RF PHOTONIC TECHNOLOGY IN OPTICAL FIBER LINKS

In many applications, radio-frequency (RF) signals need to be transmitted and processed without being digitalized. These analog applications include CATV, antenna remoting, phased array antenna and radar amongst others. Optical fiber provides a transmission medium in which RF modulated optical carriers can be transmitted and distributed with very low loss. With modulation and demodulation of the optical carrier at the sending and receiving ends, the optical fiber system functions like a low-loss analog RF transmission, distribution, and signal processing system. RF photonic fiber technology has particular advantages in that it is more efficient, less complex, and less costly than conventional electronic systems, especially at high microwave and millimeter wave frequencies. Analog signal processing of RF signals can be achieved optically while the signal is being transmitted along the optical carrier. Examples of such processing techniques include up- and down-conversion of RF frequencies, true time delay of RF signals, and optical distribution of RF clocks.

This volume presents a review of RF photonic components, transmission systems, and signal processing examples in optical fibers from the leading academic, government, and industry scientists working in this field. It discusses important concepts such as RF efficiency, nonlinear distortion, spurious free dynamic range, and noise figures. This is followed by an introduction to various related technologies such as direct modulation of laser sources, external modulation techniques (including lithium niobate modulators, polymer modulators and semiconductor electroabsorption modulators), and detectors. In addition, several examples of RF photonic signal processing technology, such as the phased array, the optoelectronic oscillator, and up and down RF frequency conversion and mixing, are presented. These will stimulate new ideas for applications in RF photonic signal processing.

RF Photonic Technology in Optical Fiber Links will be a valuable reference source for professionals and academics engaged in the research and development of optical fibers and analog RF applications. The text is aimed at engineers and scientists with a graduate-school education in physics or engineering. With an emphasis on design, performance, and practical application, this book will be of particular interest to those developing novel systems based on this technology.

William Chang pioneered microwave laser and optical laser research at Stanford University between 1957 and 1959, whilst working as a lecturer and research associate. He subsequently joined the Ohio State University and established quantum electronic research there between 1959 and 1962. He became Professor
and Chairman of the Electrical Engineering Department at Washington University, St. Louis in 1965, where he initiated research into guided wave and opto-electronic devices. In 1979 Professor Chang joined the University of California at San Diego and founded the well-known electronic device and materials group, as well as chairing the Department of Electrical and Computer Engineering from 1993 to 1996. He was made an Emeritus Professor of the department in 1997. Professor Chang has published more than 140 research papers on optical guided-wave research which in recent years have focused particularly on multiple quantum well electroabsorption modulators in III–V semiconductors.

p. cm.

Includes bibliographical references.

ISBN 0 521 80375 6

1. Optical communications. 2. Fiber optics. 3. Radio frequency modulation. 4. Photonics. I. Title: Radio frequency photonic technology in optical fiber links. II. Chang, William S. C. (William Shen-chi), 1931-

TK5103.59 R47 2002

621.38275–dc21 2001052858

ISBN 0 521 80375 6 hardback
Contents

List of contributors xiii
Introduction and preface xv

1 Figures of merit and performance analysis of photonic microwave links 1
 1.1 Introduction 1
 1.2 Gain and frequency response 3
 1.2.1 The p_{2m}/p_{s} of directly modulated laser links 5
 1.2.2 The p_{2m}/p_{s} of external modulation links 9
 1.2.3 The p_{l}/p_{2l} of photodetectors 15
 1.2.4 General comments on link gain 17
 1.3 Noise figure 18
 1.3.1 Noise sources and their models 19
 1.3.2 Noise figure analysis of representative links 21
 1.3.3 Limits on noise figure 24
 1.4 Distortions in RF links 25
 1.4.1 A graphical illustration of SFDR 28
 1.4.2 An alternative graphical representation of nth order distortion free DR 30
 1.4.3 General comments on dynamic range 32
 1.5 Summary and conclusion 32
References 33

2 RF subcarrier links in local access networks 35
 2.1 Introduction 35
 2.2 Overview of local access networks 36
 2.2.1 Broadcast networks 36
 2.2.2 Switched networks 37
 2.2.3 Evolution and revolution 38
Contents

2.3 RF subcarrier lightwave technology 38
 2.3.1 Linear lightwave technology 39
 2.3.2 Low-cost lightwave 46

2.4 System design and requirements 48
 2.4.1 End-to-end HFC system design 48
 2.4.2 Architecture evolution and its impact 50

