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repetition of those symbols that are used only locally. In the following list we have
not included those symbols that pertain only to the local discussion. Below, we
give a verbal description of each symbol and, when appropriate, the number of
the equation in which the symbol is first used.

Latin letters

A area
Aiso tensile stiffness of an isotropic laminate (Eq. 3.42)

[A] , Ai j tensile stiffness of a laminate (Eqs. 3.18, 3.19)
[a] , ai j inverse of the [A] matrix for symmetric laminates (Eq. 3.29)
[B], Bi j stiffness of a laminate (Eqs. 3.18, 3.19)
[C], Ci j 3D stiffness matrix in the x1, x2, x3 coordinate system (Eq. 2.22)
[C], Ci j 3D stiffness matrix in the x, y, z coordinate system (Eq. 2.19)

c moisture concentration (Eq. 2.154); core thickness (Fig. 5.2)
[D], Di j bending stiffness of a laminate (Eqs. 3.18, 3.19)

[D]∗, D∗
i j reduced bending stiffness of a laminate (Eq. 4.1)

Diso bending stiffness of an isotropic laminate (Eq. 3.42)
D, D, D̂ parameters (Table 6.2, page 222, Eq. 6.157)
[d] , di j inverse of the [D] matrix for symmetrical laminates (Eq. 3.30)

d, dt, db distances for sandwich plates (Fig. 5.2)
E1, E2, E3 Young’s moduli in the x1, x2, x3 coordinate system (Table 2.5)

[E] stiffness matrix in the FE calculation (Eq. 9.4)
ÊA tensile stiffness of a beam (Eq. 6.8)
ÊI bending stiffness of a beam (Eq. 6.8)

ÊIω warping stiffness of a beam (Eq. 6.244)
Fi , Fi j strength parameters in the quadratic failure criterion (Eq. 10.2)
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fi j constants in the quadratic failure criterion (Eq. 10.25)
f, fi j frequency (Eq. 4.190)

fx, fy, fz, body forces per unit volume (Eq. 2.13)
G23, G13, G12 shear moduli in the x1, x2, x3 coordinate system (Table 2.5)

ĜI t torsional stiffness of a beam (Eq. 6.8)
h plate thickness

hb, ht distances of the bottom and top surfaces of a plate from the
reference plane (Eq. 3.9)

iω polar radius of gyration (Eq. 6.340)
[J ] inverse of the material stiffness matrix [E] (Eq. 9.16)

K number of layers in a laminate; number of wall segments;
stiffness parameter of a plate (Eq. 4.153)

k̃ rotational spring constant (Eq. 4.149)
k equivalent length factor (Eq. 6.340)

Lx, Ly dimensions of a plate
L length; number of cells in a multicell beam (Eq. 6.222)

Li , Lf
i load and failure load (Eq. 10.42)

lx, lo
x half buckling length (Eq. 4.142), half buckling length

corresponding to the lowest buckling load of a long plate
(Eq. 4.173)

Mx, My, Mxy bending and twist moments per unit length acting on a
laminate (Eq. 3.9)

Mht
x , Mht

y , Mht
xy hygrothermal moments per unit length (Eq. 4.247)

M̂y, M̂z bending moments acting on a beam (Fig. 6.2)
M̂ω bimoment acting on a beam (Eq. 6.232)

Nx, Ny, Nxy in-plane forces per unit length acting on a laminate (Eq. 3.9)
Nx0, Ny0, Nxy0 in-plane compressive forces per unit length (Eq. 4.109)
Nht

x , Nht
y , Nht

xy hygrothermal forces per unit length (Eq. 4.246)
Nx, cr buckling load of a uniaxially loaded plate (Eq. 4.141)

N̂ axial force acting on a beam (Fig. 6.2)
N̂cr, N̂

B
cr buckling load and buckling load due to bending deformation

(Eq. 6.337)
N̂cry, N̂crz buckling load in the x–z and x–y planes, respectively

(Eqs. 6.337, 7.110)
N̂crψ buckling load under torsional buckling (Eqs. 6.337, 7.110)

[P], [P] stiffness matrix of a beam (Eqs. 6.2, 6.250). Without bar refers
to the centroid; with bar to an arbitrarily chosen coordinate
system

p transverse load per unit area; distance between the origin and
the tangent of the wall of a beam (Eq. 6.190)

px, py, pz axial and transverse loads (per unit length) acting on a beam
(Fig. 6.1); surface forces per unit area (Eq. 2.166)

