
1
Introduction

The laws of geometrical optics were known from experiments long before the
electromagnetic theory of light was established [1]. Today we recognize that
they constitute an approximate solution for Maxwell’s field equations. This
solution describes the propagation of light and radio waves in media that
change gradually with position [2]. The wavelength is taken to be zero in
this approximation and diffraction effects are completely ignored. The field
is represented by signals that travel along ray paths connecting the trans-
mitter and receiver. In most applications these rays can be approximated by
straight lines. These trajectories are uniquely determined by the dielectric
constant of the medium and by the antenna pattern of the transmitter. In
this approach energy flows along these ray paths and the signal acts locally
like a plane wave. Geometrical optics provides a convenient description for
a wide class of propagation problems when certain conditions are met.
The assumption that the medium changes gradually means that geomet-

rical optics cannot describe the scattering by objects of dimensions compa-
rable to a wavelength. Similarly, it cannot describe the boundary region of
the shadows cast by sharp edges. A further condition is that rays launched
by the transmitter must not converge too sharply ‚ as they do for focused
beams. These conditions must be refined when ray theory is used to describe
propagation in random media.
Geometrical optics is widely used to describe electromagnetic propaga-

tion in the nominal atmosphere of the earth, other planets and the inter-
stellar medium. Refractive bending of starlight and microwave signals in
the troposphere is accurately described by this approximation. Standard
atmospheric-profile models are used to calculate ray paths, radio horizons
and angles of arrival for various elevation angles and surface conditions [3].
Ray theory is also the primary tool for describing the reflection of radio sig-
nals in the ionosphere [4]. The maximum usable frequency can be estimated
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2 Introduction

for shortwave broadcast and communication services if the electron-density
profile of the ionosphere is known from vertical sounding measurements or
modeling. The same techniques are used to describe the transmission of
acoustic waves in the ocean.
It was initially thought that geometrical optics would provide a valid

description for propagation through random media and early studies all
relied on this approach [5][6][7][8]. The concept assumed that the signal
fluctuations are induced by small dielectric variations located close to the
nominal ray trajectory. It was hoped that perturbation solutions of the ray
equations would yield valid expressions for phase and amplitude variations.
Only the first half of that expectation was realized.
Geometrical optics provides a good description for the phase fluctuations

imposed by random media. These are caused by the random speeding up and
slowing down of the signal as it travels along the nominal ray trajectory.
Phase fluctuations computed in this way agree with experiment, even when
the path is long and the fluctuations are large. For line-of-sight propagation
the predicted phase variance is proportional to the path length and the first
moment of the spectrum of turbulent irregularities. This means that phase
fluctuations depend primarily on the largest eddies and diffraction effects
can be ignored.
Geometrical optics also describes angle-of-arrival fluctuations over a wide

range of propagation conditions. Angular errors at the receiver are the result
of many small random refractive bendings along the ray path. This sets the
threshold for astronomical seeing with ground-based telescopes. The angular
variance is proportional to distance traveled and to the third moment of the
spectrum. Angular errors depend primarily on small eddies. As a practical
matter, aperture smoothing suppresses the contributions of eddies smaller
than the receiver and such measurements depend primarily on the inertial
range of the turbulent spectrum. Again, diffraction effects are relatively
unimportant.
By contrast, this method cannot describe amplitude and intensity fluc-

tuations in most situations of practical interest. These scintillations are
due to the random bunching and diverging of energy-bearing rays in this
approximation. The resulting expression for the logarithmic variance of the
amplitude is proportional to the third power of distance and the fifth
moment of the spectrum. Intensity scintillation therefore depends primarily
on the smallest eddies for which diffraction effects play a dominant role.
To use this approximation the influential eddies must be larger than the
Fresnel length. That condition is seldom met and one cannot use this method
to define scintillation levels ‚ unless large receivers and/or transmitters are
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employed. The geometrical optics description of amplitude fluctuations is
primarily of historical interest and one is referred to standard texts for
expressions for the variance and correlation [9][10]. Amplitude and inten-
sity fluctuations will be analyzed with diffraction theory in the next
volume.
The goal of the second chapter is to describe random media. In the fol-

