
1
Introductory overview

We start by overviewing the origins, motivations, basic ideas and results of the
harmonic superspace (and space) approach. Our major aim here is to give the
reader a preliminary impression of the subject before immersion into the main
body of the book.

1.1 Brief motivations

It is hardly possible to overestimate the rôle of symmetries in the development
of physics. The place they occupy is becoming more and more important every
year. The very family of symmetries is getting richer all the time: Besides
the old symmetries based on Lie algebras we are now exploiting new kinds of
symmetries. These include supersymmetries which mix bosons with fermions
and are based on superalgebras, symmetries associated with non-linear algebras
of Zamolodchikov’s type, symmetries connected to quantum groups, etc. To
date, the supersymmetric models have been studied in most detail. They turn out
to have quite remarkable features. They open a new era in the search for a unified
theory of all interactions including gravity. They help to solve the hierarchy
problem in the grand unification theories. For the first time in the history of
quantum field theory, supersymmetry has led to the discovery of a class of
ultraviolet-finite local four-dimensional field theories. In these finite theories
the ultraviolet divergences in the boson and fermion loops ‘miraculously’
cancel against each other. Supersymmetries underlie the superstring theories,
which provide the first consistent scheme for quantization of gravity. The
research programs of the leading accelerator laboratories include searches for
supersymmetric partners of the known particles (predicted by supersymmetry
but not yet discovered).

In view of this impressive development, it is imperative to be able to
formulate the supersymmetric theories in a systematic, consistent and clear
way. There already exist several reviews [F2, F3, F4, F7, N2, O4, S13, V1]
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2 1 Introductory overview

and textbooks [B17, G26, W7, W12] devoted to the simplest kind of super-
symmetry, N = 1 (i.e., containing one spinor generator in its superalgebra).
It was this supersymmetry that was first discovered in the pioneering articles
[G38, G39, V4, V5, V6, W8]. The superfield approach appropriate to this case
was developed in the 1970s. However, extended supersymmetries (i.e., those
containing more than one spinor generator) turned out much more difficult. Each
new step in understanding them requires new notions and approaches. Even in
the simplest extended N = 2 supersymmetry, until 1984 no way to formulate
all such theories off shell, in a manifestly supersymmetric form and in terms
of unconstrained superfields, was known. Such formulations are preferable not
only because of their intrinsic beauty, but also since they provide an efficient
technique, in particular, in quantum calculations or in the proof of finiteness.
The invention of a new, harmonic superspace [G4, G13] made it possible to
develop off-shell unconstrained formulations of all the N = 2 supersymmetric
theories (matter, Yang–Mills and supergravity) and of N = 3 Yang–Mills
theory.

N = 2 harmonic superspace is standard superspace augmented by the
two-dimensional sphere S2 ∼ SU (2)/U (1). In such an enlarged superspace it is
possible to introduce a new kind of analyticity, Grassmann harmonic [G4, G13].
This proved to be the key to the adequate off-shell unconstrained formulations,
just like chirality [F13], the simplest kind of Grassmann analyticity [G8], is
a keystone in N = 1 supersymmetry. This new analyticity amounts to the
existence of an analytic subspace of harmonic superspace whose odd dimension
is half of that of the full superspace. All N = 2 theories mentioned above are
naturally described by Grassmann analytic superfields, i.e., the unconstrained
superfields in this subspace. A similar kind of analyticity underlies the N = 3
gauge theory [G5, G6].

A most unusual and novel feature of the analytic superfields is the unavoidable
presence of infinite sets of auxiliary and/or gauge degrees of freedom in their
component expansions. They naturally emerge from the harmonic expansions
on the two-sphere S2 with respect to a new sort of bosonic coordinates, the
harmonic variables, which describe S2 in a parametrization-independent way.
These infinite sets, instead of being a handicap, proved to be very helpful indeed.
It is due to their presence in the analytic superfield describing the N = 2
scalar multiplet (hypermultiplet) [F1, S12] off shell that one can circumvent
the so-called ‘no-go’ theorem [H18, S21] claiming that such a formulation is
not possible. In fact, the no-go theorems always implicitly assume the existence
of a finite set of auxiliary fields.

