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Introduction

Kähler manifolds and projective manifolds. The goal of this first volume
is to explain the existence of special structures on the cohomology of Kähler
manifolds, namely, theHodge decomposition and the Lefschetz decomposition,
and to discuss their basic properties and consequences. The second volume will
be devoted to the systematic application of these results in different directions,
relating Hodge theory, topology and the study of algebraic cycles on smooth
projective complex manifolds.
Indeed, smooth projective complex manifolds are special cases of compact

Kähler manifolds. A Kähler manifold is a complex manifold equipped with a
Hermitianmetric whose imaginary part, which is a 2-form of type (1, 1) relative
to the complex structure, is closed. This 2-form is called the Kähler form of
the Kähler metric. As complex projective space (equipped, for example, with
the Fubini–Study metric) is a Kähler manifold, the complex submanifolds of
projective space equipped with the induced metric are also Kähler. We can
indicate precisely which members of the set of Kähler manifolds are complex
projective, thanks to Kodaira’s theorem:

Theorem 0.1 A compact complex manifold admits a holomorphic embedding
into complex projective space if and only if it admits a Kähler metric whose
Kähler form is of integral class.

In this volume, we are essentially interested in the class of Kähler man-
ifolds, without particularly emphasising projective manifolds. The reason is
that our goal here is to establish the existence of the Hodge decomposition and
the Lefschetz decomposition on the cohomology of such a manifold, and for
this, there is no need to assume that the Kähler class is integral. However, the
Lefschetz decomposition will be defined on the rational cohomology only in
the projective case, and this is already an important reason to restrict ourselves,
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2 0 Introduction

later, to the case of projective manifolds. Indeed, in this text, we will intro-
duce the notions of polarised Hodge structure and the polarised period domain
parametrising polarisedHodge structures. These polarised period domains have
curvature properties which the non-polarised period domains do not possess.
The Lefschetz decomposition, when it is defined on the rational or integral
cohomology, splits the cohomology of a Kähler manifold into a direct sum of
polarised Hodge structures.
In studying the applications of Hodge theory, another reason to restrict our-

selves to projective manifolds is the fact that a Kähler manifold does not, in
general, have complex submanifolds, whereas projective manifolds have many,
so many that in fact it is currently conjectured, as a vast generalisation of the
Hodge conjecture, that the Hodge structures on a projective manifold X are
governed by, and determine in a sense to be explained later, the geometry of
the algebraic subvarieties of X , and more precisely the Chow groups of X .

The Hodge decomposition. If X is a complex manifold, the tangent space to X
at each point x is equipped with a complex structure Jx . The data consisting of
this complex structure at each point is what is known as the underlying almost
complex structure. The Jx provide a decomposition

TX,x ⊗ C = T 1,0
X,x ⊕ T 0,1

X,x , (0.1)

where T 0,1
X,x is the vector space of complexified tangent vectors u ∈ TX,x such

that Jxu = −iu and T 1,0
X,x in the complex conjugate of T 0,1

X,x . From the point of
view of the complex structure, i.e. of the local data of holomorphic coordinates,
the vector fields of type (0, 1) are those which kill the holomorphic functions.
The decomposition (0.1) induces a similar decomposition on the bundles of

complex differential forms

�k
X,C := �k

X,R ⊗ C =
⊕

p+q=k �
p,q
X , (0.2)

where

�
p,q
X

∼=
∧p

�
1,0
X ⊗

∧q
�

0,1
X

and

�X,R ⊗ C = �
1,0
X ⊕ �

0,1
X

is the dual decomposition of (0.1). The decomposition (0.2) has the property of
Hodge symmetry

�
p,q
X = �

q,p
X ,

where complex conjugation acts naturally on �k
X,C = �k

X,R ⊗ C.
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0 Introduction 3

If we let AkC(X ) denote the space of complex differential forms of degree k
on X , i.e. the C∞ sections of the vector bundle �k

X,C, then we also have the
exterior differential

d : AkC(X ) → Ak+1
C (X ),

which satisfies d ◦ d = 0. We then define the kth de Rham cohomology group
of X by

Hk(X, C) = Ker
(
d : AkC(X ) → Ak+1

C (X )
)

Im
(
d : Ak−1

C (X ) → AkC(X )
) .

