Bacterial Evasion of Host Immune Responses

Our survival as multicellular organisms requires the constant surveillance of our internal and external (mucosal) environments by the multifarious elements of the innate and acquired systems of immunity. The objective of this surveillance, expensive as it is to the organisms, is to recognise and kill invading microorganisms. Over the past fifty years the cells and mediators involved in our immune defences have been painstakingly identified. However, it is only relatively recently that the ability of microorganisms to evade immunity has been recognised and investigated. *Bacterial Evasion of Host Immune Responses* introduces the reader to the mechanisms used by bacteria to evade both humoral and cellular immune responses, using systems ranging in complexity from the simple quorum sensing molecules – acyl homoserine lactones – to the supramolecular syringe-like devices of type III secretion systems. This book will be of interest to researchers and graduate students in microbiology, immunology, pharmacology, and molecular medicine.

Brian Henderson is professor of cell biology and runs the Cellular Microbiology Research Group at University College London. His research focuses on the role of molecular chaperones as microbial virulence factors and the mechanisms by which bacteria control host cytokine networks. He is the coauthor of the textbook *Bacterial Disease Mechanisms* (2002).

Petra Oyston is a principal scientist in the microbiology section of the Chemical and Biological Defence Sector, Porton Down, UK. She leads the Bacteriology Group there, where her work focuses on the regulation of genetic systems, vaccine development, genome sequencing, and pathogenicity of bacteria such as *Yersinia pestis*, *Burkholderia* spp. and *Francisella tularensis*.
Over the past decade, the rapid development of an array of techniques in the fields of cellular and molecular biology have transformed whole areas of research across the biological sciences. Microbiology has perhaps been influenced most of all. Our understanding of microbial diversity and evolutionary biology, and of how pathogenic bacteria and viruses interact with their animal and plant hosts at the molecular level, for example, has been revolutionized. Perhaps the most exciting recent advance in microbiology has been the development of the interface discipline of cellular microbiology, a fusion of classic microbiology, microbial molecular biology, and eukaryotic cellular and molecular biology. Cellular microbiology is revealing how pathogenic bacteria interact with host cells in what is turning out to be a complex evolutionary battle of competing gene products. Molecular and cellular biology are no longer discrete subject areas but vital tools and an integrated part of current microbiological research. As part of this revolution in molecular biology, the genomes of a growing number of pathogenic and model bacteria have been fully sequenced, with immense implications for our future understanding of microorganisms at the molecular level.

Advances in Molecular and Cellular Microbiology is a series edited by researchers active in these exciting and rapidly expanding fields. Each volume will focus on a particular aspect of cellular or molecular microbiology and will provide an overview of the area and examine current research. This series will enable graduate students and researchers to keep up with the rapidly diversifying literature in current microbiological research.

Series Editors

Professor Brian Henderson
University College London

Professor Michael Wilson
University College London

Professor Sir Anthony Coates
St George’s Hospital Medical School, London

Professor Michael Curtis
St Bartholomew’s and Royal London Hospital, London
Bacterial Evasion of Host Immune Responses

EDITED BY
Brian Henderson
University College London

Petra C. F. Oyston
DSTL Porton Down, UK
Contents

Contributors vii
Preface xv

Part I Recognition of bacteria 1

1 The dendritic cell in bacterial infection: Sentinel or Trojan horse? 3
 Benjamin M. Chain and Janusz Marcinkiewicz

2 CD1 and nonpeptide antigen recognition systems in microbial immunity 21
 Kayvan R. Niazi, Steven A. Porcelli, and Robert L. Modlin

3 The NRAMP family: co-evolution of a host/pathogen defence system 39
 Richard Bellamy

Part II Evasion of humoral immunity 53

4 Evasion of complement system pathways by bacteria 55
 Michael A. Kerr and Brian Henderson

5 Bacterial immunoglobulin-evading mechanisms: Ig-degrading and Ig-binding proteins 81
 Mogens Kilian

6 Evasion of antibody responses: Bacterial phase variation 103
 Nigel J. Saunders
Contents

Part III Evasion of cellular immunity 125

7 Type III secretion and resistance to phagocytosis 127
 Åke Forsberg, Roland Rosqvist, and Maria Fällman

8 Bacterial superantigens and immune evasion 171
 John Fraser, Vickery Arcus, Ted Baker, and Thomas Proft.

9 Bacterial quorum sensing signalling molecules as immune modulators 201
 David Pritchard, Doreen Hooi, Eleanor Watson, Sek Chow,
 Gary Telford, Barrie Bycroft, Siri Ram Chhabra, Christopher Harty,
 Miguel Camara, Stephen Diggle, and Paul Williams