lowing chapter we adapt geometrical optics to describe propagation through
random media and to establish the validity conditions for its application.
The single-path phase variance is estimated in Chapter 4. In the following
chapter we calculate the phase structure function as a function of the sepa-
ration between receivers and compare it with results from phase-difference
experiments. The temporal correlation of phase and the corresponding power
spectrum are addressed in Chapter 6. In the next chapter we describe the
angle-of-arrival errors induced by a random medium. We show that the
random phase and phase difference are distributed as Gaussian random
variables in Chapter 8. Moments of the electric field strength calculated
with geometrical optics are presented in the last chapter. Problems are
included at the end of each chapter to develop additional insights and to
explore related topics. Helpful mathematical relations are summarized in
the appendices.
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2
Waves in Random Media

The first step in studying electromagnetic scintillation is to establish a firm
physical foundation. This chapter attempts to do so for the entire work
and it will not be repeated in subsequent volumes. We proceed cautiously
because the issues are complex and the measured effects are often quite
subtle. Section 2.1 explores the way in which Maxwell’s equations for the
electromagnetic field are modified when the dielectric constant experiences
small changes. Because atmospheric fluctuations are much slower than the
electromagnetic frequencies employed, their influence can be condensed into
a single relationship: the wave equation for random media. This equation
is the starting point for all developments in this field.
To proceed further one must characterize the dielectric fluctuations.

We want to do so in ways that accurately reflect atmospheric conditions.
Because we are dealing with a random medium, we must use statistical
methods to describe them and their influence on electromagnetic signals.
For instance, we want to know how dielectric fluctuations measured at a
single point vary with time. Even more important, we need to describe
the way in which fluctuations at separated points in the medium are corre-
lated. There are several ways to do so and they are developed in Section
2.2. These descriptions assume that the random medium is isotropic and
homogeneous. Those convenient assumptions are seldom realized in nature
and we show how to remove them at the end of this section. Turbulence
theory now gives an important but incomplete physi cal description of these
fluctuations. Its results in the primary region of interest are expressed as a
power-law scaling of the spectrum of turbulent irregularities. This approach
depends on a few physical parameters, which must be found by experiment.
In Section 2.3 we describe direct measurements of these turbulence param-

eters in the troposphere. This region is nondispersive over broad frequency
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6 Waves in Random Media

bands. Fluctuations of the refractive index are related to those of tempera-
ture and humidity. We present measurements both of surface values and of
height profiles for three parameters: (a) the level of turbulence, (b) the inner
scale length and (c) the outer scale length. We also examine what is known
about anisotropy and how it changes with height. Scintillation experiments
now provide the most accurate way to measure these parameters.
Electromagnetic propagation through the ionized layers above 100 km is

quite different. Dielectric variations there depend on the electromagnetic
frequency and on the electron density in the plasma created by solar radi-
ation. This dispersion made early exploration of the ionosphere by using
reflected radio signals possible. Microwave signals from artificial satellites
and radio-astronomy sources now provide a more flexible and accurate way
to probe the ionosphere. What we know about electron-density fluctuations
in its elevated layers is summarized in Section 2.4. The picture is necessar-
ily less complete than it is for the troposphere because we can seldom make
direct measurements of the important parameters. In situ measurements of
ion density are possible with scientific earth satellites and infrequent rocket
flights. From microwave-transmission experiments we know that the irregu-
larities are significantly elongated in the direction of the terrestrial magnetic
field. The spectrum of electron-density fluctuations is described by a power
law, although it may be different than the tropospheric form.

