
I

Classical mathematics and physics

This part is concerned with variational theory prior to modern quantum
mechanics. The exception, saved for Chapter 10, is electromagnetic the-
ory as formulated by Maxwell, which was relativistic before Einstein,
and remains as fundamental as it was a century ago, the first example of a
Lorentz and gauge covariant field theory. Chapter 1 is a brief survey of the
history of variational principles, from Greek philosophers and a religious
faith in God as the perfect engineer to a set of mathematical principles that
could solve practical problems of optimization and rationalize the laws
of dynamics. Chapter 2 traces these ideas in classical mechanics, while
Chapter 3 discusses selected topics in applied mathematics concerned
with optimization and stationary principles.
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1

History of variational theory

The principal references for this chapter are:

[5] Akhiezer, N.I. (1962). The Calculus of Variations (Blaisdell, New York).
[26] Blanchard, P. and Brüning, E. (1992). Variational Methods in Mathematical Physics

(Springer-Verlag, Berlin).
[78] Dieudonné, J. (1981). History of Functional Analysis (North-Holland, Amsterdam).

[147] Goldstine, H.H. (1980). A History of the Calculus of Variations from the 17th
through the 19th Century (Springer-Verlag, Berlin).

[210] Lanczos, C. (1966). Variational Principles of Mechanics (University of Toronto
Press, Toronto).

[322] Pars, L.A. (1962). An Introduction to the Calculus of Variations (Wiley, New York).
[436] Yourgrau, W. and Mandelstam, S. (1968). Variational Principles in Dynamics and

Quantum Theory, 3rd edition (Dover, New York).

The idea that laws of nature should satisfy a principle of simplicity goes back
at least to the Greek philosophers [436]. The anthropomorphic concept that the
engineering skill of a supreme creator should result in rules of least effort or of most
efficient use of resources leads directly to principles characterized by mathematical
extrema. For example, Aristotle (De Caelo) concluded that planetary orbits must be
perfect circles, because geometrical perfection is embodied in these curves: “. . . of
lines that return upon themselves the line which bounds the circle is the shortest.
That movement is swiftest which follows the shortest line”. Hero of Alexandria
(Catoptrics) proved perhaps the first scientific minimum principle, showing that
the path of a reflected ray of light is shortest if the angles of incidence and reflection
are equal.

The superiority of circular planetary orbits became almost a religious dogma
in the Christian era, intimately tied to the idea of the perfection of God and of
His creations. It was replaced by modern celestial mechanics only after centuries in
which the concept of esthetic perfection of the universe was gradually superseded by
a concept of esthetic perfection of a mathematical theory that could account for the
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4 1 History of variational theory

actual behavior of this universe as measured in astronomical observations. Aspects
of value-oriented esthetics lay behind Occam’s logical “razor” (avoid unnecessary
hypotheses), anticipating the later development of observational science and the
search for an explanatory theory that was both as general as possible and as simple
as possible. The path from Aristotle to Copernicus, Brahe, Kepler, Galileo, and
Newton retraces this shift from a priori purity of concepts to mathematical theory
solidly based on empirical science. The resulting theory of classical mechanics
retains extremal principles that are the basis of the variational theory presented
here in Chapter 2.

Variational principles have turned out to be of great practical use in modern
theory. They often provide a compact and general statement of theory, invariant
or covariant under transformations of coordinates or functions, and can be used to
formulate internally consistent computational algorithms. Symmetry properties are
often most easily derived in a variational formalism.

1.1 The principle of least time

The law of geometrical optics anticipated by Hero of Alexandria was formulated
by Fermat (1601–1655) as a principle of least time, consistent with Snell’s law of
refraction (1621). The time for phase transmission from point P to point Q along
a path x(t) is given by

T =
∫ Q

P

ds

v(s)
, (1.1)

where ds is a path element, and v is the phase velocity. Fermat’s principle is that
the value of the integral T should be stationary with respect to any infinitesimal
deviation of the path x(t) from its physical value. This is valid for geometrical optics
as a limiting case of wave optics. The mathematical statement is that δT = 0 for
all variations induced by displacements δx(t). In this and subsequent variational
formulas, differentials defined by the notation δ · · · are small increments evaluated
in the limit that quadratic infinitesimals can be neglected. Thus for sufficiently small
displacements δx(t), the integral T varies quadratically about its physical value. For
planar reflection consider a ray path from P : (−d, −h) to the observation point
Q : (−d, h) via an intermediate point (0, y) in the reflection plane x = 0. Elapsed
time in a uniform medium is

T (y) =
{√

d2 + (h + y)2 +
√

d2 + (h − y)2
} /

v, (1.2)

to be minimized with respect to displacements in the reflection plane parametrized
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1.2 The variational calculus 5

by y. The angle of incidence θi is defined such that

sin θi = h + y√
d2 + (h + y)2

and the angle of reflection θr is defined by

sin θr = h − y√
d2 + (h − y)2

.