The main theorem proved in this book is the following.

Theorem 0.2 Let H p,q (X ) ⊂ Hk(X, C) be the set of classes which are rep-
resentable by a closed form α which is of type (p, q) at every point x in the
decomposition (0.2). Then we have a decomposition

Hk(X, C) =
⊕

p+q=k H
p,q (X ). (0.3)

Note that by definition, we have the Hodge symmetry

H p,q (X ) = Hq,p(X ),

where complex conjugation acts naturally on Hk(X, C)= Hk(X, R)⊗C. Here
Hk(X, R) is defined by replacing the complex differential forms by real differ-
ential forms in the above definition.
This theorem immediately gives constraints on the cohomology of a Kähler

manifold, which reveal the existence of compact complex manifolds which are
not Kähler. For example, the decomposition (0.3) and the Hodge symmetry
imply that the dimensions dimCHk(X, C) (called the Betti numbers) are even
for odd k, a property not satisfied by Hopf surfaces. These surfaces are the
quotients of C2 − {0} by the fixed-point-free action of a group isomorphic to
Z, where a generator g acts via

g(z1, z2) = (λ1z1, λ2z2),

where the λi are non-zero complex numbers of modulus strictly less than 1.
These surfaces are compact, equipped with the quotient complex structures,
and their π1 is isomorphic to Z since C2 − {0} is simply connected. Thus, their
first Betti number is equal to 1, which implies that they are not Kähler.

The Lefschetz decomposition. The Lefschetz decomposition is another de-
composition of the cohomology of a compact Kähler manifold X , this time of
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4 0 Introduction

a topological nature. It depends only on the cohomology class of the Kähler
form

[ω] ∈ H 2(X, R).

The exterior product on differential forms satisfies Leibniz’ rule

d(α ∧ β) = dα ∧ β + (−1)d
0αα ∧ dβ,

so the exterior product with ω sends closed forms (i.e. forms killed by d) to
closed forms and exact forms (i.e. forms in the image of d) to exact forms. Thus
it induces an operator, called the Lefschetz operator,

L : Hk(X, R) → Hk+2(X, R).

The following theorem is sometimes called the hard Lefschetz theorem.

Theorem 0.3 For every k ≤ n = dim X, the map

Ln−k : Hk(X, R) → H 2n−k(X, R) (0.4)

is an isomorphism.

(Note that the spaces on the right and on the left are of the same dimension by
Poincaré duality, which is valid for all compact oriented manifolds.)
A very simple consequence of the above isomorphism is the following result,

which is an additional topological constraint satisfied by Kähler manifolds.

Corollary 0.4 The morphism

L : Hk(X, R) → Hk+2(X, R)

is injective for k < n = dim X. Thus, the odd Betti numbers b2k−1(X ) increase
with k for 2k − 1 ≤ n, and similarly, the even Betti numbers b2k(X ) increase
for 2k ≤ n.

An algebraic consequence of Lefschetz’ theorem is the Lefschetz decomposi-
tion, which as we noted earlier is particularly important in the case of projective
manifolds. Let us define the primitive cohomology of a compact Kähler mani-
fold X by

Hk(X, R)prim := Ker (Ln−k+1 : Hk(X, R) → H 2n−k+2(X, R))

for k ≤ n. (One can extend this definition to the cohomology of degree > n by
using the isomorphism (0.4).)
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0 Introduction 5

Theorem 0.5 The natural map

i :
⊕

k−2r≥0
Hk−2r (X, R)prim → Hk(X, R)

(αr ) �→
∑
r

Lrαr

is an isomorphism for k ≤ n.

Once again, we can extend this decomposition to the cohomology of degree> n
by using the isomorphism (0.4).