2.1 Maxwell’s Equations in Random Media

Our first task is to establish the equations which describe electromagnetic
propagation in a random medium. We start with Maxwell’s equations for
the various components of the electromagnetic field. The electric, magnetic,
displacement and induction fields are governed by four vector equations:

∇ ×E = −1
c

∂B
∂t

(2.1)

∇ ×H =
1
c

∂D
∂t

+
4π
c
J (2.2)

∇ . D = 4πρe (2.3)

∇ . B = 0 (2.4)

Here J is the current density and ρe is the net charge density. These equations
are verified by careful laboratory experiments. In combination they describe
the generation and propagation of electromagnetic waves. We have used
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2.1 Maxwell’s Equations in Random Media 7

mixed Gaussian units for notational efficiency but this choice will have no
effect on the final result.
The divergence of the induction field B vanishes because there is no mag-

netic charge. By taking the divergence of (2.2) and using (2.3) one estab-
lishes the continuity equation

∇ . J+ ∂ρe
∂t

= 0. (2.5)

In our applications, this balance relates to the current and charge on the
transmitting antenna or laser source. Elsewhere in the transmission region,
one can ignore these quantities and the divergence of the displacement field
D also vanishes:

∇ . D = 0 (2.6)

To this set of Maxwell’s equations we must add the constitutive equations
which characterize the propagation medium. These equations connect sim-
ilar field components by employing atmospheric properties. The magnetic
permeability relates the magnetic field to the induction field in a linear
manner:

B = µmH (2.7)

In our units µm = 1 in the earth’s atmosphere so that B and H are virtually
the same vector. The more important relation for our work connects the
electric and displacement fields:

D = ε(r, t)E (2.8)

The dielectric constant ε(r, t) contains all the information we need to
describe the propagation of electromagnetic waves in random media and
therefore all of our attention will be focused on its consequences. It is cus-
tomary to decompose this quantity into its average value and a small com-
ponent that is a stochastic function of position and time:

ε(r, t) = ε0(r) + ∆ε(r, t) (2.9)

The average value ε0 can be a function of position and it is therefore
important to retain this slowly varying term in describing short-wave sig-
nals reflected by the ionosphere. In the lower atmosphere ε0 is different than
unity by less than 300 parts per million [1]. We concentrate here on the fluc-
tuating component ∆ε(r, t) which gives rise to electromagnetic scintillation.
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8 Waves in Random Media

To establish the wave features of electromagnetic propagation, one must
combine Maxwell’s equations. We apply the curl operator to the first equa-
tion and use the second to express ∇ ×H in terms of the current density
and displacement vectors:

∇ × ∇ ×E = −1
c

∇ × ∂H
∂t

= −1
c

∂

∂t
(∇ ×H)

= −1
c

∂

∂t

(
1
c

∂D
∂t

+ 4πJ
)

= − 1
c2

∂2

∂t2
(εE) − 4π

c

∂J
∂t

(2.10)

The double curl operation can be simplified since the following relation holds
for any vector:

∇ × ∇ ×E = −∇2E+ ∇(∇ . E)
We use the second constitutive relation to relate the divergence of E to the
gradient of the dielectric constant:

∇ . D = ∇ . (εE) = E .∇ε + ε ∇ . E = 0

so that

∇ . E = −E .∇(log ε).

By combining these results we establish a general equation for the electric
field vector:

∇2E− 1
c2

∂2

∂t2
[(1 + ∆ε)E] =

4π
c

∂J
∂t

− ∇{E . ∇ [log(1 + ∆ε)]} (2.11)

The last term describes polarization changes induced by scattering in the
random medium. In Volume 2 we shall find that this depolarization is neg-
ligible for atmospheric propagation and this term will be carried no further.
The electric field is generated by the transmitter and modified by ∆ε as it

travels through the medium. The current density and dielectric variations
are functions of position and time. On the other hand, their characteristics
are quite different. For a microwave system, the current density is confined
to the transmitting antenna and oscillates very rapidly at microwave fre-
quencies. By contrast, the dielectric fluctuations pervade the entire region
but change very slowly with time. We can exploit this profound difference
to separate their effects.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521801982 - Electromagnetic Scintillation: Geometrical Optics, Volume 1
Albert D. Wheelon
Excerpt
More information

http://www.cambridge.org/0521801982
http://www.cambridge.org
http://www.cambridge.org