The Grassmann analytic superfields with their infinite towers of components
can be handled in much the same way as ordinary superfields, using a set of
simple rules and tools. In [G14, G15] we worked out the quantization scheme
for the N = 2 matter and gauge theories in harmonic superspace. The crucial
importance of formulating quantum perturbation theory in supersymmetric
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1.1 Brief motivations 3

models in terms of unconstrained off-shell superfields has repeatedly been
pointed out in the literature (see, e.g., [H16]). Such formulations allow one
to understand the origin of many remarkable properties of quantum supersym-
metric theories which seem miraculous in the context of the component or
constrained superfield formulations. Above all, this concerns the cancellation
of ultraviolet divergences. Harmonic superspace is the only known approach
which provides unconstrained off-shell formulations of both the matter and
gauge N = 2 multiplets and as such it is indispensable for quantum calculations
in the theories involving these multiplets. A particular representative of this
class of theories is N = 4 super-Yang–Mills theory which, from the N = 2
perspective, is just the minimal coupling of the hypermultiplet in the adjoint
representation of the gauge group to the N = 2 super-Yang–Mills multiplet.

It is worthwhile to emphasize that the harmonic superspace approach is very
close to the twistor one which is an effective tool for solving the self-dual Yang–
Mills and Einstein equations. In fact, harmonic superspace could be regarded
as an isotwistor superspace. However, even when applied to the purely bosonic
self-duality problems, the harmonic space approach has some advantages, one of
them being as follows. We use harmonics (the fundamental isospin 1/2 spherical
functions) as abstract global coordinates spanning the whole two-sphere. This
is in contrast with, e.g., polar or stereographic coordinates which require two
charts on the sphere. So, if one succeeds in solving a self-duality equation in
terms of harmonics, there will be no need to attack the famous Riemann–Hilbert
problem which is central in conventional twistor approaches. We also wish to
stress that the harmonic (super)space formalism heavily uses the Cartan coset
technique, transparent and familiar to many physicists.

A surge of interest in the harmonic superspace methods and, above all, in
the methods for off-shell quantum calculations was mainly motivated by two
remarkable developments in our understanding of supersymmetric field theories
during the 1990s.

The first one stems from the seminal paper by Seiberg and Witten [S5]
where it was suggested that N = 2 gauge theories are exactly solvable at the
full quantum level under some reasonable hypotheses like S duality intimately
related to extended supersymmetry [W17]. The study of the structure of the
quantum low-energy effective actions of N = 2 gauge theories, in both the
perturbative and non-perturbative sectors, is of great importance in this respect.
The quantum harmonic superspace methods were successfully applied for this
purpose, in particular for computing the holomorphic and non-holomorphic
contributions to the effective action (see [B14, B15, B16, I8] and references
therein).

The second source of interest is the famous Maldacena AdS/CFT conjecture
[G42, M1, W16]. This is the idea that the quantum N = 4 super Yang–Mills
theory in the limit of large number of colors and strong coupling is dual to the
type IIB superstring on Ad S5 × S5 and contains the corresponding supergravity
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4 1 Introductory overview

as a sub-sector of its Hilbert space. This conjecture greatly stimulated thorough
analysis of the structure of this exceptional gauge theory from different points
of view using different calculational means. The harmonic superspace methods,
as was shown in several recent papers [E1, E3, E4, E5, H14], can drastically
simplify the calculations and allow one to make far reaching predictions in N =
4 super-Yang–Mills theory.

All this justifies the need for a comprehensive introduction to the harmonic
superspace approach. We hope that the present book will meet, at least partly,
this quest. Here we do not discuss the latest developments but prefer to concen-
trate on the basics of the harmonic superspace method. Some developments
are briefly addressed in the Conclusions. When reading this book one may
find it helpful to consult the reviews and books mentioned above. We also
point out that there are a few papers devoted to the mathematical aspects of
harmonic superspace and, in particular, to a more rigorous definition of it, e.g.,
[H3, H10, H12, R6, S4]. We do not address these special issues in our rather
elementary exposition.

