The vitamins are a chemically disparate group of compounds whose only common feature is that they are dietary essentials that are required in small amounts for the normal functioning of the body and maintenance of metabolic integrity. Metabolically, they have diverse functions, such as coenzymes, hormones, antioxidants, mediators of cell signaling, and regulators of cell and tissue growth and differentiation. This book explores the known biochemical functions of the vitamins, the extent to which we can explain the effects of deficiency or excess, and the scientific basis for reference intakes for the prevention of deficiency and promotion of optimum health and well-being. It also highlights areas in which our knowledge is lacking and further research is required. This book provides a compact and authoritative reference volume of value to students and specialists alike in the field of nutritional biochemistry, and indeed all who are concerned with vitamin nutrition, deficiency, and metabolism.

David Bender is a Senior Lecturer in Biochemistry at University College London. He has written seventeen books, as well as numerous chapters and reviews, on various aspects of nutrition and nutritional biochemistry. His research has focused on the interactions between vitamin B6 and estrogens, which has led to the elucidation of the role of vitamin B6 in terminating the actions of steroid hormones. He is currently the Editor-in-Chief of Nutrition Research Reviews.
Nutritional Biochemistry of the Vitamins

SECOND EDITION

DAVID A. BENDER
University College London
Contents

List of Figures xvi
List of Tables xx
Preface xxiii

1 The Vitamins

1.1 Definition and Nomenclature of the Vitamins 2
1.1.1 Methods of Analysis and Units of Activity 6
1.1.2 Biological Availability 8
1.2 Vitamin Requirements and Reference Intakes 10
1.2.1 Criteria of Vitamin Adequacy and the Stages of Development of Deficiency 10
1.2.2 Assessment of Vitamin Nutritional Status 12
1.2.3 Determination of Requirements 17
1.2.3.1 Population Studies of Intake 17
1.2.3.2 Depletion/Repletion Studies 18
1.2.3.3 Replacement of Metabolic Losses 18
1.2.3.4 Studies in Patients Maintained on Total Parenteral Nutrition 19
1.2.4 Reference Intakes of Vitamins 19
1.2.4.1 Adequate Intake 23
1.2.4.2 Reference Intakes for Infants and Children 23
1.2.4.3 Tolerable Upper Levels of Intake 24
1.2.4.4 Reference Intake Figures for Food Labeling 27

2 Vitamin A: Retinoids and Carotenoids 30

2.1 Vitamin A Vitamers and Units of Activity 31
2.1.1 Retinoids 31
2.1.2 Carotenoids 33
2.1.3 International Units and Retinol Equivalents 35
2.2 Absorption and Metabolism of Vitamin A and Carotenoids 35
  2.2.1 Absorption and Metabolism of Retinol and Retinoic Acid 35
  2.2.1.1 Liver Storage and Release of Retinol 36
  2.2.1.2 Metabolism of Retinoic Acid 38
  2.2.1.3 Retinoyl Glucuronide and Other Metabolites 39
  2.2.2 Absorption and Metabolism of Carotenoids 40
    2.2.2.1 Carotene Dioxygenase 41
    2.2.2.2 Limited Activity of Carotene Dioxygenase 42
    2.2.2.3 The Reaction Specificity of Carotene Dioxygenase 43
  2.2.3 Plasma Retinol Binding Protein (RBP) 45
  2.2.4 Cellular Retinoid Binding Proteins CRBPs and CRABPs 47
2.3 Metabolic Functions of Vitamin A 49
  2.3.1 Retinol and Retinaldehyde in the Visual Cycle 49
  2.3.2 Genomic Actions of Retinoic Acid 54
    2.3.2.1 Retinoid Receptors and Response Elements 55
  2.3.3 Nongenomic Actions of Retinoids 58
    2.3.3.1 Retinoylation of Proteins 58
    2.3.3.2 Retinoids in Transmembrane Signaling 60
2.4 Vitamin A Deficiency (Xerophthalmia) 61
  2.4.1 Assessment of Vitamin A Nutritional Status 64
  2.4.1.1 Plasma Concentrations of Retinol and β-Carotene 64
  2.4.1.2 Plasma Retinol Binding Protein 65
  2.4.1.3 The Relative Dose Response (RDR) Test 66
  2.4.1.4 Conjunctival Impression Cytology 66
2.5 Vitamin A Requirements and Reference Intakes 66
  2.5.1 Toxicity of Vitamin A 68
    2.5.1.1 Teratogenicity of Retinoids 70
  2.5.2 Pharmacological Uses of Vitamin A, Retinoids, and Carotenoids 71
    2.5.2.1 Retinoids in Cancer Prevention and Treatment 71
    2.5.2.2 Retinoids in Dermatology 72
    2.5.2.3 Carotene 72
3 Vitamin D 77
  3.1 Vitamin D Vitamers, Nomenclature, and Units of Activity 78
  3.2 Metabolism of Vitamin D 79
    3.2.1 Photosynthesis of Cholecalciferol in the Skin 80
    3.2.2 Dietary Vitamin D 82
    3.2.3 25-Hydroxylation of Cholecalciferol 83
    3.2.4 Calcidiol 1α-Hydroxylase 85
    3.2.5 Calcidiol 24-Hydroxylase 85
    3.2.6 Inactivation and Excretion of Calcitriol 86
    3.2.7 Plasma Vitamin D Binding Protein (Gc-Globulin) 87
3.2.8 Regulation of Vitamin D Metabolism 87
3.2.8.1 Calcitriol 88
3.2.8.2 Parathyroid Hormone 88
3.2.8.3 Calcitonin 88
3.2.8.4 Plasma Concentrations of Calcium and Phosphate 89
3.3 Metabolic Functions of Vitamin D 89
3.3.1 Nuclear Vitamin D Receptors 91
3.3.2 Nongenomic Responses to Vitamin D 92
3.3.3 Stimulation of Intestinal Calcium and Phosphate Absorption 93
3.3.3.1 Induction of Calbindin-D 93
3.3.4 Stimulation of Renal Calcium Reabsorption 94
3.3.5 The Role of Calcitriol in Bone Metabolism 94
3.3.6 Cell Differentiation, Proliferation, and Apoptosis 96
3.3.7 Other Functions of Calcitriol 97
3.3.7.1 Endocrine Glands 98
3.3.7.2 The Immune System 98
3.4 Vitamin D Deficiency – Rickets and Osteomalacia 98
3.4.1 Nonnutritional Rickets and Osteomalacia 99
3.4.2 Vitamin D-Resistant Rickets 100
3.4.3 Osteoporosis 101
3.4.3.1 Glucocorticoid-Induced Osteoporosis 102
3.5 Assessment of Vitamin D Status 103
3.6 Requirements and Reference Intakes 104
3.6.1 Toxicity of Vitamin D 105
3.6.2 Pharmacological Uses of Vitamin D 106

