Table of Contents

Preface

ix

Introduction

1

Chapter 1. From Vector Calculus to Algebraic Topology

1A Chains, Cochains and Integration 7

1B Integral Laws and Homology 7

1C Cohomology and Vector Analysis 10

1D Nineteenth-Century Problems Illustrating the First and Second Homology Groups 15

1E Homotopy Versus Homology and Linking Numbers 18

1F Chain and Cochain Complexes 25

1G Relative Homology Groups 32

1H The Long Exact Homology Sequence 37

1I Relative Cohomology and Vector Analysis 41

1J A Remark on the Association of Relative Cohomology Groups with Perfect Conductors 46

Chapter 2. Quasistatic Electromagnetic Fields

2A The Quasistatic Limit of Maxwell’s Equations 49

2B Variational Principles for Electroquasistatics 63

2C Variational Principles for Magnetoquasistatics 70

2D Steady Current Flow 80

2E The Electromagnetic Lagrangian and Rayleigh Dissipation Functions 89

Chapter 3. Duality Theorems for Manifolds With Boundary

3A Duality Theorems 99

3B Examples of Duality Theorems in Electromagnetism 101

3C Linking Numbers, Solid Angle, and Cuts 112

3D Lack of Torsion for Three-Manifolds with Boundary 117

Chapter 4. The Finite Element Method and Data Structures

4A The Finite Element Method for Laplace’s Equation 121

4B Finite Element Data Structures 122

4C The Euler Characteristic and the Long Exact Homology Sequence 138
TABLE OF CONTENTS

Chapter 5. Computing Eddy Currents on Thin Conductors with Scalar Potentials 141
 5A Introduction 141
 5B Potentials as a Consequence of Ampère’s Law 142
 5C Governing Equations as a Consequence of Faraday’s Law 147
 5D Solution of Governing Equations by Projective Methods 147
 5E Weak Form and Discretization 150

Chapter 6. An Algorithm to Make Cuts for Magnetic Scalar Potentials 159
 6A Introduction and Outline 159
 6B Topological and Variational Context 161
 6C Variational Formulation of the Cuts Problem 168
 6D The Connection Between Finite Elements and Cuts 169
 6E Computation of 1-Cocycle Basis 172
 6F Summary and Conclusions 180

Chapter 7. A Paradigm Problem 183
 7A The Paradigm Problem 183
 7B The Constitutive Relation and Variational Formulation 185
 7C Gauge Transformations and Conservation Laws 191
 7D Modified Variational Principles 197
 7E Tonti Diagrams 207

Mathematical Appendix: Manifolds, Differential Forms, Cohomology, Riemannian Structures 215
 MA-A Differentiable Manifolds 216
 MA-B Tangent Vectors and the Dual Space of One-Forms 217
 MA-C Higher-Order Differential Forms and Exterior Algebra 220
 MA-D Behavior of Differential Forms Under Mappings 223
 MA-E The Exterior Derivative 226
 MA-F Cohomology with Differential Forms 229
 MA-G Cochain Maps Induced by Mappings Between Manifolds 231
 MA-H Stokes’ Theorem, de Rham’s Theorems and Duality Theorems 232
 MA-I Existence of Cuts Via Eilenberg–MacLane Spaces 240
 MA-J Riemannian Structures, the Hodge Star Operator and an Inner Product for Differential Forms 243
 MA-K The Operator Adjoint to the Exterior Derivative 249
 MA-L The Hodge Decomposition and Ellipticity 252
 MA-M Orthogonal Decompositions of p-Forms and Duality Theorems 253

Bibliography 261
Summary of Notation 267
Examples and Tables 273
Index 275