
Chapter 1

Fluctuations, renormalization and
universality

The idea of a book on defects and geometry in condensed matter
physics slowly nucleated as I prepared contributions to various reviews,
schools and workshops during the period 1982 to 1996. Although I have
other interests in theoretical physics, I kept coming back at regular inter-
vals to the statistical mechanics of defects and to related problems in
the physics of flexible lines and surfaces. A consistent picture of these
phenomena began to emerge and it transpired that work published
in various forums during the early 1990s built on research I had
described, e.g., at a summer school in the 1980s. Because considerable
time and effort went into these reviews and all areas described are still
active fields of investigation, it seemed reasonable to combine eight of
them with this new introductory chapter in book form. The result, I
hope, is a reasonably coherent account of the fascinating interplay
among defects, geometry and statistical mechanics which has played
such a central role in condensed matter physics during the past quarter
century [1].

All chapters emphasize research in which I had a direct role. I have
not attempted exhaustive reviews of these subjects and I apologize in
advance to those whose work I have overlooked or neglected. These
chapters are aimed at graduate students in physics, physical chemistry
and chemical engineering as well as at more advanced researchers.
Whenever possible, I tried to make the material intelligible to experi-
menters as well as theorists and to mention the many ingenious experi-
ments which motivate the theories.

Condensed matter theorists owe a tremendous debt to our friends
in the experimental community. They challenge us to predict and not

1

Cambridge University Press
978-0-521-80159-1 - Defects and Geometry in Condensed Matter Physics
David R. Nelson
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9780521801591
http://www.cambridge.org
http://www.cambridge.org


merely postdict experimental phenomena. Our experimental colleagues
will go to great lengths to design an experiment capable of testing an
interesting new theoretical idea. Theorists must be careful what they say,
because predictions in condensed matter physics can often be tested in
a matter of months with relatively inexpensive table-top experiments.
We owe our colleagues in the laboratory a great debt because they keep
us honest and inspire us with their beautiful experiments.

I also owe a special personal debt to the numerous theoretical grad-
uate students, postdoctoral fellows and scientific colleagues who have
contributed to the ideas in this book. Without their enthusiasm, dedi-
cation and many crucial insights this work would not have been possible.

This book describes, among other things, the statistical mechanics
of vortices, disclinations, dislocations, vacancies and interstitials.
Excitation of these defects in crystals, superfluids, superconductors,
liquid crystals and polymer arrays usually requires strong thermal fluc-
tuations. Geometrical aspects of statistical mechanics, with or without
defects, often become particularly interesting when these fluctuations
entangle or crumple extended line-like or surface-like objects in three
dimensions. Sometimes, as is the case for entangled vortices above the
first-order flux lattice melting transition in type-II superconductors, the
lines themselves are defects! Because modern ideas about the renormal-
ization group and universality in the presence of fluctuations underpin
most of the work on defects and the statistical mechanics of lines and
surfaces in this book, the remainder of this chapter provides a brief
introduction to this point of view with several illustrative examples. We
conclude with a survey of subsequent chapters.

1.1 Fluctuations and universality in condensed
matter physics
Condensed matter physics flourished in the second half of the twenti-
eth century, due in part to the application of sophisticated tools for
understanding thermal and quantum fluctuations to an astonishing
variety of problems. The failure of uncontrolled “mean field” or decou-
pling approximations is particularly evident close to equilibrium critical
points, where fluctuations occur over multiple length scales, from an
atomic dimension of order ångström units to a (diverging) correlation
length which can be micrometers or more. The renormalization group,
which was exported from particle physics by Kenneth Wilson in the
early 1970s, allows a systematic understanding of such nested length
scales (see Appendix A for an elementary introduction to the renormal-
ization group in the “hydrodynamic” context considered here). A par-
ticularly striking result is that most of the detailed physics of matter at
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microscopic length scales is irrelevant for critical-point phenomena. One
can make precise quantitative predictions about certain “universal” crit-
ical exponents or scaling functions without getting the microscopic
physics right in detail. What matters is symmetry, conservation laws, the
range of interactions and the dimensionality of space. The physics of
the diverging fluctuations at a critical point on large length scales is
largely decoupled from the physics on atomic scales of order ångströms.
The idea of new universal laws of physics governing fluctuations at a
critical point was nicely summarized by A. Z. Patashinskii and V. L.
Pokrovskii [2], two pioneers of scaling ideas at critical points in the
USSR, who wrote that

When fluctuations, these shapeless amoebas, overlap in large numbers to

form a continuous, undescribable soup, new and sharply defined laws . . .

come into play, cutting through the chaos.