10 Microbial modulation of cytokine networks 223
 Brian Henderson and Robert M. Seymour

11 Enterotoxins: Adjuvants and immune inhibitors 243
 Jan-Michael A. Klapproth and Michael S. Donnenberg

12 Type III protein secretion and inhibition of NF-κB 279
 Klaus Ruckdeschel, Bruno Rouot, and Jürgen Heesemann

Index 295
Contributors

Vickery Arcus
School of Biological Sciences
University of Auckland
Private Bag
92019 Auckland
New Zealand
v.arcus@auckland.ac.nz

Edward Baker
School of Biological Sciences
University of Auckland
Private Bag
92019 Auckland
New Zealand
e.baker@auckland.ac.nz

Richard Bellamy
Department of Medicine
Singleton Hospital
Sketty, Swansea SA20FB
United Kingdom
bellamyrj2000@yahoo.co.uk

Barrie Bycroft
Immune Modulation Research Group
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK
Miguel Camara
Department of Molecular Microbiology
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK

Benjamin M. Chain
Department of Immunology
Windeyer Institute of Medical Sciences
University College London
46 Cleveland Street
London W1P 6DB
UK
b.chain@ucl.ac.uk

Siri Ram Chhabra
Department of Medicinal Chemistry
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK

Sek Chow
Immune Modulation Research Group
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK

Stephen Diggle
Department of Molecular Microbiology
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK
Michael S. Donnenberg
Division of Infectious Diseases
Department of Medicine
University of Maryland
Baltimore, Maryland 21201
USA
mdonnenb@umaryland.edu

Maria Fällman
Department of Molecular Biology
Umeå University
901 87 Umeå
Sweden

Åke Forsberg
Department of Medical Protection
Swedish Defence Research Agency
FOI
S-901 82 Umeå
Sweden
ake.fosberg@foi.se

John D. Fraser
School of Biological Sciences
Department of Molecular Medicine
University of Auckland
Private Bag
92019 Auckland
New Zealand
jd.fraser@auckland.ac.nz

Christopher Harty
Department of Medicinal Chemistry
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK
Jürgen Heesemann
Max von Pettenkofer-Institut for Hygiene and Medical Microbiology
Pettenkofestr.9a
80336 Munich
Germany

Brian Henderson
Cellular Microbiology Research Group
Eastman Dental Institute
University College London
256 Gray’s Inn Road
London WC1X 8LD
UK
b.henderson@eastman.ucl.ac.uk

Doreen Hooi
Immune Modulation Research Group
School of Pharmaceutical Sciences and Institute
of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK

Michael A. Kerr
Department of Molecular and Cellular Pathology
University of Dundee
Ninewells Hospital Medical School
Dundee DD1 9SY
Scotland
m.a.kerr@dundee.ac.uk

Mogens Kilian
Department of Medical Microbiology and Immunology
University of Aarhus
The Bartholin Building
DK-800
Aarhus C
Denmark
Kilian@microbiology.au.dk

Jan-Michael Klapproth
Division of Infectious Diseases
Department of Medicine
University of Maryland
Baltimore, Maryland 21201
USA

Janusz Marcinkiewicz
Department of Immunology
Jagiellonian University
Krakow
Poland

Robert L. Modlin
Division of Dermatology and Department of Microbiology,
Immunology and Molecular Genetics
School of Medicine
University of California, Los Angeles
Los Angeles, CA 90095
USA
Rmodlin@mednet.ucla.edu

Kayvan R. Niazi
Division of Dermatology and Department of Microbiology,
Immunology and Molecular Genetics
School of Medicine
University of California, Los Angeles
Los Angeles, CA 90095
USA

Steven A. Porcelli
Department of Microbiology and Immunology
Albert Einstein College of Medicine
Bronx, NY 10461
USA