The law of planar reflection, sin θi = sin θr , follows immediately from

∂T

∂y
= (sin θi − sin θr )/v = 0.

To derive Snell’s law of refraction, consider the ray path from point P : (−d, −h)
to Q : (d, h) via point (0, y) in a plane that separates media of phase velocity
vi (x < 0) and vr (x > 0). The elapsed time is

T ( y) = v−1
i

√
d 2 + (h + y)2 + v−1

r

√
d 2 + (h − y)2. (1.3)

The variational condition is

∂T

∂y
= sin θi/vi − sin θr/vr = 0.

This determines parameter y such that

sin θi

sin θr
= vi

vr
, (1.4)

giving Snell’s law for uniform refractive media.

1.2 The variational calculus

Derivation of a ray path for the geometrical optics of an inhomogeneous medium,
given v(r) as a function of position, requires a development of mathematics beyond
the calculus of Newton and Leibniz. The elapsed time becomes a functional T [x(t)]
of the path x(t), which is to be determined so that δT = 0 for variations δx(t)
with fixed end-points: δxP = δxQ = 0. Problems of this kind are considered in the
calculus of variations [5, 322], proposed originally by Johann Bernoulli (1696),
and extended to a full mathematical theory by Euler (1744). In its simplest form,
the concept of the variation δx(t) reduces to consideration of a modified function
xε(t) = x(t) + εw(t) in the limit ε → 0. The function w(t) must satisfy conditions
of continuity that are compatible with those of x(t). Then δx(t) = w(t) dε and the
variation of the derivative function is δx′(t) = w′(t) dε.
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6 1 History of variational theory

The problem posed by Bernoulli is that of the brachistochrone. If two points are
connected by a wire whose shape is given by an unknown function y(x) in a vertical
plane, what shape function minimizes the time of descent of a bead sliding without
friction from the higher to the lower point? The mass of a bead moving under gravity
is not relevant. It can easily be verified by trial and error that a straight line does not
give the minimum time of passage. Always in such problems, conditions appropriate
to physically meaningful solution functions must be specified. Although this is a
vital issue in any mathematically rigorous variational calculus, such conditions
will be stated as simply as possible here, strongly dependent on each particular
application of the theory. Clearly the assumed wire in the brachistochrone problem
must have the physical properties of a wire. This requires y(x) to be continuous,
but does not exclude a vertical drop. Since no physical wire can have an exact
discontinuity of slope, it is reasonable to require velocity of motion along the wire
to be conserved at any such discontinuity, so that the hypothetical sliding bead does
not come to an abrupt stop or bounce with undetermined loss of momentum. It can
easily be verified that a vertical drop followed by a horizontal return to the smooth
brachistochrone curve always increases the time of passage. Thus such deviations
from continuity of the derivative function do not affect the optimal solution.

The calculus of variations [5, 322] is concerned with problems in which a function
is determined by a stationary variational principle. In its simplest form, the problem
is to find a function y(x) with specified values at end-points x0, x1 such that the
integral J = ∫ x1

x0
f (x, y, y ′)dx is stationary. The variational solution is derived

from

δ J =
∫ {

δy
∂ f

∂y
+ δy ′ ∂ f

∂y ′

}
dx = 0

after integrating by parts to eliminate δy ′(x). Because∫
δy ′ ∂ f

∂y ′ dx = δy
∂ f

∂y ′

∣∣∣∣
x1

x0

−
∫

δy
d

dx

∂ f

∂y ′ dx,

δ J = 0 for fixed end-points δy(x0) = δy(x1) = 0 if

∂ f

∂y
− d

dx

∂ f

∂y ′ = 0. (1.5)

This is a simple example of the general form of Euler’s equation (1744), derived
directly from a variational expression.