4 Vitamin E: Tocopherols and Tocotrienols 109
4.1 Vitamin E Vitamers and Units of Activity 109
4.2 Metabolism of Vitamin E 113
4.3 Metabolic Functions of Vitamin E 115
4.3.1 Antioxidant Functions of Vitamin E 116
4.3.1.1 Prooxidant Actions of Vitamin E 118
4.3.1.2 Reaction of Tocopherol with Peroxynitrite 119
4.3.2 Nutritional Interactions Between Selenium and Vitamin E 120
4.3.3 Functions of Vitamin E in Cell Signaling 121
4.4 Vitamin E Deficiency 122
4.4.1 Vitamin E Deficiency in Experimental Animals 122
4.4.2 Human Vitamin E Deficiency 125
4.5 Assessment of Vitamin E Nutritional Status 125
4.6 Requirements and Reference Intakes 127
4.6.1 Upper Levels of Intake 128
4.6.2 Pharmacological Uses of Vitamin E 128
4.6.2.1 Vitamin E and Cancer 129
4.6.2.2 Vitamin E and Cardiovascular Disease 129
4.6.2.3 Vitamin E and Cataracts 129
4.6.2.4 Vitamin E and Neurodegenerative Diseases 129

5 Vitamin K 131
5.1 Vitamin K Vitamers 132
5.2 Metabolism of Vitamin K 133
5.2.1 Bacterial Biosynthesis of Menaquinones 135
5.3 The Metabolic Functions of Vitamin K 135
5.3.1 The Vitamin K-Dependent Carboxylase 136
5.3.2 Vitamin K-Dependent Proteins in Blood Clotting 139
5.3.3 Osteocalcin and Matrix Gla Protein 141
5.3.4 Vitamin K-Dependent Proteins in Cell Signaling – Gas6 142
5.4 Vitamin K Deficiency 142
5.4.1 Vitamin K Deficiency Bleeding in Infancy 143
5.5 Assessment of Vitamin K Nutritional Status 143
5.6 Vitamin K Requirements and Reference Intakes 145
5.6.1 Upper Levels of Intake 145
5.6.2 Pharmacological Uses of Vitamin K 146

6 Vitamin B1 – Thiamin 148
6.1 Thiamin Vitamers and Antagonists 148
6.2 Metabolism of Thiamin 150
6.2.1 Biosynthesis of Thiamin 153
6.3 Metabolic Functions of Thiamin 153
6.3.1 Thiamin Diphosphate in the Oxidative Decarboxylation of Oxoacids 154
6.3.1.1 Regulation of Pyruvate Dehydrogenase Activity 155
6.3.1.2 Thiamin-Responsive Pyruvate Dehydrogenase Deficiency 156
6.3.1.3 2-Oxoglutarate Dehydrogenase and the γ-Aminobutyric Acid (GABA) Shunt 156
6.3.1.4 Branched-Chain Oxo-acid Decarboxylase and Maple Syrup Urine Disease 158
6.3.2 Transketolase 159
6.3.3 The Neuronal Function of Thiamin Triphosphate 159
6.4 Thiamin Deficiency 161
6.4.1 Dry Beriberi 161
6.4.2 Wet Beriberi 162
6.4.3 Acute Pernicious (Fulminating) Beriberi – Shoshin Beriberi 162
6.4.4 The Wernicke–Korsakoff Syndrome 163
6.4.5 Effects of Thiamin Deficiency on Carbohydrate Metabolism 164
6.4.6 Effects of Thiamin Deficiency on Neurotransmitters 165
6.4.6.1 Acetylcholine 165
6.4.6.2 5-Hydroxytryptamine 165
6.4.7 Thiaminases and Thiamin Antagonists 166
Contents