[Q], Qi j 2D plane-stress stiffness matrix in the x1, x2 coordinate system
(Eq. 2.134)
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[Q], Qi j 2D plane-stress stiffness matrix in the x, y coordinate system
(Eq. 2.126)

Q̂cr buckling load resulting in lateral buckling (Eq. 6.359)
q shear flow (Eq. 6.189).
R stiffness parameter (Eq. 3.46)
R̃ stress ratio (Eq. 10.42)

Rx, Ry, Rxy radii of curvatures of a shell (Eq. 8.1)
[R], Ri j compliance matrix under plane-strain condition in the x1, x2

coordinate system (Eq. 2.79)
[R], Ri j compliance matrix under plane-strain condition in the x, y

coordinate system (Eq. 2.65)
[S], Si j 3D compliance matrix in the x1, x2, x3 coordinate system

(Eq. 2.23)
[S], Si j 3D compliance matrix in the x, y, z coordinate system

(Eq. 2.21)
Ŝi j shear stiffness of a beam, i, j = z, y, ω (Eqs. 7.13, 7.36)
S̃i j shear stiffness of a plate, i, j = 1, 2 (Eq. 5.15)
ŝi j shear compliance of a beam, i, j = z, y, ω (Eq. 7.38)

s+
1 , s+

2 , s+
3 tensile strengths (Eq. 10.13)

s−
1 , s−

2 , s−
3 compression strengths (Eq. 10.13)

s23, s13, s12 shear strengths (Eq. 10.15)
T̂ torque acting on a beam (Fig. 6.2)

T̂ω restrained warping-induced torque (Eq. 6.235)
T̂sv Saint-Venant torque (Eq. 6.239)

[Tσ ] 2D stress transformation matrix (Eq. 2.182)
[T̂σ ] 3D stress transformation matrix (Eq. 2.179)
[Tε] 2D strain transformation matrix (Eq. 2.188)
[T̂ε] 3D strain transformation matrix (Eq. 2.185)

t torque load acting on a beam (Fig. 6.1)
t t, tb thicknesses of the top and bottom facesheets (Eq. 5.26)

U strain energy (Eq. 2.200)
U displacement in the x direction; varies with the x and y

coordinates only (Eq. 2.50)
u displacement in the x direction

uo displacement of the reference surface in the x direction
u1, u2, u3 displacements in the x1, x2, and x3 direction

V displacement in the y direction; varies with the x and y
coordinates only (Eq. 2.51)

Vf, Vm, Vv volume of fibers, matrix, and void
Vx, Vy out-of-plane shear forces per unit length (Eq. 3.10)
V̂y, V̂z transverse shear forces acting on a beam (Fig. 6.2)

v displacement in the y direction
vo displacement of the reference surface in the y direction

vf, vm, vv volume fraction of fibers, matrix, and void
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W displacement in the z direction; varies with the x and y
coordinates only (Eq. 2.52)

[W], [W] compliance matrix of a beam (Eq. 6.17). No bar refers to the
centroid; bar to an arbitrarily chosen coordinate system

w deflection in the z direction
w̃ maximum deflection in the z direction (Eq. 4.29)

wo deflection of the reference surface in the z direction
wB, wS deflections due to bending and shear deformations (Eq. 7.85)

yc, zc coordinates of the centroid of a beam (Eqs. 6.54, 6.73)
ysc, zsc coordinates of the shear center of a beam (Eq. 6.311)

zk, zk− 1 coordinates of the top and bottom surfaces of the kth ply in a
laminate (Eq. 3.20)

Greek letters

α parameter describing shear deformation (Eq. 7.253)
αi parameter describing shear deformation, i = w, ψ , N, ω

(Eq. 7.244)
[α] , αi j compliance matrix of a laminate (Eq. 3.23)

α, β parameters describing buckled shape of a shell (Eq. 8.78)
α̂i j compliances for closed-section beams (Eq. 6.156)

α̃i , α̃i j thermal expansion coefficients (Eqs. 2.153, 2.158)
β, λ parameters in the displacements of a cylinder (Eq. 8.30)

[β] , βi j compliance matrix of a laminate (Eq. 3.23)
β i j compliance of symmetrical cross-section beams (Table 6.2)
β̂i j compliance of closed-section beams (Eq. 6.156)

β̃i , β̃i j moisture expansion coefficients in the x, y, z directions
(Eqs. 2.154, 2.159)