Blanchard and Brüning [26] bring the history of the calculus of variations into
the twentieth century, as the source of contemporary developments in pure math-
ematics. A search for existence and uniqueness theorems for variational problems
engendered deep studies of the continuity and compactness of mathematical entities
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1.2 The variational calculus 7

that generalize the simple intuitive definitions assumed by Euler and Lagrange. The
seemingly self-evident statement that, for free variations of the function y(x),∫ (

∂ f

∂y
− d

dx

∂ f

∂y ′

)
δydx = 0

implies Euler’s equation, was first proven rigorously by Du Bois-Reymond in 1879.
With carefully stated conditions on the functions f and y, this made it possible to
prove the fundamental theorem of the variational calculus [26], on the existence of
extremal solutions of variational problems.

1.2.1 Elementary examples

A geodesic problem requires derivation of the shortest path connecting two points
in some system for which distance is defined, subject to constraints that can be
either geometrical or physical in nature. The shortest path between two points in a
plane follows from this theory. The problem is to minimize

J =
∫ x1

x0

f (x, y, y ′)dx =
∫ x1

x0

dx

√
1 +

(
dy

dx

)2

,

where

∂ f

∂x
= 0,

∂ f

∂y
= 0,

∂ f

∂y ′ = y ′√
1 + y ′2 .

In this example, Euler’s equation takes the form of the geodesic equation

d

dx

y ′√
1 + y ′2 = 0.

The solution is y ′ = const, or

y(x) = y0
x1 − x

x1 − x0
+ y1

x − x0

x1 − x0
,

a straight line through the points x0, y0 and x1, y1.
In Johann Bernoulli’s problem, the brachistochrone, it is required to find the

shape of a wire such that a bead slides from point 0, 0 to x1, y1 in the shortest
time T under the force of gravity. The energy equation 1

2 mv2 = −mgy implies
v = √−2gy, so that

T =
∫ x1

0

ds

v
=

∫ x1

0
f (y, y ′) dx,
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8 1 History of variational theory

where f (y, y ′) =
√

−(1 + y ′2)/2gy. Because ∂ f/∂x = 0, the identity

d

dx

(
y ′ ∂ f

∂y ′ − f

)
= y ′

(
d

dx

∂ f

∂y ′ − ∂ f

∂y

)
,

and the Euler equation imply an integral of motion,

y ′ ∂ f

∂y ′ − f = −1√
−2gy(1 + y ′2)

= const.

On combining constants into the single parameter a this implies

1 +
(

dy

dx

)2

= −2a

y
.

The solution for a bead starting from rest at the coordinate origin is a cycloid,
determined by the parametric equations x = a(φ − sin φ) and y = a(cos φ − 1).
This curve is generated by a point on the perimeter of a circle of radius a that
rolls below the x-axis without slipping. The lowest point occurs for φ = π , with
x1 = πa and y1 = −2a. By adding a constant φ0 to φ, a can be adjusted so that the
curve passes through given points x0, y0 and x1, y1.

1.3 The principle of least action

Variational principles for classical mechanics originated in modern times with the
principle of least action, formulated first imprecisely by Maupertuis and then as
an example of the new calculus of variations by Euler (1744) [436]. Although not
stated explicitly by either Maupertuis or Euler, stationary action is valid only for
motion in which energy is conserved. With this proviso, in modern notation for
generalized coordinates,

δ

∫ Q

P
p · dq = 0, (1.6)

for a path from system point P to system point Q.
For a particle of mass m moving in the (x, y) plane with force per mass (X, Y ),

instantaneous motion is described by velocity v along the trajectory. An instanta-
neous radius of curvature ρ is defined by angular momentum � = mvρ such that
the centrifugal force mv2/ρ balances the true force normal to the trajectory. Hence,
following Euler’s derivation, Newtonian mechanics implies that

v2

ρ
= Y dx − Xdy√

dx2 + dy2

along the trajectory. The principle of least action requires the action integral
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1.3 The principle of least action 9

per unit mass

∫
v ds =

∫
v dx

√
1 +

(
dy

dx

)2

to be stationary. The variation of v along the trajectory is determined for fixed
energy E = T + V by

v dv = − 1

m

(
∂V

∂x
dx + ∂V

∂y
dy

)
= Xdx + Y dy.

Thus v ∂v
∂x = X and v ∂v

∂y = Y . Euler’s equation then takes the form

d

dx

(
vy ′√

1 + y ′2

)
− Y

v

√
1 + y ′2 = 0,

where y ′ = dy/dx . The local curvature of a trajectory is defined by

1

ρ
= d

dx

[
y ′/(1 + y ′2)

1
2
] = y ′′/(1 + y ′2)

3
2 .

