VARIATIONAL PRINCIPLES AND METHODS IN THEORETICAL PHYSICS AND CHEMISTRY

This book brings together the essential ideas and methods behind current applications of variational theory in theoretical physics and chemistry. The emphasis is on understanding physical and computational applications of variational methodology rather than on rigorous mathematical formalism.

The text begins with an historical survey of familiar variational principles in classical mechanics and optimization theory, then proceeds to develop the variational principles and formalism behind current computational methodology for bound and continuum quantum states of interacting electrons in atoms, molecules, and condensed matter. It covers multiple scattering theory, as applied to electrons in condensed matter and in large molecules. The specific variational principles developed for electron scattering are then extended to include a detailed presentation of contemporary methodology for electron-impact rotational and vibrational excitation of molecules. The book also provides an introduction to the variational theory of relativistic fields, including a detailed treatment of Lorentz and gauge invariance for the nonabelian gauge field of modern electroweak theory.

Ideal for graduate students and researchers in any field that uses variational methodology, this book is particularly suitable as a backup reference for lecture courses in mathematical methods in physics and theoretical chemistry.

ROBERT K. NESBET obtained his BA in physics from Harvard College in 1951 and his PhD from the University of Cambridge in 1954. He was then a research associate in MIT for two years, before becoming Assistant Professor of Physics at Boston University. He did research at RIAS, Martin Company, Baltimore, the Institut Pasteur, Paris and Brookhaven National Laboratory, before becoming a Staff Member at IBM Almaden Research Center in San Jose in 1962. He acted as an Associate Editor for the *Journal of Computational Physics* and the *Journal of Chemical Physics*, between 1969 and 1974, and was a visiting professor at several universities throughout the world. Professor Nesbet officially retired in 1994, but has continued his research and visiting since then. Over the years he has written more than 270 publications in computational physics, atomic and molecular physics, theoretical chemistry, and solid-state physics.

VARIATIONAL PRINCIPLES AND METHODS IN THEORETICAL PHYSICS AND CHEMISTRY

ROBERT K. NESBET IBM Almaden Research Center

© Cambridge University Press

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > http://www.cambridge.org

© Robert K. Nesbet 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Nesbet, R. K. Variational principles and methods in theoretical physics and chemistry/Robert K. Nesbet. p. cm.

Includes bibliographical references and index.

ISBN 0 521 80391 8 1. Calculus of variations. 2. Mathematical physics. 3. Chemistry, Physical and theoretical–Mathematics. I. Title.

> QC20.7.C3 N48 2003 530.15'564-dc21 2002067614

ISBN 0 521 80391 8 hardback

To Anne, Susan, and Barbara

Contents

	Pre	face		p	age xiii	
Ι	Cla	ssical 1	mathema	atics and physics	1	
	1	Histo	ory of variational theory			
		1.1	The pri	nciple of least time	4	
		1.2	The var	The variational calculus		
			1.2.1	Elementary examples	7	
		1.3	The pri	nciple of least action	8	
	2	Class	ical mecl	nanics	11	
		2.1	Lagrangian formalism			
			2.1.1	Hamilton's variational principle	12	
			2.1.2	Dissipative forces	12	
			2.1.3	Lagrange multiplier method for constraints	13	
		2.2	Hamilto	onian formalism	14	
			2.2.1	The Legendre transformation	14	
			2.2.2	Transformation from Lagrangian to Hamiltonian	15	
			2.2.3	Example: the central force problem	16	
		2.3	Conser	vation laws	17	
		2.4	Jacobi's	s principle	18	
		2.5	Special	relativity	20	
			2.5.1	Relativistic mechanics of a particle	21	
			2.5.2	Relativistic motion in an electromagnetic field	22	
	3	Appli	ied mathematics		25	
		3.1	Linear	systems	25	
		3.2	_	x interpolation	26	
			3.2.1	Extremum in <i>n</i> dimensions	27	
		3.3	Iterative	e update of the Hessian matrix	28	
				The BFGS algorithm	29	
		3.4	Geome	try optimization for molecules	30	