1.2 Brief summary

The present book has been conceived as a pedagogical review of all the extended
supersymmetric N = 2 theories and of N = 3 Yang–Mills theory in the
framework of harmonic superspace. The details of these theories are discussed,
as well as some applications. A special emphasis is put on their geometrical
origin and on the relationship with hyper-Kähler and quaternionic complex
manifolds which appear as the target manifolds of N = 2 supersymmetric sigma
models in a flat background and in the presence of supergravity, respectively.
The Cartan coset techniques are used systematically with emphasis on their
power and simplicity. The self-duality Yang–Mills and Einstein equations
are treated in this language with stress on their deep affinity with N = 2
supersymmetric theories and on comparing the harmonic space approach with
the twistor one.

A detailed outline of the content of this book is given at the end of Chapter
1. In order to help the reader, we preface the main body of the book with an
overview of the basic ideas, notions and origins. We begin with a discussion of
spaces and superspaces for the realization of symmetries and supersymmetries,
emphasizing the importance of making the right choice: The same symmetry
can be realized in different ways, one of them being much more appropriate for
a given problem than the others.

1.3 Spaces and superspaces

Manifestly invariant formulations of field theories make use of some space (or
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1.3 Spaces and superspaces 5

superspace) where a given symmetry (or supersymmetry) is realized geometri-
cally by coordinate transformations. Two examples are well known:

(i) In Minkowski space M
4 = (xa) the Poincaré group transformations have

the form
x ′a = 	a

bxb + ca . (1.1)

In classical and quantum field theories the action principle and the equations of
motion are manifestly invariant under (1.1), the form of the corresponding field
transformations being completely fixed by (1.1) and the tensor properties of the
field, e.g.,

f ′(x ′) = f (x) (1.2)

for a scalar field f (x). It is important that this transformation law does not
depend on the model under consideration.

(ii) One usually attempts to formulate manifestly invariant N -extended super-
symmetric theories in the standard superspace [S1]

R
4|4N = (xa, θα

i , θ̄ α̇i ) , i = 1, 2, . . . , N (1.3)

involving the spinor anticommuting coordinates θα
i , θ̄ α̇i in addition to xa .

Their transformation rules under the Poincaré group are evident, while the
transformations under supersymmetry (supertranslations with anticommuting
parameters εα

i , ε̄α̇i ) are given by

δxa = i(εiσ a θ̄i − θ iσ a ε̄i ) , δθα
i = εα

i , δθ̄ α̇i = ε̄α̇i . (1.4)

Superfields �(x, θ, θ̄ ) are defined as functions on this superspace and their
transformation law is completely determined by (1.2). For example, for a scalar
superfield

�′(x ′, θ ′, θ̄ ′) = �(x, θ, θ̄ ) . (1.5)

Of course, this law is model-independent. Expanding a superfield �(x, θ, θ̄ ) in
powers of the spinor (anticommuting, hence nilpotent) variables θ, θ̄ yields a
finite set of usual fields f (x), ψα(x), . . . , called components of the superfield.

As an alternative to R
4|4N , N -extended supersymmetry can also be realized

in the so-called chiral superspace C
4|2N which is complex and contains only half

of the spinor coordinates [F13]:

δxa
L = −2iθ i

Lσ a ε̄i , δθα
L i = εα

i . (1.6)

In fact, the real superspace R
4|4N can be viewed as a real hypersurface in the

complex superspace C
4|2N :

xa
L = xa + iθ iσ a θ̄i , θα

L i = θα
i , θα

L i = θ̄ α̇ i . (1.7)
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6 1 Introductory overview

1.4 Chirality as a kind of Grassmann analyticity

The superfields �(xL , θL) = �(x + iθσ θ̄, θ) defined in C
4|2N can be treated as

Grassmann analytic superfields. Indeed, they obey the constraint

D̄α̇i� =
(

− ∂

∂θ̄ α̇i
− i(θiσ

a)α̇

∂

∂xa

)
� = 0 , (1.8)

where D̄i
α̇ is the covariant (i.e., commuting with the supersymmetry transfor-

mations) spinor derivative. In the basis (xL , θL , θ̄ ) this derivative simplifies to
D̄i