β1 property of the cross section (Eq. 6.360)
γy, γz shear strain in a beam in the x–y and x–z planes (Eq. 7.2)

γyz, γxz, γxy engineering shear strain in the x, y, z coordinate system
(Eq. 2.9)

γ23, γ13, γ12 engineering shear strain in the x1, x2, x3 coordinate system
�h change in thickness (Eq. 4.282)
�T temperature change (Eq. 2.153)

[δ], δi j compliance matrix of a laminate (Eq. 3.23)
δ̂i j compliance of closed-section beams (Eq. 6.157)

εx, . . . average strains in a sublaminate (Eq. 9.14)
εx, εy, εz engineering normal strains in the x, y, z coordinate system
ε1, ε2, ε3 engineering normal strains in the x1, x2, x3 coordinate system

εo
x , εo

y , γ
o
xy strains of the reference surface

εo,ht
x , εo,ht

y , γ o,ht
xy hygrothermal strains in a laminate (Eq. 4.250)

ζ parameter of restraint (Eq. 4.152)
� polar moment of mass (Eq. 6.411)
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�k ply orientation
ϑ rate of twist (Eq. 6.1)

ϑB, ϑS rate of twist due to bending and shear deformation (Eq. 7.5)
κx, κy, κxy curvatures of the reference surface (Eq. 3.8)

κht
x , κht

y , κht
xy hygrothermal curvatures of a laminate (Eq. 4.250)

λ, λcr, λi j load parameter (Eq. 4.109); buckling load parameter
(Eq. 4.121); eigenvalue (Eq. 4.225)

µBi , µGi , µSi parameters in the calculation of natural frequencies
(Eqs. 6.398, 6.400, 7.203)

νi j Poisson’s ratio
ξ, η, ζ coordinates attached to the wall of a beam (Fig. 6.13)

ξ, ξ ′ parameters in the expressions of the buckling loads of plates
with rotationally restrained edges (Eq. 4.151)

πp potential energy (Eq. 2.204)
ρx, ρy, ρz radius of curvature in the y–z , x–z, and x–y planes (Eq. 2.45)
ρ1, ρ2, ρ3 radius of curvature in the x2–x3 , x1–x3, and x1–x2 planes

(Eq. 2.53)
ρcomp, ρf, ρm densities of composite, fiber, and matrix

ρ mass per unit area or per unit length
σ1, σ2, σ3 normal stresses in the x1, x2, x3 coordinate system
σx, σy, σz normal stresses in the x, y, z coordinate system

σ average stress
τ23, τ13, τ12 shear stresses in the x1, x2, x3 coordinate system
τyz, τxz, τyx shear stresses in the x, y, z coordinate system

χxz, χyz rotation of the normal of a plate in the x–z and x–y planes
(Eqs. 3.2 and 5.1)

χy, χz rotation of the cross section of a beam in the x–y and x–z
planes (Eq. 7.2)

ψ angle of rotation of the cross section about the beam axis
(twist) (Fig. 6.3)

� bending stiffness of an unsymmetrical long plate (Eq. 4.52)
� potential energy of the external loads (Eq. 2.203)
ω circular frequency (Eq. 4.190)

ωB, ωS circular frequency of a beam due to bending and shear
deformation (Eq. 7.198)

ωy, ωz circular frequency of a freely vibrating beam in the x–z and
x–y planes, respectively (Eq. 6.398)

ωψ circular frequency of a freely vibrating beam under torsional
vibration (Eq. 6.400)

�, �̃, �̄, �̂ distances between the new and the old reference surfaces
(Eqs. 3.47, 6.105, 6.107, A.3)
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CHAPTER TWO

Displacements, Strains,
and Stresses

We consider composite materials consisting of continuous or discontinuous fibers
embedded in a matrix. Such a composite is heterogeneous, and the properties
vary from point to point. On a scale that is large with respect to the fiber diam-
eter, the fiber and matrix properties may be averaged, and the material may be
treated as homogeneous. This assumption, commonly employed in macromechan-
ical analyses of composites, is adopted here. Hence, the material is considered to
be quasi-homogeneous, which implies that the properties are taken to be the same
at every point. These properties are not the same as the properties of either the
fiber or the matrix but are a combination of the properties of the constituents.

In this chapter, equations are presented for calculating the displacements,
stresses, and strains when the structure undergoes only small deformations and
the material behaves in a linearly elastic manner.