Harmonic forms and cohomology. Let us now express the main principle of
Hodge theory, which has immense applications. The study of the cohomology
of Kähler manifolds and the proof of the theorems 0.2 and 0.3, which are the
main content of this book, are among the most important applications, but
the principle applies in various other situations. The vanishing theorems for the
cohomology of line bundles equipped with a Chern connection with positive
curvature, whose proofs will only be sketched here, provide another example of
possible applications. The applications to the topology of compact Riemannian
manifolds under certain curvature hypotheses are also very important, but they
lie outside of the scope of this book.
Following Weil (1957), we restrict ourselves here to giving an explanation

of the main idea, which is the notion of a harmonic form, and the application
of the theory of elliptic operators which makes it possible to represent the
cohomology classes by harmonic forms, but we will omit the proof of the
fundamental theorem on elliptic operators, which uses estimations and notions
from analysis (Sobolev spaces), which are in different directions from the aims
of this book. The delicate point consists in passing from spaces of L2 differential
forms, in which the Hodge decomposition is algebraically obvious, to spaces
of C∞ differential forms. One of the problems we encounter is the fact that
the operators considered here are differential operators, and thus do not define
continuous operators on the spaces of L2 forms. We refer to Demailly (1996)
for a presentation of this analytic aspect of Hodge theory.
The idea that we want to explain here is the following: using the metric on

X , we can define the L2 metric on the spaces of differential forms

(α, β)L2 =
∫
X
〈α, β〉xVol,

where α, β are differential forms of degree k and the scalar product 〈α, β〉x at
a point x ∈ X is induced by the evaluation of the forms at the point x and by
the metric at the point x .
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6 0 Introduction

The operator d : Ak(X ) → Ak+1(X ) is a differential operator, and we can
construct its formal adjoint d∗ : Ak(X )→ Ak−1(X ), which is also a differential
operator, and satisfies the identity

(α, dβ)L2 = (d∗α, β)L2

for α ∈ Ak(X ), β ∈ Ak−1(X ). This adjunction relation only makes d∗ into a
formal adjoint, since these operators are not defined on the Hilbert space
L2(�∗

X ) of L
2 differential forms, which is the completion of A∗(X ) for the L2

metric.
The idea of Hodge theory consists in using the adjoint d∗ to write the de-

compositions

Ak(X ) = Im d ⊕ Im d⊥ = Im d ⊕ Ker d∗,

Ak(X ) = Ker d ⊕ Ker d⊥ = Ker d ⊕ Im d∗,

and finally, using the inclusion Im d ⊂ Ker d ,

Ak(X ) = Im d ⊕ Im d∗ ⊕ Ker d ∩ Ker d∗.

Of course, these identities, whichwould be valid on finite-dimensional spaces or
Hilbert spaces since the operator d has closed image there, require the analysis
mentioned above in order to justify them here.
Apart from this issue, if we accept these identities, we see that the space

Hk := Ker d ∩ Ker d∗ ⊂ Ak(X )

of harmonic forms projects bijectively onto Hk(X, R) (or Hk(X, C) if we study
the cohomology with complex coefficients), since it is a supplementary sub-
space of Im d inside Ker d .
Another characterisation of harmonic forms uses the Laplacian

d = dd∗ + d∗d.

Indeed, it is very easy to see that we have

Hk = Kerd .

The operator d is an elliptic operator. This property of a differential oper-
ator can be read directly from its symbol, which is essentially its homoge-
neous term of largest order (which is 2 for the Laplacian). The decompositions
written above are special cases of the decomposition associated to an elliptic
operator.
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0 Introduction 7

Kähler identities. The Hodge decomposition (0.3) is obtained by combining
theHodge theory sketched above and the study of the properties of theLaplacian
of a Kähler manifold. We have already mentioned various operators acting on
the spaces of differential forms of a Kähler manifold, namely d, L and their
formal adjoints d∗, � for the L2 metric.Moreover, the complex structuremakes
it possible to decompose d as

d = ∂ + ∂,

where theDolbeault operator ∂ sendsα ∈ Ap,q (X ) to the component of bidegree
(p, q + 1) of dα. Here Ap,q (X ) is the space of differential forms of bidegree
(p, q) at every point of x ; it is also the space of sections of the bundle �

p,q
X

which appears in the decomposition (0.2) given by the complex structure. The
differential operators ∂ and ∂ are differential operators of order 1, and have
formal adjoint operators ∂∗ and ∂

∗
.