2.1 Maxwell’s Equations in Random Media 9

We turn first to the current density J(r, t). Its variation with time can
be a complicated function describing pulse transmissions or modulation for-
mats used to carry information. It can also be a narrow-band signal cen-
tered on a single carrier frequency. If the dielectric fluctuations have no time
dependence the wave equation (2.11) represents a linear relationship
between E and J. Both functions could then be Fourier analyzed and their
spectra related algebraically. It is possible to do so even when ∆ε depends
on time ‚ as it does in the atmosphere. This occurs because dielectric fluc-
tuations vary quite slowly relative to the field. In fact, their frequency com-
ponents are trivial compared with the microwave or optical frequency of the
transmitted field. In addition, they are usually small with respect to mod-
ulation components of the field. The frequency mixing that occurs in the
term ∆εE is therefore not important. This means that we can consider a
single frequency both for the source current and for the electric field:

J(r, t) = J(r) exp(−iωt) and E(r, t) = E(r) exp(−iωt) (2.12)

With this assumption we find that the wave equation depends primarily on
the carrier frequency ω = 2πf:

∇2E(r) −E(r) 1
c2

exp(iωt)
∂2

∂t2
{[1 + ∆ε(r, t)] exp(−iωt)} = −4πiω

c
J(r)

The effects of the random medium are concentrated in the second term.
We are concerned with both the spatial and the temporal fluctuations of
∆ε(r, t). Let us focus first on its variability with time and write the second
derivative as follows:

1
c2

eiωt ∂2

∂t2

{
[1 + ∆ε(r, t)]e−iωt

}
= k2[1 + ∆ε(r, t)]

−2ik
c

∂

∂t
∆ε(r, t) +

1
c2

∂2

∂t2
∆ε(r, t)

where k = 2π/λ is the electromagnetic wavenumber. We must estimate each
term that is proportional to ∆ε. We suspect that the first term is the most
influential, but we must demonstrate this by estimating the others.
The first derivative of ∆ε with respect to time can be estimated with the

following qualitative argument. We shall learn later that the fluctuations
are induced both by internal rearrangements of the turbulent structure and
by its carriage on prevailing winds. These changes are most rapid when a
horizontal wind bears the structure past a measuring point, because the
prevailing wind speed is considerably greater than the turbulent velocities
which it induces. The first derivative is then related to the average speed
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10 Waves in Random Media

of the irregularities and the eddy of size � by the following approximate
relationship:

∂

∂t
∆ε(r, t) � v

�
∆ε

To this we must add the Doppler shift of the moving irregularities:

∂

∂t
∆ε(r, t) � v∆ε

(
1
�
+

1
λ

)

We want to compare this expression with the first term involving ∆ε:

k2∆ε versus ∆ε
2vk

c

(
1
�
+

1
λ

)

We note that k2∆ε is substantially larger than the term on the right-hand
side because the wind speed is trivial relative to the speed of light. We
are therefore justified in dropping the first time derivative of ∆ε. Similar
reasoning shows that the second derivative is even smaller [2] and we can
write the final wave equation as

∇2E(r) + k2[1 + ∆ε(r, t)]E(r) = −4πikJ(r). (2.13)

The vector components of the electric field are not mixed in this equation.
If the source current is aligned in the x direction, only the x component
of the field is excited. This means that we can drop the vector notation.
Each of the components of E which is excited by the source must satisfy the
following scalar wave equation:

∇2E(r) + k2[1 + ∆ε(r, t)]E(r) = −4πikJ(r) (2.14)

This wave equation for random media will be the starting point for all pre-
dictions developed in these volumes. One cannot solve this equation exactly
because ∆ε(r, t) is a stochastic function of position and time. Our challenge
is to find approximate solutions that agree with experimental results.
We shall employ a succession of more capable solutions for the random

wave equation. This hierarchy of increasingly sophisticated solutions has a
common thread, i.e., they all depend on integrals of ∆ε. In this first volume
we will use the techniques of geometrical optics to express the measured
quantities as line integrals of ∆ε taken along the nominal ray paths. In the
second volume we use the Rytov approximation which expresses the mea-
sured quantities as volume integrals of ∆ε. We describe strong scattering in
the last volume using the method of path integrals in which the field strength
is represented by functional integrals of ∆ε. This increasingly capable and
complex program means that we shall need to know a good deal about the
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