α̇ = −∂/∂θ̄ α̇i . Then the constraint (1.8) takes the form of a Cauchy–Riemann
condition,

∂ �

∂ θ̄ α̇
i

= 0 , (1.9)

which means that � is a function of θL but is independent of θ̄ (cf. the standard
theory of analytic functions where the Cauchy–Riemann condition ∂ f (z)/∂ z̄ =
0 means that the function depends on the variable z and is independent of its
conjugate z̄). The notion of Grassmann analyticity [G8] in this simplest form is
most useful in N = 1 supersymmetry. In this book the reader will see that there
exist non-trivial generalizations of this concept which underlie the N = 2 and
N = 3 supersymmetric theories.

It should by emphasized that finding the adequate superspace for a given
theory is, as a rule, a non-trivial problem. The above superspaces R

4|4N and
C

4|2N prove to be appropriate for off-shell formulations only in the simplest
case of N = 1 supersymmetry. These ‘standard’ superspaces cease to be so
useful in the extended (N > 1) supersymmetric theories. Finding and using the
adequate superspaces for N = 2, 3 is the main subject of this book.

Now, before approaching the main problem, we recall in a few words some
key points in N = 1 supersymmetry.

1.5 N = 1 chiral superfields

As already said, N = 1 supersymmetric theories can be formulated in the
superspaces R

4|4 or C
4|2. Consider, for example, the simplest N = 1

supermultiplet, the matter one. On shell it contains a spin 1/2 field ψα and a
complex scalar field A(x). In R

4|4 it can be described by a scalar superfield
�(x, θ, θ̄ ). However, the latter involves too many fields in its θ expansion:
Four real scalars, two Majorana spinors and a vector of various dimensions. To
eliminate the extra fields, it is necessary to impose a constraint on the superfield,
which turns out to be just the chirality (Grassmann analyticity) condition

D̄α̇� = 0 . (1.10)

As explained above, this constraint means that � is an analytic superfield. In the
N = 1 case the expansion of such a superfield (written down in the chiral basis)
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1.6 Auxiliary fields 7

is very short [F13]:

�(x, θ, θ̄ ) = �(xL , θL) = φ(xL) + θα
L ψα(xL) + θα

L θLα F(xL) . (1.11)

The fields φ, ψα, F form the off-shell N = 1 matter supermultiplet.
The chiral (N = 1 analytic) superspace C

4|2 is the cornerstone of all the
N = 1 theories: They are either formulated in terms of chiral superfields (matter
and its self-couplings) or are based on gauge principles which respect chirality
(Yang–Mills and supergravity and their couplings to matter). The reader will
see that for N = 2 and N = 3 the suitably modified concept of Grassmann
analyticity will also be crucial.

1.6 Auxiliary fields

Besides the physical fields φ(xL), ψα(xL), the superfield �(xL , θL) also con-
tains an auxiliary complex scalar field F(xL) of non-physical dimension 2. As
a consequence, this field can only appear in an action without derivatives and
thus can be eliminated by its equation of motion. In the presence of auxiliary
fields the supersymmetry transformations are model-independent and so have
the same form off and on shell. They form a closed supersymmetry algebra.
For example, in the case of the chiral scalar superfield above one obtains from
(1.5), (1.6) and (1.11)

δφ(x) = −εαψα(x) ,

δψα(x) = −2iσ a
αα̇ε̄

α̇ ∂aφ(x) − 2εα F(x) ,

δF(x) = −i ε̄α̇σ a
αα̇ ∂aψ

α(x) . (1.12)

The commutator of two such supertranslations yields an ordinary translation
with a parameter composed in accordance with the supersymmetry algebra.
(See Chapter 2 for more details on the realization of supersymmetry in terms
of fields.)