Continuous fiber-reinforced composite materials (and structures made of such
materials) often have easily identifiable preferred directions associated with fiber
orientations or symmetry planes. It is therefore convenient to employ two co-
ordinate systems: a local coordinate system aligned, at a point, either with the
fibers or with axes of symmetry, and a global coordinate system attached to a fixed
reference point (Fig. 2.1). In this book the local and global Cartesian coordinate
systems are designated respectively by x1, x2, x3 and the x, y, z axes. In the x, y, z
directions the displacements at a point Aare denoted by u, v, w, and in the x1, x2,
x3 directions by u1, u2, u3 (Fig. 2.2).

In the x, y, z coordinate system the normal stresses are denoted by σx, σy, and
σz and the shear stresses by τyz, τxz, and τxy (Fig. 2.3). The corresponding normal
and shear strains are εx, εy, εz and γyz, γxz, γxy, respectively.

In the x1, x2, x3 coordinate system the normal stresses are denoted by σ1, σ2,
and σ3 and the shear stresses by τ23, τ13, and τ12 (Fig. 2.3). The corresponding
normal and shear strains are ε1, ε2, ε3, and γ23, γ13, γ12, respectively. The symbol γ

represents engineering shear strain that is twice the tensorial shear strain,γi j = 2εi j

(i, j = x, y, z or i, j = 1, 2, 3).

3
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x1

x2

z x, 3

y

x

Figure 2.1: The global x, y, z and local x1, x2, x3 coordinate systems.

A stress is taken to be positive when it acts on a positive face in the positive
direction. According to this definition, all the stresses shown in Figure 2.3 are
positive.

The preceding stress and strain notations, referred to as engineering notations,
are used throughout this book. Other notations, most notably tensorial and con-
tracted notations, can frequently be found in the literature. The stresses and strains
in different notations are summarized in Tables 2.1 and 2.2.

2.1 Strain–Displacement Relations

We consider a 	x long segment that undergoes a change in length, the new length
being denoted by 	x′. From Figure 2.4 it is seen that

u + 	x′ = 	x +
(

u + ∂u
∂x

	x
)

, (2.1)

where u and u + ∂u
∂x 	x are the displacements of points A and B, respectively, in

the x direction. Accordingly, the normal strain in the x direction is

εx = 	x′ − 	x
	x

= ∂u
∂x

. (2.2)

Similarly, in the y and z directions the normal strains are

εy = ∂v

∂y
(2.3)

εz = ∂w

∂z
, (2.4)

where v and w are the displacements in the y and z directions, respectively.

A w

v

u

z

y

x

x3

x2

x1

A

u2

u1 u3

A' A'

Figure 2.2: The x, y, z and x1, x2, x3 coordinate systems and the corresponding displacements.
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x3

x2

x1

σ3

σ2

σ1

τ13

τ12

τ23

τ21

τ32

τ31

z

y

x

σz

σy

σx

τxz

τxy

τyz

τyx

τzyτzx

Figure 2.3: The stresses in the global x, y, z and the local x1, x2, x3 coordinate systems.

For angular (shear) deformation the tensorial shear strain is the average change
in the angle between two mutually perpendicular lines (Fig. 2.5)

εxy = α + β

2
. (2.5)

For small deformations we have

α ≈ tan α =
(
v + ∂v

∂x 	x
) − v

	x
= ∂v

∂x
. (2.6)

Similarly β = ∂u/∂y, and the xy component of the tensorial shear strain is

εxy = 1
2

(
∂u
∂y

+ ∂v

∂x

)
. (2.7)

In a similar manner we obtain the following expressions for the εyz and εxz

components of the tensorial shear strains:

εyz = 1
2

(
∂v

∂z
+ ∂w

∂y

)
εxz = 1

2

(
∂u
∂z

+ ∂w

∂x

)
. (2.8)

Table 2.1. Stress notations

Normal stress Shear stress

x, y, z coordinate system
Tensorial stress σxx σyy σzz σyz σxz σxy

Engineering stress σx σy σz τyz τxz τxy

Contracted notation σx σy σz σq σr σs

x1, x2, x3 coordinate system
Tensorial stress σ11 σ22 σ33 σ23 σ13 σ12

Engineering stress σ1 σ2 σ3 τ23 τ13 τ12

Contracted notation σ1 σ2 σ3 σ4 σ5 σ6
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Table 2.2. Strain notations (the engineering and contracted
notation shear strains are twice the tensorial shear strain)