6.5 Assessment of Thiamin Nutritional Status 167
6.5.1 Urinary Excretion of Thiamin and Thiochrome 167
6.5.2 Blood Concentration of Thiamin 167
6.5.3 Erythrocyte Transketolase Activation 168
6.6 Thiamin Requirements and Reference Intakes 169
6.6.1 Upper Levels of Thiamin Intake 169
6.6.2 Pharmacological Uses of Thiamin 169

7 Vitamin B₂ – Riboflavin 172
7.1 Riboflavin and the Flavin Coenzymes 172
7.2 The Metabolism of Riboflavin 175
7.2.1 Absorption, Tissue Uptake, and Coenzyme Synthesis 175
7.2.2 Riboflavin Binding Protein 177
7.2.3 Riboflavin Homeostasis 178
7.2.4 The Effect of Thyroid Hormones on Riboflavin Metabolism 178
7.2.5 Catabolism and Excretion of Riboflavin 179
7.2.6 Biosynthesis of Riboflavin 181
7.3 Metabolic Functions of Riboflavin 183
7.3.1 The Flavin Coenzymes: FAD and Riboflavin Phosphate 183
7.3.2 Single-Electron-Transferring Flavoproteins 184
7.3.3 Two-Electron-Transferring Flavoprotein Dehydrogenases 185
7.3.4 Nicotinamide Nucleotide Disulfide Oxidoreductases 185
7.3.5 Flavin Oxidases 186
7.3.6 NADPH Oxidase, the Respiratory Burst Oxidase 187
7.3.7 Molybdenum-Containing Flavoprotein Hydroxylases 188
7.3.8 Flavin Mixed-Function Oxidases (Hydroxylases) 189
7.3.9 The Role of Riboflavin in the Cryptochromes 190
7.4 Riboflavin Deficiency 190
7.4.1 Impairment of Lipid Metabolism in Riboflavin Deficiency 191
7.4.2 Resistance to Malaria in Riboflavin Deficiency 192
7.4.3 Secondary Nutrient Deficiencies in Riboflavin Deficiency 193
7.4.4 Iatrogenic Riboflavin Deficiency 194
7.5 Assessment of Riboflavin Nutritional Status 196
7.5.1 Urinary Excretion of Riboflavin 196
7.5.2 Erythrocyte Glutathione Reductase (EGR) Activation Coefficient 197
7.6 Riboflavin Requirements and Reference Intakes 197
7.7 Pharmacological Uses of Riboflavin 198

8 Niacin 200
8.1 Niacin Vitamers and Nomenclature 201
8.2 Niacin Metabolism 203
8.2.1 Digestion and Absorption 203
8.2.1.1 Unavailable Niacin in Cereals 203
8.2.2 Synthesis of the Nicotinamide Nucleotide Coenzymes 203
8.2.3 Catabolism of NAD(P) 205
8.2.4 Urinary Excretion of Niacin Metabolites 206
8.3 The Synthesis of Nicotinamide Nucleotides from Tryptophan 208
8.3.1 Picolinate Carboxylase and Nonenzymic Cyclization to Quinolinic Acid 210
8.3.2 Tryptophan Dioxygenase 211
8.3.2.1 Saturation of Tryptophan Dioxygenase with Its Heme Cofactor 211
8.3.2.2 Induction of Tryptophan Dioxygenase by Glucocorticoid Hormones 211
8.3.2.3 Induction of Tryptophan Dioxygenase by Glucagon 212
8.3.2.4 Repression and Inhibition of Tryptophan Dioxygenase by Nicotinamide Nucleotides 212
8.3.3 Kynurenine Hydroxylase and Kynureninase 212
8.3.3.1 Kynurenine Hydroxylase 213
8.3.3.2 Kynureninase 213
8.4 Metabolic Functions of Niacin 214
8.4.1 The Redox Function of NAD(P) 214
8.4.1.1 Use of NAD(P) in Enzyme Assays 215
8.4.2 ADP-Ribosyltransferases 215
8.4.3 Poly(ADP-ribose) Polymerases 217
8.4.4 cADP-Ribose and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) 219
8.5 Pellagra – A Disease of Tryptophan and Niacin Deficiency 221
8.5.1 Other Nutrient Deficiencies in the Etiology of Pellagra 222
8.5.2 Possible Pellagrogenic Toxins 223
8.5.3 The Pellagrogenic Effect of Excess Dietary Leucine 223
8.5.4 Inborn Errors of Tryptophan Metabolism 224
8.5.5 Carcinoid Syndrome 224
8.5.6 Drug-Induced Pellagra 225
8.6 Assessment of Niacin Nutritional Status 225
8.6.1 Tissue and Whole Blood Concentrations of Nicotinamide Nucleotides 226
8.6.2 Urinary Excretion of N1-Methyl Nicotinamide and Methyl Pyridone Carboxamide 226
8.7 Niacin Requirements and Reference Intakes 227
8.7.1 Upper Levels of Niacin Intake 228
8.8 Pharmacological Uses of Niacin 229
9 Vitamin B₆ 232
9.1 Vitamin B₆ Vitamers and Nomenclature 233
9.2 Metabolism of Vitamin B₆ 234
9.2.1 Muscle Pyridoxal Phosphate 236
9.2.2 Biosynthesis of Vitamin B₆ 236
9.3 Metabolic Functions of Vitamin B₆ 236
9.3.1 Pyridoxal Phosphate in Amino Acid Metabolism 237
9.3.1.1 α-Decarboxylation of Amino Acids 239
Contents