Of course, one can find a realization of supersymmetry on the physical fields
only, with the auxiliary fields eliminated by the equations of motion of a given
model. In fact, the first known realizations of supersymmetry were of just such
a kind, and it was to some extent an ‘art’ to simultaneously find the invariant
action and the supersymmetry transformations leaving it invariant. In contrast
with the transformations in the presence of auxiliary fields, now one has:

(i) Supersymmetry transformations depending on the choice of the specific
field model. They are in general non-linear and the structure of this
non-linearity varies from one action to another.

(ii) The algebra of these transformations closes only modulo the equations of
motion, i.e., on shell. Such algebras are referred to as open or soft.
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8 1 Introductory overview

These complications cause difficulties when trying to exploit the conse-
quences of supersymmetry, in particular, in studying the ultraviolet behavior.
Working in a manifestly invariant manner, in terms of the appropriate super-
fields, has undeniable advantages for such purposes. Note that some people
prefer to avoid the use of superfields and instead work directly with the off-shell
supermultiplets of fields including the auxiliary ones (e.g., φ(x), ψα(x), F(x) in
our N = 1 example). Then one needs a set of rules for handling such multiplets,
known as tensor calculus. The superfield approach automatically reproduces
all such rules in a nice geometrical way. This concerns the composition rule
for supermultiplets (it amounts to multiplication of superfields), the building of
invariant actions, etc.

The reader should realize that the notion of auxiliary fields is not peculiar to
supersymmetry, it also appears in the usual non-supersymmetric theories. For
instance, the Coulomb field is auxiliary in quantum electrodynamics.

The auxiliary fields play an extremely important rôle in the theories with
extended supersymmetry, their number there may even become infinite. The
reader will learn from the present book that this is due to a new feature of the
harmonic superspace: It involves auxiliary bosonic coordinates. This superspace
of a new kind is the only one that provides us with a systematic tool for off-shell
realizations of all the N = 2 extended supersymmetries and the N = 3
Yang–Mills theory.

1.7 Why standard superspace is not adequate for N = 2 supersymmetry

‘Not adequate’ means that in the framework of the standard superspaces R
4|8 and

C
4|4 it is impossible to find off-shell actions for an unconstrained description of

all the N = 2 supersymmetric theories. We illustrate this on the example of
the Fayet–Sohnius matter hypermultiplet [F1, S12]. On shell this supermultiplet
contains four scalar fields forming an SU (2) doublet f i (x) and two isosinglet
spinor fields ψα(x), κ̄ α̇(x). To incorporate them as components of a standard
superfield one has to use [S12] an isodoublet superfield qi (x, θ, θ̄ ) defined in
R

4|8. Due to the large number of spinor variables this superfield contains a lot
of redundant field components in addition to the physical ones listed above. The
extra fields are eliminated by imposing the constraint [S12]

D(i
α q j) = D̄(i

α̇ q j) = 0 , (1.13)

where (i j) means symmetrization and Di
α, D̄i

α̇ are the supercovariant spinor
derivatives obeying the algebra

{Di
α, D̄α̇ j } = −2iδi

jσ
a
αα̇

∂

∂xa
(1.14)

(for their precise definition see Chapter 3). These constraints eliminate the
extra field components of qi , leaving only the above physical fields (and their
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1.8 Search for conceivable superspaces (spaces) 9

derivatives in the higher terms of the θ expansion):

qi (x, θ, θ̄ ) = f i (x) + θ iαψα(x) + θ̄ i
α̇ κ̄

α̇(x) + derivative terms. (1.15)

However, at the same time the above constraints put all the physical fields on the
free mass shell:

� f i (x) = (σ a)αα̇ ∂

∂xa
ψα(x) = σ a

αα̇

∂

∂xa
κ̄ α̇(x) = 0 . (1.16)

The reason for this is that the constraints (1.13) are not integrable off shell:
The supercovariant spinor derivatives do not anticommute. Equations (1.16)
follow from the constraints (1.13) and the algebra (1.14), taking into account
the definitions

f i (x) = qi |θ=θ̄=0 , ψα(x) = 1

2
Di

αqi |θ=θ̄=0 , κα̇(x) = 1

2
D̄α̇

i qi |θ=θ̄=0 .