The Kähler identities establish commutation relations between these opera-
tors. For example, we have the identity

[�, ∂] = i∂
∗
,

and the other identities follow from this one via passage to the complex conju-
gate or to the adjoint.
From these identities, and from the fact that L commutes with d while ∂ and

∂ anticommute, we deduce the following result.

Theorem 0.6 The Laplaciansd , ∂ and∂ associated to the operators d, ∂
and ∂ respectively satisfy the equalities

d = 2∂ = 2∂. (0.5)

We deduce that the harmonic forms for d are also harmonic for ∂ and ∂ ,
and in particular are also ∂- and ∂-closed. Finally, as the operators ∂ and ∂ are
bihomogeneous (of bidegree (1, 0) and (0, 1) respectively) for the bigraduation
of the spaces of differential forms given by the decomposition (0.2), it follows
easily that each of the Laplacians ∂ and ∂ is bihomogeneous of bidegree
(0, 0), i.e. preserves the forms of type (p, q) for every bidegree (p, q). The
same then holds for d by the equality (0.5). The Hodge decomposition is then
obtained simply by the decomposition of the harmonic forms as sums of forms
of type (p, q):
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8 0 Introduction

Corollary 0.7 Let X be a compactKählermanifold. Ifω is a harmonic form (for
the Laplacian associated to the operator d and to the metric), its components
of type (p, q) are harmonic. Thus, we have a decomposition

Hk(X ) =
⊕

Hp,q , (0.6)

whereHp,q is the space of harmonic forms of type (p, q) at every point of X.

The Hodge decomposition (0.3) is obtained by combining the theorem of rep-
resentation of cohomology classes by harmonic forms with the decomposition
(0.6).
The Lefschetz decomposition is also an easy consequence of the decomp-

osition (0.6). Indeed, we first show that theorem 0.3 holds for the operator L
acting on differential forms. Furthermore, the Kähler identities show that L
commutes with the Laplacian, so that the operators Lr send harmonic forms to
harmonic forms, and once the theorem is proved on the level of forms, it remains
valid on the level of harmonic forms, and thus also on cohomology classes.

De Rham cohomology and Betti cohomology. The Hodge decomposition
(0.3) gives an extremely interesting structure when it is combined with the
integral structure on the cohomology

Hk(X, C) = Hk(X, Z) ⊗Z C.

For this equality, which follows from the change of coefficients theorem, one
must adopt a different definition of cohomology, which does not make use of
differential forms.
For one possible definition, we can introduce the singular cohomology

Hk
sing(X, Z).

We start from the complex

C∗(X ), ∂ : Ck(X ) → Ck−1(X )

of singular chains, where Ck(X ) is the free abelian group generated by the
continuous maps from the simplex k of dimension k to X . The map ∂ is given
by the restriction to the boundary

∂φ =
∑
i

(−1)iφ|∂k,i ,

wherek,i is the i th face ofk . The complex (C∗
sing(X ), d) of singular cochains

is then defined as the dual complex of (C∗(X ), ∂). Its cohomology is the singular
cohomology H∗

sing(X, Z). We have the following theorem, due to de Rham.
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0 Introduction 9

Theorem 0.8 For K = R or K = C, we have

Hk(X, K ) = Hk
sing(X, Z) ⊗Z K .

If we consider the complex of differentiable chains, we can prove this theorem
by using the natural map from Ak(X ) to Cksing(X ) given by integration:

α �→
(

φ �→
∫

k

φ∗α
)

.