9.3.1.2 Racemization of the Amino Acid Substrate 241
9.3.1.3 Transamination of Amino Acids (Aminotransferase Reactions) 241
9.3.1.4 Steps in the Transaminase Reaction 242
9.3.1.5 Transamination Reactions of Other Pyridoxal Phosphate Enzymes 243
9.3.1.6 Transamination and Oxidative Deamination Catalyzed by Dihydropyridoxylalanine (DOPA) Decarboxylase 243
9.3.1.7 Side-Chain Elimination and Replacement Reactions 244
9.3.2 The Role of Pyridoxal Phosphate in Glycogen Phosphorylase 244
9.3.3 The Role of Pyridoxal Phosphate in Steroid Hormone Action and Gene Expression 245

9.4 Vitamin B₆ Deficiency 246
9.4.1 Enzyme Responses to Vitamin B₆ Deficiency 247
9.4.2 Drug-Induced Vitamin B₆ Deficiency 249
9.4.3 Vitamin B₆ Dependency Syndromes 250

9.5 The Assessment of Vitamin B₆ Nutritional Status 250
9.5.1 Plasma Concentrations of Vitamin B₆ 251
9.5.2 Urinary Excretion of Vitamin B₆ and 4-Pyridoxic Acid 251
9.5.3 Coenzyme Saturation of Transaminases 252
9.5.4 The Tryptophan Load Test 252
9.5.4.1 Artifacts in the Tryptophan Load Test Associated with Increased Tryptophan Dioxygenase Activity 253
9.5.4.2 Estrogens and Apparent Vitamin B₆ Nutritional Status 254
9.5.5 The Methionine Load Test 255

9.6 Vitamin B₆ Requirements and Reference Intakes 256
9.6.1 Vitamin B₆ Requirements Estimated from Metabolic Turnover 256
9.6.2 Vitamin B₆ Requirements Estimated from Depletion/Repletion Studies 257
9.6.3 Vitamin B₆ Requirements of Infants 259
9.6.4 Toxicity of Vitamin B₆ 259
9.6.4.1 Upper Levels of Vitamin B₆ Intake 260

9.7 Pharmacological Uses of Vitamin B₆ 261
9.7.1 Vitamin B₆ and Hyperhomocysteinemia 261
9.7.2 Vitamin B₆ and the Premenstrual Syndrome 262
9.7.3 Impaired Glucose Tolerance 262
9.7.4 Vitamin B₆ for Prevention of the Complications of Diabetes Mellitus 263
9.7.5 Vitamin B₆ for the Treatment of Depression 264
9.7.6 Antihypertensive Actions of Vitamin B₆ 264

9.8 Other Carbonyl Catalysts 265
9.8.1 Pyruvoyl Enzymes 266
9.8.2 Pyrroloquinoline Quinone (PQQ) and Tryptophan Tryptophylquinone (TTQ) 266
9.8.3 Quinone Catalysts in Mammalian Enzymes 268
10 Folate and Other Pterins and Vitamin B₁₂ 270