Normal strain Shear strain

x, y, z coordinate system
Tensorial strain εxx εyy εzz εyz εxz εxy

Engineering strain εx εy εz γyz γxz γxy

Contracted notation εx εy εz εq εr εs

x1, x2, x3 coordinate system
Tensorial strain ε11 ε22 ε33 ε23 ε13 ε12

Engineering strain ε1 ε2 ε3 γ23 γ13 γ12

Contracted notation ε1 ε2 ε3 ε4 ε5 ε6

The engineering shear strains are twice the tensorial shear strains:

γyz = 2εyz = ∂v

∂z
+ ∂w

∂y
(2.9)

γxz = 2εxz = ∂u
∂z

+ ∂w

∂x
(2.10)

γxy = 2εxy = ∂u
∂y

+ ∂v

∂x
. (2.11)

In the x1, x2, x3 coordinate system the strain–displacement relationships are
also given by Eqs. (2.2)–(2.4) and (2.9)–(2.11) with x, y, z replaced by x1, x2, x3,
the subscripts x, y, z by 1, 2, 3, and u, v, w by u1, u2, u3.

2.2 Equilibrium Equations

The equilibrium equations at a point O are obtained by considering force and
moment balances on a small 	x	y	z cubic element located at point O. (The
point O is at the center of the element, Fig. 2.6.) We relate the stresses at one face
to those at the opposite face by the Taylor series. By using only the first term of
the Taylor series, force balance in the x direction gives

−σx	z	y − τzx	x	y − τyx	x	z +
(

σx + ∂σx

∂x
	x

)
	z	y

+
(

τzx + ∂τzx

∂z
	z

)
	x	y +

(
τyx + ∂τyx

∂y
	y

)
	x	z + fx	x	y	z= 0,

(2.12)

u

A B∆x

y

x

x∆
x

u
u

∂

∂+

x′∆

A′ B ′

Figure 2.4: Displacement of the AB line segment.
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y

x

∆x

v

A B

β

α

C

x∆
x

v
v

∂

∂

B′

A′

C ′

+

Figure 2.5: Displacement of the ABC segment.

where fx is the body force per unit volume in the x direction. After simplification,
this equation becomes

∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ fx = 0. (2.13)

By similar arguments, the equilibrium equations in the y and z directions are

∂τxy

∂x
+ ∂σy

∂y
+ ∂τzy

∂z
+ fy = 0, (2.14)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ fz = 0, (2.15)

where fy and fz are the body forces per unit volume in the y and z directions.
A moment balance about an axis parallel to x and passing through the center

(point O) gives (Fig. 2.7)

τyz	x	z
	y
2

− τzy	x	y
	z
2

+
(

τyz + ∂τyz

∂y
	y

)
	x	z

	y
2

−
(

τzy + ∂τzy

∂z
	z

)
	x	y

	z
2

= 0. (2.16)

σz

σy

σx

τxz

τxy

τyz

τyx

τzy

τzx

z

y

x
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x∆
x

τ
τ

x∆
x

σ
σ

x∆
x

τ
τ

xy
xy

x
x

xz
xz

∂

∂
+

∂

∂+

∂

∂+

z∆
z

τ
τ

z∆
z

τ
τ

z∆
z

σ
σ

zx
zx

zy
zy

z
z

∂

∂+

∂

∂
+

∂

∂+

y∆
y

τ
τ

y∆
y

σ
σ

y∆
y

τ
τ

yx
yx

y
y

yz
yz

∂

∂
+

∂

∂
+

∂

∂
+

z∆

Figure 2.6: Stresses on the 	x	y	z cubic element.
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z
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x

τyz

τzy

O
z∆
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z∆
z

τ
τ

zy
zy

∂

∂
+

y∆
y

τ
τ

yz
yz

∂

∂
+

Figure 2.7: Stresses on the 	x	y	z cubic element that appear in the moment balance about an
axis parallel to x and passing through the center (point O).

By omitting higher order terms, which vanish in the limit 	x → 0, 	y → 0, 	z→ 0,
this equation becomes

τyz = τzy. (2.17)

Similarly, we obtain the following equalities:

τxz = τzx τxy = τyx. (2.18)

By virtue of Eqs. (2.17) and (2.18), the three equilibrium equations (Eqs. 2.13–
2.15) contain six unknowns, namely, the three normal stresses (σx, σy, σz) and the
three shear stresses (τyz, τxz, τxy).

