

instantaneous motion is described by velocityv along the trajectory. An instanta-
neous radius of curvatureρ is defined by angular momentum� = mvρ such that
the centrifugal forcemv2/ρ balances the true force normal to the trajectory. Hence,
following Euler’s derivation, Newtonian mechanics implies that

v2

ρ
= Ydx− Xdy√

dx2 + dy2
along the trajectory. The principle of least action requires the action integral
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per unit mass

∫
v ds=

∫
v dx

√
1+

(
dy

dx

)2

to be stationary. The variation ofv along the trajectory is determined for fixed
energyE = T + V by

v dv = − 1

m

(
∂V

∂x
dx+ ∂V

∂y
dy

)
= Xdx+ Ydy.

Thusv ∂v
∂x = X andv ∂v

∂y = Y. Euler’s equation then takes the form

d

dx

(
vy ′√
1+ y ′2

)
− Y

v

√
1+ y ′2 = 0,

wherey ′ = dy/dx. The local curvature of a trajectory is defined by

1

ρ
= d

dx

[
y ′/(1+ y ′2)

1
2
] = y ′′/(1+ y ′2)

3
2 .

Using this formula anddvdx = X+Yy′
v

, Euler’s equation implies

v

ρ
+ (X + Yy′)y ′

v
√
1+ y ′2 − Y

v

√
1+ y ′2 = 0.

This reproduces the formula derived directly from Newtonian mechanics:

v2

ρ
= Y − Xy′√

1+ y ′2 = Ydx− Xdy√
dx2 + dy2

.

Euler’s proof of the least action principle for a single particle (mass point in mo-
tion) was extended by Lagrange (c. 1760) to the general case ofmutually interacting
particles, appropriate to celestial mechanics. In Lagrange’s derivation [436], action
along a system path from initial coordinatesP to final coordinatesQ is defined by

A =
∑
a

ma

∫ Q

P
vadsa =

∑
a

ma

∫ Q

P
ẋa · dxa. (1.7)

Variations about a true dynamical path are defined by coordinate displacements
δxa. Velocity displacementsδẋa are constrained so as to maintain invariant total
energy. This implies modified time values at the displaced points [146]. The energy
constraint condition is

δE =
∑
a

(
maẋa · δẋa + ∂V

∂xa
· δxa

)
= 0.
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The induced variation of action is

δA =
∑
a

ma

∫ Q

P
(ẋa · dδxa + δẋa · dxa)

=
∑
a

maẋa · δxa|QP −
∑
a

ma

∫ Q

P
(dẋa · δxa − ẋadt · δẋa),

on integrating by parts and usingdxa = ẋadt. The final term here can be replaced,
using the energy constraint condition. Then, usingdẋa = ẍadt,

δA =
∑
a

maẋa · δxa|QP −
∑
a

∫ Q

P

(
maẍa + ∂V

∂xa

)
· δxadt.

If the end-points are fixed, the integrated term vanishes, andA is stationary if
and only if the final integral vanishes. Sinceδxa is arbitrary, the integrand must
vanish, which is Newton’s law of motion. Hence Lagrange’s derivation proves that
the principle of least action is equivalent to Newtonian mechanics if energy is
conserved and end-point coordinates are specified.