10.1 Folate Vitamers and Dietary Folate Equivalents 271

10.1.1 Dietary Folate Equivalents 271

10.2 Metabolism of Folates 273

10.2.1 Digestion and Absorption of Folates 273

10.2.2 Tissue Uptake and Metabolism of Folate 274

10.2.2.1 Poly-γ-glutamylation of Folate 275

10.2.3 Catabolism and Excretion of Folate 276

10.2.4 Biosynthesis of Pterins 276

10.3 Metabolic Functions of Folate 279

10.3.1 Sources of Substituted Folates 279

10.3.1.1 Serine Hydroxymethyltransferase 279

10.3.1.2 Histidine Catabolism 281

10.3.1.3 Other Sources of One-Carbon Substituted Folates 283

10.3.2 Interconversion of Substituted Folates 283

10.3.2.1 Methylenetetrahydrofolate Reductase 284

10.3.2.2 Disposal of Surplus One-Carbon Fragments 286

10.3.3 Utilization of One-Carbon Substituted Folates 286

10.3.3.1 Thymidylate Synthetase and Dihydrofolate Reductase 287

10.3.3.2 Dihydrofolate Reductase Inhibitors 288

10.3.3.3 The dUMP Suppression Test 289

10.3.4 The Role of Folate in Methionine Metabolism 289

10.3.4.1 The Methyl Folate Trap Hypothesis 291

10.3.4.2 Hyperhomocysteinemia and Cardiovascular Disease 292

10.4 Tetrahydrobiopterin 294

10.4.1 The Role of Tetrahydrobiopterin in Aromatic Amino Acid Hydroxylases 294

10.4.2 The Role of Tetrahydrobiopterin in Nitric Oxide Synthase 296

10.5 Molybdopterin 297

10.6 Vitamin B₁₂ Vitamers and Nomenclature 298

10.7 Metabolism of Vitamin B₁₂ 300

10.7.1 Digestion and Absorption of Vitamin B₁₂ 300

10.7.2 Plasma Vitamin B₁₂ Binding Proteins and Tissue Uptake 301

10.7.3 Bacterial Biosynthesis of Vitamin B₁₂ 303

10.8 Metabolic Functions of Vitamin B₁₂ 303

10.8.1 Methionine Synthetase 304

10.8.2 Methylmalonyl CoA Mutase 305

10.8.3 Leucine Aminopeptidase 306

10.9 Deficiency of Folic Acid and Vitamin B₁₂ 307

10.9.1 Megaloblastic Anemia 308

10.9.2 Pernicious Anemia 308

10.9.3 Neurological Degeneration in Vitamin B₁₂ Deficiency 309

10.9.4 Folate Deficiency and Neural Tube Defects 310

10.9.5 Folate Deficiency and Cancer Risk 311

10.9.6 Drug-Induced Folate Deficiency 312

10.9.7 Drug-Induced Vitamin B₁₂ Deficiency 313
10.10 Assessment of Folate and Vitamin B₁₂ Nutritional Status 313
  10.10.1 Plasma and Erythrocyte Concentrations of Folate and Vitamin B₁₂ 314
  10.10.2 The Schilling Test for Vitamin B₁₂ Absorption 315
  10.10.3 Methylmalonic Aciduria and Methylmalonic Acidemia 316
  10.10.4 Histidine Metabolism – the FIGLU Test 316
  10.10.5 The dUMP Suppression Test 317
10.11 Folate and Vitamin B₁₂ Requirements and Reference Intakes 318
  10.11.1 Folate Requirements 318
  10.11.2 Vitamin B₁₂ Requirements 318
  10.11.3 Upper Levels of Folate Intake 319
10.12 Pharmacological Uses of Folate and Vitamin B₁₂ 321

11 Biotin (Vitamin H) 324
  11.1 Metabolism of Biotin 324
    11.1.1 Bacterial Synthesis of Biotin 327
      11.1.1.1 The Importance of Intestinal Bacterial Synthesis of Biotin 329
    11.2 The Metabolic Functions of Biotin 329
      11.2.1 The Role of Biotin in Carboxylation Reactions 330
        11.2.1.1 Acetyl CoA Carboxylase 330
        11.2.1.2 Pyruvate Carboxylase 331
        11.2.1.3 Propionyl CoA Carboxylase 331
        11.2.1.4 Methylcrotonyl CoA Carboxylase 332
      11.2.2 Holocarboxylase Synthetase 332
        11.2.2.1 Holocarboxylase Synthetase Deficiency 332
      11.2.3 Biotinidase 334
        11.2.3.1 Biotinidase Deficiency 335
      11.2.4 Enzyme Induction by Biotin 335
      11.2.5 Biotin in Regulation of the Cell Cycle 336
    11.3 Biotin Deficiency 337
      11.3.1 Metabolic Consequences of Biotin Deficiency 338
        11.3.1.1 Glucose Homeostasis in Biotin Deficiency 338
        11.3.1.2 Fatty Liver and Kidney Syndrome in Biotin-Deficient Chicks 338
        11.3.1.3 Cot Death 339
      11.3.2 Biotin Deficiency in Pregnancy 340
    11.4 Assessment of Biotin Nutritional Status 340
    11.5 Biotin Requirements 341
    11.6 Avidin 341

12 Pantothenic Acid 345
  12.1 Pantothenic Acid Vitamers 345
  12.2 Metabolism of Pantothenic Acid 346
    12.2.1 The Formation of CoA from Pantothenic Acid 348
      12.2.1.1 Metabolic Control of CoA Synthesis 349
12.2.2 Catabolism of CoA 350
12.2.3 The Formation and Turnover of ACP 350
12.2.4 Biosynthesis of Pantothenic Acid 351
12.3 Metabolic Functions of Pantothenic Acid 352
12.4 Pantothenic Acid Deficiency 353
12.4.1 Pantothenic Acid Deficiency in Experimental Animals 353
12.4.2 Human Pantothenic Acid Deficiency – The Burning Foot Syndrome 354
12.5 Assessment of Pantothenic Acid Nutritional Status 355
12.6 Pantothenic Acid Requirements 355
12.7 Pharmacological Uses of Pantothenic Acid 356