viii

Contents

			3.4.1	The GDIIS algorithm	31
			3.4.2	The BERNY algorithm	31
Π	Boı	ind sta	tes in qu	antum mechanics	33
	4 Time-independent quantum mechanics			dent quantum mechanics	35
		4.1	Variatio	onal theory of the Schrödinger equation	36
			4.1.1	Sturm–Liouville theory	36
			4.1.2	Idiosyncracies of the Schrödinger equation	38
			4.1.3	Variational principles for the Schrödinger equation	40
			4.1.4	Basis set expansions	41
		4.2	Hellma	nn–Feynman and virial theorems	43
			4.2.1	Generalized Hellmann–Feynman theorem	43
			4.2.2	The hypervirial theorem	43
			4.2.3	The virial theorem	44
		4.3	The N-	electron problem	45
			4.3.1	The N-electron Hamiltonian	45
				Expansion in a basis of orbital wave functions	46
				The interelectronic Coulomb cusp condition	48
		4.4	Symme	try-adapted functions	49
			4.4.1	Algorithm for constructing symmetry-adapted	
				functions	50
			4.4.2	1	51
	5	Indep		lectron models	53
		5.1		tron formalism using a reference state	54
			5.1.1	Fractional occupation numbers	55
			5.1.2		56
		5.2		functional theory	57
				Explicit components of the energy functional	57
				Orbital Euler–Lagrange equations	58
			5.2.3	25	59
		5.3		–Fock theory	61
			5.3.1		61
			5.3.2		62
			5.3.3	Open-shell Hartree–Fock theory (RHF)	62
			5.3.4	Algebraic Hartree–Fock: finite basis expansions	64
			5.3.5	Multiconfiguration SCF (MCSCF)	64
		5.4	-	timized effective potential (OEP)	65
			5.4.1	Variational formulation of OEP	67
		5.5	-	functional theory (DFT)	68
			5.5.1	The Hohenberg–Kohn theorems	68
			5.5.2	Kohn–Sham equations	70

Cambridge University Press
0521803918 - Variational Principles and Methods in Theoretical Physics and Chemistry
Robert K. Nesbet
Frontmatter
More information

Contents			
5.5.3 Functional derivatives and local potentials	71		
5.5.4 Thomas–Fermi theory	72		
5.5.5 The Kohn–Sham construction	74		
6 Time-dependent theory and linear response	77		
6.1 The time-dependent Schrödinger equation for one electron	78		
6.2 The independent-electron model as a quantum field theory	79		
6.3 Time-dependent Hartree–Fock (TDHF) theory	81		
6.3.1 Operator form of Hartree–Fock equations	81		
6.3.2 The screening response	81		
6.4 Time-dependent orbital functional theory (TOFT)	83		
6.4.1 Remarks on time-dependent theory	83		
6.4.2 Exact linear response theory	84		
6.4.3 Definition of the response kernel	84		
6.5 Reconciliation of <i>N</i> -electron theory and orbital models	85		
6.6 Time-dependent density functional theory (TDFT)	86		
6.7 Excitation energies and energy gaps	89		
III Continuum states and scattering theory			
7 Multiple scattering theory for molecules and solids	93		
7.1 Full-potential multiple scattering theory	95		
7.1.1 Definitions	96		
7.1.2 Two-center expansion	96		
7.1.3 Angular momentum representation	97		
7.1.4 The surface matching theorem	99		
7.1.5 Surface integral formalism	100		
7.1.6 Muffin-tin orbitals and atomic-cell orbitals	101		
7.1.7 Tail cancellation and the global matching function	102		
7.1.8 Implementation of the theory	103		
7.2 Variational principles	104		
7.2.1 Kohn–Rostoker variational principle	104		
7.2.2 Convergence of internal sums	106		
7.2.3 Schlosser–Marcus variational principle	108		
7.2.4 Elimination of false solutions	111		
7.3 Energy-linearized methods	113		
7.3.1 The LMTO method	113		
7.3.2 The LACO method	115		
7.3.3 Variational theory of linearized methods	116		
7.4 The Poisson equation	118		
7.5 Green functions	120		
7.5.1 Definitions	121		
7.5.2 Properties of the Green function	124		

х	Contents				
			7.5.3	Construction of the Green function	125
	8	Varia	tional me	thods for continuum states	129
		8.1	Scatteri	ng by an N-electron target system	129
			8.1.1	Cross sections	132
			8.1.2	Close-coupling expansion	133
		8.2	Kohn v	ariational theory	134
			8.2.1	The matrix variational method	135
			8.2.2	The Hulthén–Kohn variational principle	137
			8.2.3	The complex Kohn method	139
		8.3	Schwin	ger variational theory	140
			8.3.1	Multichannel Schwinger theory	143
			8.3.2	Orthogonalization and transfer invariance	145
		8.4		onal <i>R</i> -matrix theory	147
			8.4.1	Variational theory of the \mathcal{R} -operator	154
			8.4.2	The \mathcal{R} -operator in generalized geometry	156
			8.4.3	Orbital functional theory of the <i>R</i> -matrix	157
	9	Elect	ron-impa	ct rovibrational excitation of molecules	161
		9.1	The loc	al complex-potential (LCP) model	163
			9.1.1	The projection-operator method	164
		9.2	Adiaba	tic approximations	166
			9.2.1	The energy-modified adiabatic	
				approximation (EMA)	168
		9.3	Vibroni	c <i>R</i> -matrix theory	169
			9.3.1	5	172
				Separation of the phase matrix	173
				Phase-matrix formalism: EMAP	174
			9.3.4	Nonadiabatic theory: NADP	175
IV				179	
	10			grangian theories	181
		10.1		al relativistic electrodynamics	182
				Classical dynamical mass	184
			10.1.2	Classical renormalization and the Dirac equation	185
		10.2	-	try and Noether's theorem	186
			10.2.1	Examples of conservation laws	187
		10.3	U	invariance	189
			10.3.1	Classical electrodynamics as a gauge theory	190
			10.3.2	Noether's theorem for gauge symmetry	191
			10.3.3	Nonabelian gauge symmetries	192
			10.3.4	Gauge invariance of the $SU(2)$ field theory	195