In the x1, x2, x3 coordinate system the equilibrium equations are also given by
Eqs. (2.13)–(2.15) with x, y, z replaced by x1, x2, x3 and the subscripts x, y, z by
1, 2, 3.

2.3 Stress–Strain Relationships

In a composite material the fibers may be oriented in an arbitrary manner. De-
pending on the arrangements of the fibers, the material may behave differently
in different directions. According to their behavior, composites may be charac-
terized as generally anisotropic, monoclinic, orthotropic, transversely isotropic,
or isotropic. In the following, we present the stress–strain relationships for these
types of materials under linearly elastic conditions.

2.3.1 Generally Anisotropic Material

When there are no symmetry planes with respect to the alignment of the fibers
the material is referred to as generally anisotropic. A fiber-reinforced composite
material is, for example, generally anisotropic when the fibers are aligned in three
nonorthogonal directions (Fig. 2.8).
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Figure 2.8: Example of a generally anisotropic material.

For a generally anisotropic linearly elastic material, in the x, y, z global coor-
dinate system, the stress–strain relationships are

σx = C11εx + C12εy + C13εz + C14γyz + C15γxz + C16γxy

σy = C21εx + C22εy + C23εz + C24γyz + C25γxz + C26γxy

σz = C31εx + C32εy + C33εz + C34γyz + C35γxz + C36γxy

τyz = C41εx + C42εy + C43εz + C44γyz + C45γxz + C46γxy

τxz = C51εx + C52εy + C53εz + C54γyz + C55γxz + C56γxy

τxy = C61εx + C62εy + C63εz + C64γyz + C65γxz + C66γxy.

(2.19)

Equation (2.19) may be written in the form




σx

σy

σz

τyz

τxz

τxy




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66







εx

εy

εz

γyz

γxz

γxy




, (2.20)

where Ci j are the elements of the stiffness matrix [C ] in the x, y, z coordinate
system.

Inversion of Eq. (2.20) results in the following strain–stress relationships:




εx

εy

εz

γyz

γxz

γxy




=




S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66







σx

σy

σz

τyz

τxz

τxy




, (2.21)

where Si j are the elements of the compliance matrix [S ] in the x, y, z coordinate
system and are defined in Table 2.3 (page 10). In this table tests are illustrated
that, in principle, could provide means of determining the different compliance
matrix elements.



P1: FOM/... P2: FOM/... QC: FOM/UDA T1: UDA

CB484-02drv CB484-Kollar October 10, 2002 11:57 Char Count=

10 DISPLACEMENTS, STRAINS, AND STRESSES

Table 2.3. The elements of the compliance matrix [S ] in the x, y, z
coordinate system. The elements Sij (without bar) in the x1, x2, x3

coordinate system are obtained by replacing x, y, z by 1, 2, 3 on the
right-hand sides of the expressions.

Test Elements of the compliance matrix

σx

σx

S11 = εx/σx S41 = γyz/σx

S21 = εy/σx S51 = γxz/σx

S31 = εz/σx S61 = γxy/σx

S12 = εx/σy S42 = γyz/σyσyσy
S22 = εy/σy S52 = γxz/σy

S32 = εz/σy S62 = γxy/σy

σz

σz

S13 = εx/σz S43 = γyz/σz

S23 = εy/σz S53 = γxz/σz

S33 = εz/σz S63 = γxy/σz

τyz S14 = εx/τyz S44 = γyz/τyz

S24 = εy/τyz S54 = γxz/τyz

S34 = εz/τyx S64 = γxy/τyz

τxz S15 = εx/τxz S45 = γyz/τxz

S25 = εy/τxz S55 = γxz/τxz

S35 = εz/τxz S65 = γxy/τxz

τxy S16 = εx/τxy S46 = γyz/τxy

S26 = εy/τxy S56 = γxz/τxy

S36 = εz/τxy S66 = γxy/τxy

In the x1, x2, x3 coordinate system the stress–strain relationships are


σ1

σ2

σ3

τ23

τ13

τ12




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66







ε1

ε2

ε3

γ23

γ13

γ12




, (2.22)

where Ci j are the elements of the stiffness matrix [C] in the x1, x2, x3 coordinate
system.

By inverting Eq. (2.22) we obtain the following strain–stress relationships:


ε1

ε2

ε3

γ23

γ13

γ12




=




S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66







σ1

σ2

σ3

τ23

τ13

τ12




, (2.23)

where Si j are the elements of the compliance matrix [S] in the x1, x2, x3 coordinate
system.