13 Vitamin C (Ascorbic Acid) 357
13.1 Vitamin C Vitamers and Nomenclature 358
13.1.1 Assay of Vitamin C 359
13.2 Metabolism of Vitamin C 359
13.2.1 Intestinal Absorption and Secretion of Vitamin C 361
13.2.2 Tissue Uptake of Vitamin C 361
13.2.3 Oxidation and Reduction of Ascorbate 362
13.2.4 Metabolism and Excretion of Ascorbate 363
13.3 Metabolic Functions of Vitamin C 364
13.3.1 Dopamine β-Hydroxylase 365
13.3.2 Peptidyl Glycine Hydroxylase (Peptide α-Aimidase) 366
13.3.3 2-Oxoglutarate–Linked Iron–Containing Hydroxylases 367
13.3.4 Stimulation of Enzyme Activity by Ascorbate In Vitro 369
13.3.5 The Role of Ascorbate in Iron Absorption and Metabolism 369
13.3.6 Inhibition of Nitrosamine Formation by Ascorbate 370
13.3.7 Pro- and Antioxidant Roles of Ascorbate 371
13.3.7.1 Reduction of the Vitamin E Radical by Ascorbate 371
13.3.8 Ascorbic Acid in Xenobiotic and Cholesterol Metabolism 371
13.4 Vitamin C Deficiency – Scurvy 372
13.4.1 Anemia in Scurvy 373
13.5 Assessment of Vitamin C Status 374
13.5.1 Urinary Excretion of Vitamin C and Saturation Testing 374
13.5.2 Plasma and Leukocyte Concentrations of Ascorbate 374
13.5.3 Markers of DNA Oxidative Damage 376
13.6 Vitamin C Requirements and Reference Intakes 376
13.6.1 The Minimum Requirement for Vitamin C 376
13.6.2 Requirements Estimated from the Plasma and Leukocyte Concentrations of Ascorbate 378
13.6.3 Requirements Estimated from Maintenance of the Body Pool of Ascorbate 378
13.6.4 Higher Recommendations 379
13.6.4.1 The Effect of Smoking on Vitamin C Requirements 380
Contents

13.6.5 Safety and Upper Levels of Intake of Vitamin C 380
  13.6.5.1 Renal Stones 380
  13.6.5.2 False Results in Urine Glucose Testing 381
  13.6.5.3 Rebound Scurvy 381
  13.6.5.4 Ascorbate and Iron Overload 382
13.7 Pharmacological Uses of Vitamin C 382
  13.7.1 Vitamin C in Cancer Prevention and Therapy 382
  13.7.2 Vitamin C in Cardiovascular Disease 383
  13.7.3 Vitamin C and the Common Cold 383

14 Marginal Compounds and Phytonutrients 385
  14.1 Carnitine 385
    14.1.1 Biosynthesis and Metabolism of Carnitine 386
    14.1.2 The Possible Essentiality of Carnitine 388
    14.1.3 Carnitine as an Ergogenic Aid 388
  14.2 Choline 389
    14.2.1 Biosynthesis and Metabolism of Choline 389
    14.2.2 The Possible Essentiality of Choline 391
  14.3 Creatine 392
  14.4 Inositol 393
    14.4.1 Phosphatidylinositol in Transmembrane Signaling 394
    14.4.2 The Possible Essentiality of Inositol 394
  14.5 Taurine 396
    14.5.1 Biosynthesis of Taurine 396
    14.5.2 Metabolic Functions of Taurine 398
    14.5.2.1 Taurine Conjugation of Bile Acids 398
    14.5.2.2 Taurine in the Central Nervous System 398
    14.5.2.3 Taurine and Heart Muscle 399
    14.5.3 The Possible Essentiality of Taurine 399
  14.6 Ubiquinone (Coenzyme Q) 400
  14.7 Phytonutrients: Potentially Protective Compounds in Plant Foods 401
    14.7.1 Allyl Sulfur Compounds 401
    14.7.2 Flavonoids and Polyphenols 402
    14.7.3 Glucosinolates 403
    14.7.4 Phytoestrogens 404