(1.17)
In order to extend this theory off shell and to introduce interactions it has

been proposed to relax, in one way or another, the constraints (1.13) [H15, Y1].
However, according to the general no-go theorem [H18, S21] (see Chapter 2),
this is impossible in the framework of the standard N = 2 superspaces R

4|8 or
C

4|4 using a finite number of auxiliary fields (or, equivalently, a finite number
of standard N = 2 superfields). A natural way out was to look for other
superspaces.

1.8 Search for conceivable superspaces (spaces)

Above we saw that it is helpful to consider different superspaces even in the
simplest case N = 1. For any (super)symmetry there exists a number of
admissible (super)spaces. The inadequacy of the standard superspaces R

4|8

and C
4|4 for off-shell realizations of N = 2 supersymmetry suggested to start

searching through the list of other available superspaces. This list is provided
by the standard coset construction due to E. Cartan [C4]∗ that allows one to
classify the different (super)spaces of some (super)group G and to handle them
effectively. One has to examine the conceivable quotients (we prefer the term
‘coset’) G/H of the group G over some of its subgroups H . For instance,
Minkowski space is the coset M

4 = P/L = (xa) of the Poincaré group P
over its Lorentz subgroup L. As we shall see later, the Poincaré group for
the Euclidean space R

4 can also be realized in another way, using the coset
space P/SU (2) × U (1), with SU (2) × U (1) being a subgroup of the rotation
group SO(4) = SU (2) × SU (2). This space is closely related to the so-called
twistor space (more precisely, the traditional twistor space is related by a similar
procedure to the Poincaré group of the complexified Minkowski space M

4).

∗ Subsequently rediscovered by physicists [C11, O3, V3].

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521801648 - Harmonic Superspace
A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. S. Sokatchev
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521801648


10 1 Introductory overview

Analogously, the standard real superspaces R
4|4N are the coset spaces

R
4|4N = SuPN

L = (xa, θα
i , θ̄ α̇i ) , (1.18)

where SuPN is the N -extended super-Poincaré group involving the generators
of the Poincaré group and the spinor supersymmetry generators Qi

α , Q̄α̇i . In the
same way, the chiral superspaces are the following coset spaces

C
4|2N = SuPN

{L, Q̄α̇i }
= (xa, θα

i ) . (1.19)

Note the important difference between (1.18) and (1.19). In the latter the
stability supergroup contains half of the spinor generators in addition to the
Lorentz group ones. In Chapter 3 the coset techniques [C4, C11, O3, V3]
are presented in detail. These techniques provide simple rules on how to find
explicit transformation laws, how to construct invariants making use of covariant
derivatives (obtained from the appropriate Cartan forms), etc.

1.9 N = 2 harmonic superspace

Certainly, R
4|4N and C

4|2N do not exhaust the list of possible superspaces for
realizations of N -extended supersymmetry. Let us briefly outline some general
features of N = 2 harmonic superspace, our main topic of interest in this book.

The N = 2 superalgebra{
Qi

α, Q̄α̇ j
} = 2δi

j (σ
a)αα̇ Pa , i, j = 1, 2 (1.20)

possesses an SU (2) group of automorphisms, Qi
α, Q̄α̇, j being SU (2) doublets

(indices i, j) and Pa being a singlet. In the standard case of eqs. (1.18)
and (1.19) (with N = 2) this SU (2) can be viewed as present both in the
numerator and the denominator, thus effectively dropping out. To obtain the
harmonic superspace, one has to keep only the U (1) subgroup of SU (2) in the
denominator instead of the whole SU (2):

H
4+2|8 = SuP2

L × SU (2)

U (1)
. (1.21)

In other words, one has to enlarge the N = 2 supersymmetry group by its
automorphisms group SU (2) realized in the coset space SU (2)/U (1). The latter
is a two-dimensional space known to have the topology of the two-sphere S2. So,
harmonic superspace is a tensor product of R

4|8 and a two-sphere S2.

1.10 Dealing with the sphere S2

Before discussing the harmonic superspace as a whole it is instructive to study
its much more familiar part SU (2)/U (1). Of course, one could choose polar
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