2.5 Summary 53
 References 53

3 Analog modulation of semiconductor lasers Joachim Piprek and John E. Bowers 57
 3.1 Introduction 57
 3.2 Laser diode fundamentals 58
 3.2.1 Gain, loss and recombination rates 58
 3.2.2 Basic laser structures 60
 3.2.3 Threshold current and slope efficiency 62
 3.3 Rate equation analysis 63
 3.3.1 Single mode rate equations 63
 3.3.2 Small signal analysis 65
 3.3.3 Equivalent circuits and parasitics 66
 3.4 Intensity modulation 67
 3.4.1 Fundamental response characteristics 67
 3.4.2 Intensity noise 68
 3.4.3 Harmonic and intermodulation distortion 70
 3.4.4 Dynamic range 72
 3.5 Frequency modulation 74
 3.5.1 Modulation characteristics 74
 3.5.2 Frequency noise and linewidth 75
 3.6 Conclusion 76
 References 76

4 LiNbO3 external modulators and their use in high performance analog links Gary E. Betts 81
 4.1 Introduction 81
 4.2 Basic modulator designs 82
 4.2.1 Mach–Zehnder interferometric modulator 84
 4.2.2 Directional coupler 90
 4.2.3 Other designs based on refractive index change 95
 4.2.4 Electroabsorption 98
 4.2.5 Specific details of lithium niobate material 99
 4.3 Modulator effects on link performance 103
 4.3.1 Link transfer function (gain and distortion) 103
Contents

4.3.2 Linearization 111
4.3.3 Optimization of link performance (noise figure and dynamic range) 121
References 129

5 Broadband traveling wave modulators in LiNbO$_3$ Marta M. Howerton and William K. Burns 133
5.1 Introduction 133
5.2 Early work 134
5.2.1 Basic traveling wave design and velocity mismatch derivation 134
5.2.2 Electrode structures 137
5.2.3 Early broadband traveling wave modulators 138
5.2.4 Artificial velocity matching 139
5.3 True velocity matching 143
5.3.1 Tailoring the buffer layer and electrode geometry 143
5.3.2 Effect of electrode wall angle 146
5.4 Microwave loss 147
5.4.1 Coupling to substrate modes 147
5.4.2 Losses in active and non-active regions 150
5.4.3 Dependence of optical response on microwave loss, velocity mismatch, and impedance mismatch 151
5.4.4 Low frequency acoustic effects 153
5.5 Etched ridge modulator 154
5.5.1 Motivation and design 154
5.5.2 Performance 155
5.6 Trend to low V_p devices 158
5.6.1 Long single-pass modulator and reflection modulator 158
5.6.2 Further research on low drive voltage, broadband modulators 160
5.6.3 Voltage minimization design 160
5.7 Conclusion 162
References 162

6 Multiple quantum well electroabsorption modulators for RF photonic links William S. C. Chang 165
6.1 Introduction 165
6.1.1 Introduction to the MQW EA modulator 167
6.1.2 Exciton absorption and the quantum confined Stark effect (QCSE) 173
6.1.3 Figures of merit of EA modulators 175
6.2 Analysis and design of p-i-n modulators 179
vi

Contents

6.3 Growth and characterization of MQW heterostructures 181
6.3.1 Selection of material composition 181
6.3.2 Materials characterization 183
6.3.3 Qn and EA characteristics 185
6.3.4 Growth of the waveguide structure 186
6.4 Fabrication and performance of p-i-n modulators 186
6.4.1 Fabrication of p-i-n modulators 186
6.4.2 Measured performance of MQW WA WG p-i-n modulators 188
6.4.3 Linearization of MQW EA modulators 189
6.5 Traveling wave EA modulators 194
6.6 EA modulation in a resonator 198
References 200

7 Polymer modulators for RF photonics 203
7.1 Benefits of polymer modulators 203
7.2 Benefits for RF links 204
7.3 Electro-optic polymer materials 206
7.3.1 Chromophores 207
7.3.2 Guest-host and attached polymers 208
7.3.3 Thermoplastic, thermoset, and crosslinked polymers 208
7.3.4 Cladding materials 209
7.4 Methods of fabrication 209
7.4.1 Device design 209
7.4.2 Polymer deposition 210
7.4.3 Waveguide patterning and electrode fabrication 211
7.4.4 Poling 212
7.4.5 Endface preparation 213
7.4.6 Packaging 214
7.5 Frequency response 214
7.6 Approaches to low half-wave voltage 220
7.6.1 Dependence of \(V_\pi \) on material and device parameters 220
7.6.2 Geometrical factors 220
7.6.3 Material factors 223
7.7 Summary 227
References 227

8 Photodiodes for high performance analog links 231
8.1 Introduction 231
8.1.1 Definitions 231
8.1.2 Receiver figures of merit for analog links 235
x