Bibliography 409
Index 463
List of Figures

1.1. Derivation of reference intakes of nutrients. 22
1.2. Derivation of requirements or reference intakes for children. 24
1.3. Derivation of reference intake (RDA) and tolerable upper level (UL) for a nutrient. 25
2.1. Major physiologically active retinoids. 32
2.2. Major dietary carotenoids. 34
2.3. Oxidative cleavage of \( \beta \)-carotene by carotene dioxygenase. 41
2.4. Potential products arising from enzymic or nonenzymic symmetrical or asymmetric oxidative cleavage of \( \beta \)-carotene. 44
2.5. Role of retinol in the visual cycle. 51
2.6. Interactions of all-trans- and 9-cis-retinoic acids (and other active retinoids) with retinoid receptors. 56
2.7. Retinoylation of proteins by retinol CoA. 59
2.8. Retinoylation of proteins by 4-hydroxyretinoic acid. 60
3.1. Vitamin D vitamers. 78
3.2. Synthesis of calcitriol from 7-dehydrocholesterol in the skin. 81
3.3. Metabolism of calcitriol to yield calcitriol and 24-hydroxycalcidiol. 84
4.1. Vitamin E vitamers. 110
4.2. Stereocchemistry of \( \alpha \)-tocopherol. 112
4.3. Reaction of tocopherol with lipid peroxides. 114
4.4. Resonance forms of the vitamin E radicals. 117
4.5. Role of vitamin E as a chain-perpetuating prooxidant. 118
4.6. Reactions of \( \alpha \) - and \( \gamma \)-tocopherol with peroxynitrite. 119
5.1. Vitamin K vitamers. 132
5.2. Reaction of the vitamin K-dependent carboxylase. 137
5.3. Intrinsic and extrinsic blood clotting cascades. 140
6.1. Thiamin and thiamin analogs. 149
6.2. Reaction of the pyruvate dehydrogenase complex. 154
6.3. GABA shunt as an alternative to \( \alpha \)-ketoglutarate dehydrogenase in the citric acid cycle. 157
6.4. Role of transketolase in the pentose phosphate pathway. 160
7.1. Riboflavin, the flavin coenzymes and covalently bound flavins in proteins. 173
7.2. Products of riboflavin metabolism. 180
7.3. Biosynthesis of riboflavin in fungi. 182
7.4. One- and two-electron redox reactions of riboflavin. 184
7.5. Reaction of glutathione peroxidase and glutathione reductase. 186
7.6. Drugs that are structural analogs of riboflavin and may cause deficiency. 195
8.1. Niacin vitamins, nicotinamide and nicotinic acid, and the nicotinamide nucleotide coenzymes. 202
8.2. Synthesis of NAD from nicotinamide, nicotinic acid, and quinolinic acid. 204
8.3. Metabolites of nicotinamide and nicotinic acid. 207
8.4. Pathways of tryptophan metabolism. 209
8.5. Redox function of the nicotinamide nucleotide coenzymes. 215
8.6. Reactions of ADP-riboyltransferase and poly(ADP-ribose) polymerase. 216
8.7. Reactions catalyzed by ADP ribose cyclase. 220
9.1. Interconversion of the vitamin B₆ vitamins. 233
9.2. Reactions of pyridoxal phosphate-dependent enzymes with amino acids. 238
9.3. Transamination of amino acids. 241
9.4. Tryptophan load test for vitamin B₆ status. 248
9.5. Methionine load test for vitamin B₆ status. 255
9.6. Quinone catalysts. 267
10.1. Folate vitamins. 272
10.2. Biosynthesis of folic acid and tetrahydrobiopterin. 277
10.3. One-carbon substituted tetrahydrofolic acid derivatives. 280
10.4. Sources and uses of one-carbon units bound to folate. 281
10.5. Reactions of serine hydroxymethyltransferase and the glycine cleavage system. 281
10.6. Catabolism of histidine – basis of the FIGLU test for folate status. 282
10.7. Reaction of methylene-tetrahydrofolate reductase. 284
10.8. Synthesis of thymidine monophosphate. 287
10.9. Metabolism of methionine. 290
10.10. Role of tetrahydrobiopterin in aromatic amino acid hydroxylases. 295
10.11. Reaction of nitric oxide synthase. 297
10.12. Vitamin B₁₂. 299
10.13. Reactions of propionyl CoA carboxylase and methylmalonyl CoA mutase. 305
11.1. Metabolism of biotin. 325
11.2. Biotin metabolites. 326
List of Figures

11.3. Biosynthesis of biotin. 328
12.1. Pantothenic acid and related compounds and coenzyme A. 346
12.2. Biosynthesis of coenzyme A. 347
12.3. Biosynthesis of pantothenic acid. 351
13.1. Vitamin C vitamers. 358
13.2. Biosynthesis of ascorbate. 360
13.3. Redox reactions of ascorbate. 363
13.4. Synthesis of the catecholamines. 365
13.5. Reactions of peptidyl glycine hydroxylase and peptidyl hydroxyglycine α-amidating lyase. 366
13.6. Reaction sequence of prolyl hydroxylase. 368
14.1. Reaction of carnitine acyltransferase. 386
14.2. Biosynthesis of carnitine. 387
14.3. Biosynthesis of choline and acetylcholine. 390
14.4. Catabolism of choline. 391
14.5. Synthesis of creatine. 392
14.6. Formation of inositol trisphosphate and diacylglycerol. 395
14.7. Pathways for the synthesis of taurine from cysteine. 397
14.8. Ubiquinone. 400
14.9. Allyl sulfur compounds allicin and alliin. 402
14.10. Major classes of flavonoids. 403
14.11. Glucosinolates. 404
14.12. Estradiol and the major phytoestrogens. 405
List of Tables

| 1.1. The Vitamins                          | 3 |
| 1.2. Compounds that Were at One Time Assigned Vitamin Nomenclature, But Are Not Considered to Be Vitamins | 5 |
| 1.3. Marginal Compounds that Are (Probably) Not Dietary Essentials | 6 |
| 1.4. Compounds that Are Not Dietary Essentials, But May Have Useful Protective Actions | 7 |
| 1.5. Reference Nutrient Intakes of Vitamins, U.K., 1991 | 13 |
| 1.8. Recommended Nutrient Intakes for Vitamins, FAO/WHO, 2001 | 16 |
| 1.9. Terms that Have Been Used to Describe Reference Intakes of Nutrients | 21 |
| 1.10. Toxicity of Vitamins: Upper Limits of Habitual Consumption and Tolerable Upper Limits of Intake | 26 |
| 2.1. Prevalence of Vitamin A Deficiency among Children under Five | 61 |
| 2.2. WHO Classification of Xerophthalmia | 63 |
| 2.3. Biochemical Indices of Vitamin A Status | 65 |
| 2.4. Reference Intakes of Vitamin A | 67 |
| 2.5. Prudent Upper Levels of Habitual Intake | 69 |
| 3.1. Nomenclature of Vitamin D Metabolites | 79 |
| 3.2. Plasma Concentrations of Vitamin D Metabolites | 80 |
| 3.3. Genes Regulated by Calcitriol | 90 |
| 3.4. Plasma Concentrations of Calcidiol, Alkaline Phosphatase, Calcium, and Phosphate as Indices of Nutritional Status | 104 |
| 3.5. Reference Intakes of Vitamin D | 105 |
| 4.1. Relative Biological Activity of the Vitamin E Vitamers | 111 |
| 4.2. Responses of Signs of Vitamin E or Selenium Deficiency to Vitamin E, Selenium, and Synthetic Antioxidants in Experimental Animals | 123 |
List of Tables