Using this formula and dv
dx = X + Y y ′

v
, Euler’s equation implies

v

ρ
+ (X + Y y ′)y ′

v
√

1 + y ′2 − Y

v

√
1 + y ′2 = 0.

This reproduces the formula derived directly from Newtonian mechanics:

v2

ρ
= Y − X y ′√

1 + y ′2 = Y dx − Xdy√
dx2 + dy2

.

Euler’s proof of the least action principle for a single particle (mass point in mo-
tion) was extended by Lagrange (c. 1760) to the general case of mutually interacting
particles, appropriate to celestial mechanics. In Lagrange’s derivation [436], action
along a system path from initial coordinates P to final coordinates Q is defined by

A =
∑

a

ma

∫ Q

P
va dsa =

∑
a

ma

∫ Q

P
ẋa · d xa. (1.7)

Variations about a true dynamical path are defined by coordinate displacements
δxa . Velocity displacements δẋa are constrained so as to maintain invariant total
energy. This implies modified time values at the displaced points [146]. The energy
constraint condition is

δE =
∑

a

(
ma ẋa · δẋa + ∂V

∂xa
· δxa

)
= 0.
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10 1 History of variational theory

The induced variation of action is

δA =
∑

a

ma

∫ Q

P
(ẋa · dδxa + δẋa · dxa)

=
∑

a

ma ẋa · δxa|Q
P −

∑
a

ma

∫ Q

P
(dẋa · δxa − ẋadt · δẋa),

on integrating by parts and using dxa = ẋadt . The final term here can be replaced,
using the energy constraint condition. Then, using dẋa = ẍadt ,

δA =
∑

a

ma ẋa · δxa|Q
P −

∑
a

∫ Q

P

(
ma ẍa + ∂V

∂xa

)
· δxadt.

If the end-points are fixed, the integrated term vanishes, and A is stationary if
and only if the final integral vanishes. Since δxa is arbitrary, the integrand must
vanish, which is Newton’s law of motion. Hence Lagrange’s derivation proves that
the principle of least action is equivalent to Newtonian mechanics if energy is
conserved and end-point coordinates are specified.
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2

Classical mechanics

The principal references for this chapter are:

[26] Blanchard, P. and Brüning, E. (1992). Variational Methods in Mathematical
Physics: A Unified Approach (Springer-Verlag, Berlin).

[146] Goldstein, H. (1983). Classical Mechanics, 2nd edition (Wiley, New York).
[187] Jeffreys, H. and Jeffreys, B.S. (1956). Methods of Mathematical Physics,

3rd edition (Cambridge University Press, New York).
[208] Kuperschmidt, B.A. (1990). The Variational Principles of Dynamics (World

Scientific, New York).
[210] Lanczos, C. (1966). Variational Principles of Mechanics (University of Toronto

Press, Toronto).
[240] Mercier, A. (1959). Analytical and Canonical Formalism in Physics (Interscience,

New York).
[323] Pauli, W. (1958). Theory of Relativity, tr. G. Field (Pergamon Press, New York).
[393] Synge, J.L. (1956). Relativity: the Special Theory (Interscience, New York).
[436] Yourgrau, W. and Mandelstam, S. (1968). Variational Principles in Dynamics and

Quantum Theory, 3rd edition (Dover, New York).

2.1 Lagrangian formalism

Newton’s equations of motion, stated as “force equals mass times acceleration”,
are strictly true only for mass points in Cartesian coordinates. Many problems of
classical mechanics, such as the rotation of a solid, cannot easily be described in
such terms. Lagrange extended Newtonian mechanics to an essentially complete
nonrelativistic theory by introducing generalized coordinates q and generalized
forces Q such that the work done in a dynamical process is

∑
k Qkdqk [436]. Since

this must be the same when expressed in Cartesian coordinates, it follows that
Qk = ∑

a Xa · ∂Xa
∂qk

, where the Newtonian force is Xa = − ∂V
∂Xa

. Equivalently, if the
potential function is V ({q}) in generalized coordinates, then Qk = − ∂V

∂qk
. The New-

tonian kinetic energy T = 1
2

∑
a ma ẋ2

a defines momenta pa = ∂T
∂ ẋa

= ma ẋa , which
becomes pk = ∂T

∂ q̇k
when kinetic energy is expressed as T ({q, q̇}). The equations

of motion ṗa = X transform into ṗk = Qk . Although this can be shown by direct
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