Sheaves and cohomology. A much more conceptual proof of de Rham’s
theorem can be given by using the language of sheaf theory and sheaf co-
homology, which we present here, and whose usefulness will appear frequently
throughout this book: it will be used, for example, in the Hodge decomposition,
to describe the spaces H p,q as the Dolbeault cohomology groups Hq (X, �

p
X ),

which are defined for every complex manifold X as the qth cohomology group
of X with values in the sheaf�p

X of holomorphic differential forms of degree p.
(Note, however, that this identification is valid only in the Kähler case. In gen-
eral, without the Kähler hypothesis, we cannot identify Hq (X, �

p
X ) with the

space of cohomology classes of degree p + q which are representable by a
closed form of type (p, q) at every point.)

The notion of a sheaf F (of groups, for example) over a topological space X
is a set-theoretic notion. It is given by the following data: the group F(U ) of
“sections of F over U” for every open subset U of X , and restriction maps

F(U ) → F(V )

for every inclusion V ⊂ U . These restrictions are compatible in an obvious way
when we take three open setsW ⊂ V ⊂ U . We also require that a section from
F to U is determined exactly by its restrictions to the open subsets of an open
cover of U , which of course must coincide on the intersections of two of these
open sets. The first typical example of a sheaf is the sheaf of local sections of
a vector bundle over X . Another example is given by the constant sheaves of
stalk G, where G is a fixed abelian group; to an open set U , we associate the
locally constant maps defined on U with values in G.
The sheaves of abelian groups over X form an abelian category which has

“sufficientlymany injective objects” (see chapter 4). Thus, the theory of derived
functors applies to this category. The main functors which interest us here are
the functors of global sections � of the category of sheaves of abelian groups
on X to the category of abelian groups, or the direct image functor from the
category of sheaves of abelian groups on X to the category of sheaves of abelian
groups on Y , for a continuous map φ : X → Y .
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10 0 Introduction

These functors are left-exact. Given a left-exact functor F : A → B of an
abelian category A having sufficiently many injective objects to an abelian
category B, we define Ri F(M), M ∈ Ob(A) as the i th cohomology group of
the complex (F(M ·), d), where (M ·, d) is an injective resolution of M . In fact,
more generally, we can take resolutions by F-acyclic objects. The important
point is that given two such resolutions, we have a canonical isomorphism
between the objects Ri F(M) calculated via the two resolutions.

Returning to the case of the functor of global sections �, we show using
Poincaré’s theorem that the sheaves of differential forms form a �-acyclic reso-
lution of the constant sheaf CX (often written C) of stalk C, so that the space
Hk(X, C) defined above must be understood as the kth cohomology group of X
with values in CX , i.e. Rk�(CX ). Similarly, we can interpret the singular coho-
mology as the cohomology of the complex of global sections of a�-acyclic res-
olution of the constant sheaf of stalkZ. Thus, we have Hk

sing(X, Z) = Hk(X, Z)
canonically.
De Rham’s theorem thus reduces to proving a change of coefficients theorem

for the cohomology of the sheaves

Hk(X, C) = Hk(X, Z) ⊗ C,

which is not difficult.
These different interpretations of the cohomology, corresponding to differ-

ent resolutions, are all equally important, since they carry different types of
information. For example, the Hodge decomposition of the cohomology of a
Kähler manifold requires the de Rham version of the cohomology, while that
of the integral structure requires another version, singular or Čech for example.

TheFrölicher spectral sequence.With the exception of the statement concern-
ing the Hodge symmetry, the theorem of Hodge decomposition can be reformu-
lated as a theorem of degeneracy of a spectral sequence. The justification of this
reformulation, particularly in the case of projective manifolds, is that it consists
in a completely algebraic translation, where in fact we may even use Serre’s
“GAGA” principle of comparison of algebraic geometry and analytic geometry
to replace the sheaves of holomorphic differential forms and their cohomology
relative to the usual topology by sheaves of algebraic differential forms and
their cohomology relative to the Zariski topology. Thus, we can almost give
meaning to Hodge’s theorem 0.2 for smooth projective manifolds defined over
an arbitrary field. Under certain “lifting” hypotheses, Deligne and Illusie prove
this statement for manifolds in non-zero characteristic (Illusie 1996).
The differentiable de Rham complex of a differentiable manifold, i.e. the

complex of sheaves of differential forms equipped with the exterior differential,
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