Contents				
10.4	10.4 Energy and momentum of the coupled fields			
	10.4.1	Energy and momentum in classical		
		electrodynamics	197	
	10.4.2	Energy and momentum in $SU(2)$ gauge theory	199	
10.5	The Standard Model			
	10.5.1	Electroweak theory (EWT)	202	
	10.5.2	Quantum chromodynamics (QCD)	203	
References and bibliography			205	
Index			225	

Preface

As theoretical physics and chemistry have developed since the great quantum revolution of the 1920s, there has been an explosive speciation of subfields, perhaps comparable to the late Precambrian period in biological evolution. The result is that these life-forms not only fail to interbreed, but can fail to find common ground even when placed in proximity on a university campus. And yet, the underlying intellectual DNA remains remarkably similar, in analogy to the findings of recent research in biology. The purpose of this present text is to identify common strands in the substrate of variational theory and to express them in a form that is intelligible to participants in these subfields. The goal is to make hard-won insights from each line of development accessible to others, across the barriers that separate these specialized intellectual niches.

Another great revolution was initiated in the last midcentury, with the introduction of digital computers. In many subfields, there has been a fundamental change in the attitude of practicing theoreticians toward their theory, primarily a change of practical goals. There is no longer a well-defined barrier between theory for the sake of understanding and theory for the sake of predicting quantitative data. Given modern resources of computational power and the coevolving development of efficient algorithms and widely accessible computer program tools, a formal theoretical insight can often be exploited very rapidly, and verified by quantitative implications for experiment. A growing archive records experimental controversies that have been resolved by quantitative computational theory.

It has been said that mathematics is queen of the sciences. The variational branch of mathematics is essential both for understanding and predicting the huge body of observed data in physics and chemistry. Variational principles and methods lie in the bedrock of theory as explanation, and theory as a quantitative computational tool. Quite simply, this is the mathematical foundation of quantum theory, and quantum theory is the foundation of all practical and empirical physics and chemistry, short of a unified theory of gravitation. With this in mind, the present text is

xiv

Preface

subdivided into four parts. The first reviews the variational concepts and formalism that developed over a long history prior to the discovery of quantum mechanics, subdivided into chapters on history, on classical mechanics, and on applied mathematics (severely truncated out of respect for the vast literature already devoted to this subject). The second part covers variational formalism and methodology in subfields concerned with bound states in quantum mechanics. There are separate chapters on time-independent quantum mechanics, on independent-electron models, which may at some point be extended to independent-fermion models as the formalism of the Standard Model evolves, and on time-dependent theory and linear response. The third part develops the variational theory of continuum states, including chapters on multiple scattering theory (the essential formalism for electronic structure calculations in condensed matter), on scattering theory relevant to the true continuum state of a quantum target and an external fermion (with emphasis on methodology for electron scattering by atoms and molecules), continuing to a separate chapter on the currently developing theory of electron-impact rotational and vibrational excitation of molecules. The fourth part develops variational theory relevant to relativistic Lagrangian field theories. The single chapter in this part derives the nonquantized field theory that underlies the quantized theory of the current Standard Model of elementary particles.

This book grew out of review articles in specialized subfields, published by the author over nearly fifty years, including a treatise on variational methods in electron–atom scattering published in 1980. Currently relevant topics have been extracted and brought up to date. References that go more deeply into each of the topics treated here are included in the extensive bibliography. The purpose is to set out the common basis of variational formalism, then to open up channels for further exploration by any reader with specialized interests. The most recent source of this text is a course of lectures given at the Scuola Normale Superiore, Pisa, Italy in 1999. These lectures were presented under the present title, but concentrated on the material in Parts I and II here. The author is indebted to Professor Renato Colle, of Bologna and the Scuola Normale, for making arrangements that made these lectures possible, and to the Scuola Normale Superiore for sponsoring the lecture series.