Contents
10.2.2 Harmonic carrier generation using integrated optical modulators 301
10.2.3 Optical local oscillator generation comparison 306
10.3 Microwave frequency converting photonic links 309
 10.3.1 Frequency conversion configurations 309
 10.3.2 Link gain and noise suppression 316
 10.3.3 Dynamic range 323
 10.3.4 Applications 325
10.4 Summary 326
 Acknowledgements 327
 References 327
11 Antenna-coupled millimeter-wave electro-optical modulators William B. Bridges 335
 11.1 Introduction 335
 11.2 Velocity mismatch in traveling wave electro-optic modulators 336
 11.3 RF loss in the traveling wave electrodes 338
 11.4 “True” velocity matching 339
 11.5 Velocity matching “on the average” by phase shifts 340
 11.6 Velocity matching on the average with a corporate feed 343
 11.7 Effect of transmission line loss in N re-phased segments 344
 11.8 Antenna-coupled modulators – initial experiments 346
 11.9 Millimeter-wave modulator experiments at Caltech 352
 11.9.1 A 60 GHz phase modulator 352
 11.9.2 A 94 GHz Mach–Zehnder modulator 355
 11.9.3 A 94 GHz directional coupler modulator 356
 11.9.4 The slot Vee Mach–Zehnder modulator 362
 11.10 Other antenna-coupled modulators 369
 11.11 Summary and suggestions for future projects in antenna-coupled modulators 373
 Acknowledgements 374
 References 374
12 System design and performance of wideband photonic phased array antennas Gregory L. Tangonan, Willie Ng, Daniel Yap, and Ron Stephens 377
 12.1 Introduction 377
 12.2 Modern wideband arrays 378
 12.3 LO distribution as an example of RF photonic signal remoting 381
 12.4 Demonstrations of wideband photonically controlled phased arrays 385
12.4.1 Phase steering and true time delay (TTD) steering for wideband arrays 385
12.4.2 True time delay demonstration systems 386
12.4.3 Dual band transmit array 387
12.4.4 L-band conformal radar with 96 elements 388
12.4.5 SHF SATCOM array for transmit and receive 391
12.4.6 Multibeam Rotman lens array controlled by an RF-heterodyne photonic BFN 393
12.5 New architectures for photonic beam steering 396
Acknowledgements 398
References 398
Index 401
Contributors

Garry E. Betts
MIT Lincoln Laboratory
Lexington, MA 02173-9108, USA

John E. Bowers
Department of Electrical and Computer Engineering
University of California Santa Barbara
CA 93106, USA

William B. Bridges
California Institute of Technology
M/S 136-93, 1200 E. California Blvd.
Pasadena, CA 91125, USA

William K. Burns
Naval Research Laboratory
Washington DC, 20375-5000, USA

William S. Chang
Department of Electrical and Computer Engineering
University of California San Diego
La Jolla, CA 92093-0407, USA

Charles Cox
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

Roger Helkey
Chromisys Corp.
25 Castilian Drive
Goleta, CA 93117, USA

Marta M. Howerton
Naval Research Laboratory
Washington DC, 20375-5000, USA

Ronald T. Logan
Phasebridge Inc.
859 S. Raymond Avenue
Pasadena, CA 91105, USA

Xiaolin Lu
Morning Forest, LLC
Highlands Ranch,
CO, USA

Willie Ng
HRL Laboratories, LLC
M/S RL64, 3011 Malibu Canyon Road
Malibu, CA 90265, US

Stephan A. Pappert
Lightwave Solutions, Inc.
8380 Miralani Drive, Suite B
San Diego, CA 92126-4347, USA

Joachim Piprek
Department of Electrical and Computer Engineering
University of California Santa Barbara
CA 93106, USA

Ron Stephens
HRL Laboratories, LLC
M/S RL64, 3011 Malibu Canyon Road
Malibu, CA 90265, US
List of contributors

Greg Tangonan
HRL Laboratories, LLC
M/S RL54, 3011 Malibu Canyon Road
Malibu, CA 90265, US

Timothy Van Eck
Lockheed Martin Space Systems
Company
3251 Hanover Street
Palo Alto, CA 94304, USA

Ming C. Wu
Department of Electrical Engineering
University of California Los Angeles
Los Angeles, CA 90095-1594

X. Steve Yao
General Photonics Corporation
5228 Edison Avenue,
Chino, CA 91710, USA

Daniel Yap
HRL Laboratories
M/S RL54, 3011 Malibu Canyon Road,
Malibu, CA 90265, US

Paul K. L. Yu
Department of Electrical and Computer Engineering
University of California San Diego
La Jolla, CA 92037-0407, USA

Daniel Yap
HRL Laboratories
M/S RL54, 3011 Malibu Canyon Road,
Malibu, CA 90265, US

Paul K. L. Yu
Department of Electrical and Computer Engineering
University of California San Diego
La Jolla, CA 92093-0407, USA
Introduction and preface

RF technology is at the heart of our information and electronic technology. Traditionally, RF signals are transmitted and distributed electronically, via electrical cables and waveguides. Optical fiber systems have now replaced electrical systems in telecommunications. In telecommunication, RF signals are digitalized, the on/off digitally modulated optical carriers are then transmitted and distributed via optical fibers. However, RF signals often need to be transmitted, distributed and processed, directly, without going through the digital encoding process. RF photonic technology provides such an alternative. It will transmit and distribute RF signals (including microwave and millimeter wave signals) at low cost, over long distance and at low attenuation.