David Pritchard
Immune Modulation Research Group
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK
David.Pritchard@nottingham.ac.uk
Thomas Proft
School of Biological Sciences
Department of Molecular Medicine
University of Auckland
Private Bag
92019 Auckland
New Zealand
t.proft@auckland.ac.nz

Roland Rosqvist
Department of Molecular Biology
Umeå University
901 87 Umeå
Sweden

Bruno Rouot
INSERM U-432
Montpellier
France

Klaus Ruckdeschel
INSERM U431
Universite Montpelier II
CC100, F34095
Montpelier
Cedex 05
France
rouot@crit.univ-montp3.fr

Nigel J Saunders
Molecular Infectious Diseases Group
Institute of Molecular Medicine
University of Oxford
Headington
Oxford OX3 9DS
UK
njsaunders@molbiol.ox.ac.uk

Gary Telford
Immune Modulation Research Group
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK

Paul Williams
Department of Molecular Microbiology
School of Pharmaceutical Sciences and Institute of Infection and Immunity
University of Nottingham
Nottingham NG7 2RD
UK
paul.williams@nottingham.ac.uk
Preface

From birth we are protected from bacterial infections by the complex system of cells and cell products, which have functional and signalling properties, known collectively as immunity. The immune system has three major functions: (1) the ability to recognise infectious agents such as bacteria; (2) the capacity to kill these infecting organisms; and (3) the integration of (1) and (2) through specific cell–cell signalling. It is now recognised that the nature of our immune systems has been shaped in the crucible of evolution by interactions with infectious agents. It is also emerging that the various organisms that can infect us have evolved multiple mechanisms to evade both arms of our immune system – innate and adaptive immunity.

This book describes some of the emerging mechanisms employed by bacteria to evade both humoral and cellular immunity. The first section deals with novel aspects of the recognition of, and the response to, bacteria by a key cell population – dendritic cells (e.g., through Toll-like receptors), and by lymphocytes via the nonpolymorphic CD1 MHC molecules that recognise nonpeptidic antigens. The final chapter in this section describes natural resistance-associated macrophage protein (NRAMP), a metal ion transporter important in susceptibility to infection by mycobacteria. Mycobacteria also encode NRAMP-like proteins revealing another twist in the ongoing battle between bacteria and their hosts for essential metal ions such as iron and zinc.

In the second section attention switches to the ability bacteria have to evade humoral immunity. It has been known for many years that the bacterial capsule can protect against complement. However, over the past decade or so it has emerged that bacterial pathogens have evolved a plethora of selective mechanisms for evading the major mechanisms of complement-mediated killing. Another powerful mechanism for evading antibodies
and antibody-mediated complement activation is the production of selective immunoglobulin-degrading proteases and immunoglobulin-binding proteins. A third way to avoid the deleterious actions of antibodies is to keep altering the cellular antigens by the processes of phase and antigenic variation.

The final section in this book deals with bacterial evasion of cellular immunity. The role of type III secretion systems in the inhibition of phagocytosis and in the inhibition of the key transcription factor, NF-κB, are detailed in two separate chapters. A small number of bacteria produce proteins, termed superantigens, which are able to stimulate a large proportion of the T cell repertoire but in the process remove or inactivate these cells. Superantigens thus have the potential to decrease overall T cell responsiveness. A fascinating finding is that the signals involved in bacterial quorum sensing – such as the acyl homoserine lactones – are also able to inhibit immune responses, including the induction of cytokine synthesis. The consequences of the immunoinhibitory actions of these molecules is discussed. The remaining chapters describe how bacteria interact with immune cells to control the synthesis of cytokines, proteins that act to integrate the functions of immune cells. The ability of bacteria to produce a vast range of molecules with cytokine-inducing (or in some cases, inhibiting) actions and the consequence of this for the physiological control of functional cytokine networks is reviewed. The role of enterotoxins as cytokine-modulating agents capable of acting as local adjuvants or local cytokine inhibitors is described and the consequences of this for the host are reviewed.

This volume brings together experts in bacteria-host interactions to explain how bacteria are recognised by the immune system and how this recognition and its consequences can be negated to enable the bacteria to survive.