4.3. Indices of Vitamin E Nutritional Status 126
5.1. Reference Intakes of Vitamin K 146
6.1. Indices of Thiamin Nutritional Status 168
6.2. Reference Intakes of Thiamin 170
7.1. Tissue Flavins in the Rat 176
7.2. Urinary Excretion of Riboflavin Metabolites 181
7.3. Reoxidation of Reduced Flavins in Flavoprotein Oxidases 187
7.4. Reoxidation of Reduced Flavins in Flavin Mixed-Function Oxidases 190
7.5. Indices of Riboflavin Nutritional Status 196
7.6. Reference Intakes of Riboflavin 198
8.1. Indices of Niacin Nutritional Status 227
8.2. Reference Intakes of Niacin 228
9.1. Pyridoxal Phosphate-Catalyzed Enzyme Reactions of Amino Acids 237
9.2. Amines Formed by Pyridoxal Phosphate-Dependent Decarboxylases 240
9.3. Transamination Products of the Amino Acids 242
9.4. Vitamin B6-Responsive Inborn Errors of Metabolism 250
9.5. Indices of Vitamin B6 Nutritional Status 251
9.6. Reference Intakes of Vitamin B6 258
10.1. Adverse Effects of Hyperhomocysteinemia 293
10.2. Indices of Folate and Vitamin B12 Nutritional Status 315
10.3. Reference Intakes of Folate 319
10.4. Reference Intakes of Vitamin B12 320
11.1. Abnormal Urinary Organic Acids in Biotin Deficiency and Multiple Carboxylase Deficiency from Lack of Holo-carboxylase Synthetase or Biotinidase 333
13.1. Vitamin C-Dependent 2-Oxoglutarate-linked Hydroxylases 367
13.2. Plasma and Leukocyte Ascorbate Concentrations as Criteria of Vitamin C Nutritional Status 375
13.3. Reference Intakes of Vitamin C 377
Preface

In the preface to the first edition of this book, I wrote that one stimulus to write it had been teaching a course on nutritional biochemistry, in which my students had raised questions for which I had to search for answers. In the intervening decade, they have continued to stimulate me to try to answer what are often extremely searching questions. I hope that the extent to which helping them through the often conflicting literature has clarified my thoughts is apparent to future students who will use this book and that they will continue to raise questions for which we all have to search for answers.

The other stimulus to write the first edition of this book was my membership of United Kingdom and European Union expert committees on reference intakes of nutrients, which reported in 1991 and 1993, respectively. Since these two committees completed their work, new reference intakes have been published for use in the United States and Canada (from 1997 to 2001) and by the United Nations Food and Agriculture Organization/World Health Organization (in 2001). A decade ago, the concern of those compiling tables of reference intakes was on determining intakes to prevent deficiency. Since then, the emphasis has changed from prevention of deficiency to the promotion of optimum health, and there has been a considerable amount of research to identify biomarkers of optimum, rather than minimally adequate, vitamin status. Epidemiological studies have identified a number of nutrients that appear to provide protection against cancer, cardiovascular, and other degenerative diseases. Large-scale intervention trials with supplements of individual nutrients have, in general, yielded disappointing results, but these have typically been relatively short-term (typically 5–10 years); the obvious experiments would require lifetime studies, which are not technically feasible.

The purpose of this book is to review what we know of the biochemistry of the vitamins, and to explain the extent to which this knowledge explains
the clinical signs of deficiency, the possible benefits of higher intakes than are obtained from average diets, and the adverse effects of excessive intakes.

In the decade since the first edition was published, there have been considerable advances in our knowledge: novel functions of several of the vitamins have been elucidated; and the nutritional biochemist today has to interact with structural biochemists, molecular, cell, and developmental biologists and geneticists, as well as the traditional metabolic biochemist. Despite the advances, there are still major unanswered questions. We still cannot explain why deficiency of three vitamins required as coenzymes in energy-yielding metabolism results in diseases as diverse as fatal neuritis and heart disease of thiamin deficiency, painful cracking of the tongue and lips of riboflavin deficiency, or photosensitive dermatitis, depressive psychosis, and death associated with niacin deficiency.

This book is dedicated in gratitude to those whose painstaking work over almost 100 years since the discovery of the first accessory food factor in 1906 has established the basis of our knowledge, and in hope to those who will attempt to answer the many outstanding questions in the years to come.

David A. Bender

August 2002

London