RF photonic links contain, typically, optical carriers modulated, in an analog manner, by RF subcarriers. After transmission and distribution, these modulated optical carriers are detected and demodulated at a receiver in order to recover the RF signals. The transmission characteristics of RF photonic links must compete directly with traditional electrical transmission and distribution systems. Therefore the performance of an RF photonic transmission or distribution system should be evaluated in terms of its efficiency, dynamic range and its signal-to-noise ratio.

RF photonic links are attractive in three types of applications. (1) In commercial communication applications, hybrid fiber coax (HFC) systems, including both the broadcast and switched networks, provide the low cost network for distribution of RF signals to and from users. RF photonic technology has already replaced cables in commercial applications such as CATV. (2) At high frequencies, traditional microwave and millimeter wave transmission systems, using coaxial cables and metallic waveguides, have extremely large attenuation. Electrical systems are also complex and expensive. Other advantages of RF photonic methods include small weight and size, and immunity to electromagnetic disturbances. RF photonic systems offer an attractive alternative to traditional electrical systems at high frequencies. However, much of the RF technology for high frequency application is
Introduction and preface

still in the research and development stage. It is important to understand the operation of each new development and to assess the implication of each new component before any application of the photonic link. (3) Once the RF signal is carried on an optical carrier, photonic techniques may be used to process the RF signals. An obvious example is the frequency up- or down-conversion of the RF signal. Therefore, photonic RF signal processing represents a potential attractive application area for new applications. However, in photonic RF signal processing, the system performance will have additional requirements than just the requirements for bandwidth, efficiency and dynamic range. For example, the phase noise of the RF signal becomes an important consideration in sensor applications.

System design consideration and the choice of the technologies and components to be used in RF photonic links, as well as the evaluation of their performance characteristics, are very different for analog links than for digital optical fiber links. For example, the “on–off” threshold switching voltage of a modulator is important for digital communication systems while the slope efficiency is the important figure of merit for analog modulation. A thorough understanding of the analog system issues and component requirements is necessary for a successful system design.

This monograph describes, in detail, the various key components and technologies that are important in analog RF links. The components are evaluated in terms of their potential contributions to the RF links, such as RF efficiency, bandwidth, dynamic range and signal-to-noise ratio. Since the modulation of an optical carrier is much smaller than its bias for analog links, a special feature of the analyses presented in this book is the use of small signal approximations with emphasis on the reduction of nonlinear distortions.

The objectives of this book are: (1) to present to the reader various key technologies that may be used in RF photonic links; (2) to assess the significant aspects of various technologies; (3) to explore extant and potential applications of such technologies; (4) to illustrate specific applications of RF photonic links.

The analyses of basic RF photonic links are presented in Chapter 1. The analyses show clearly the important figures of merit of various components and the system objectives of analog RF photonic links. Chapter 2 describes the role of RF subcarrier links in commercial local access networks. Modulation and detection techniques are of particular importance in RF photonic links, because they determine the nonlinear distortion, the bandwidth, the efficiency, and, in certain cases, the noise of such links. Chapters 3 to 7 describe various modulation techniques, including the direct modulation of semiconductor lasers, the LiNbO₃ external modulators, the traveling wave modulator, the polymer modulator and the electroabsorption semiconductor modulator. The basic materials and principles of operation, the performance expectation and the advantages and limitations of each modulation technique are presented. In Chapter 8, a description of the key features of various detectors is
presented. In the next three chapters, Chapters 9 to 11, three novel techniques, pho-
tonic frequency up- and down-conversion, integration of antenna and modulators
at high millimeter wave frequency and optical generation of high RF frequency
oscillation are discussed. They may offer hitherto unavailable opportunities for
applications of RF photonic technology. Since RF modulation of optical carriers
can be transmitted via fibers over long distance and with true delay, RF photonic
technology can be used for antenna remoting and RF signal processing. Chapter 12
illustrates an important application of RF photonic technique to antenna remoting
and to the phased array antennas.

University of California, San Diego

William S. C. Chang