It turns out that not just critical points but entire phases of matter
are described by a “universal,” coarse-grained, long-wavelength theory.
This point was recognized by Wilson [3], who argued that Landau’s
hydrodynamic treatment of magnets far from critical points (carried out
in the 1930s) was itself representative of a particularly simple renormal-
ization group fixed point. One can make similar statements about the
hydrodynamic laws derived for fluids in the nineteenth century. Upon
systematically integrating out the high-frequency, short-wavelength
modes associated with atoms and molecules, one should be able to
arrive at, say, the Navier–Stokes equations. One does not have to be at
a critical point to have universal physical laws insensitive to the micro-
scopic details. We now have many concrete calculations well away from
critical points that support this point of view. Ignorance about micro-
scopic details is typically packaged into a few phenomenological param-
eters characterizing the “fixed point,” such as the density and viscosity
of an incompressible fluid like water in the case of the Navier–Stokes
equations.

The modern theory of critical phenomena has interesting implica-
tions for our understanding of what constitutes “fundamental” physics.
For many important problems, a fundamental understanding of the
physics involved does not necessarily lie in the science of the smallest
available time or length scale. The extreme insensitivity of the hydro-
dyamics of fluids to the precise physics at high frequencies and short dis-
tances is highlighted when we remember that the Navier–Stokes
equations were derived in the early nineteenth century, at a time when
even the discrete atomistic nature of matter was in doubt. The same
equations would have resulted had matter been continuous at all length
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scales. The existence of atoms and molecules is irrelevant to the pro-
found (some might even say “fundamental”) problems of understand-
ing, say, turbulence in the Navier–Stokes equations at high Reynolds
numbers [4]. We would face almost identical problems in constructing a
theory of turbulence if quantum mechanics did not exist, or if the dis-
creteness of matter first became noticeable at length scales of order
fermis instead of ångström units.

Many aspects of condensed matter physics, by which I mean the
study of matter at everyday length and energy scales, do, of course,
depend crucially on quantum mechanics and the particulate nature of
matter. We cannot begin to understand phonons in solids, the specific
heat of metals, localization in semiconductors, the quantum Hall effect
and high-temperature superconductivity without knowing about the
quantum mechanics of protons, neutrons, electrons and, occasionally,
muons and positrons. There comes a point, however, when a more tra-
ditional reductionist approach burrows down to such short length scales
and high energies that its conclusions become largely irrelevant to the
physics of the world around us. This is why most condensed matter
physicists are not aiming to discover the “fundamental” laws at the
smallest length scales. The reductionist school of high-energy physics
continues to be a noble intellectual enterprise, but is now virtually
decoupled from physics at ångström-unit scales, just as atomic physics
is decoupled from the Navier–Stokes equations. New particles discov-
ered in high-energy physics are unlikely to help us understand problems
like turbulence or how itinerant magnetism arises from the Hubbard
model; neither will they unravel other hard problems like the complex-
ities of reptation dynamics in entangled polymer melts [5].

Although the precise nature of physics at very short length scales
need not have a profound impact on deep unresolved questions at much
larger scales, knowledge of the correct short-distance theory is of course
far from useless in condensed matter physics. A first-principles calcula-
tion of the viscosity and density of water, for example, would require a
molecular or atomic starting point. Deriving hydrodynamic parameters
such as the viscosity from an atomistic framework is the task of kinetic
theory, in which significant progress has been made during the last
century, at least for weakly interacting gases; and we are impressed when
ab initio band-structure experts are able to correctly predict the lattice
constant and crystal structure of silicon via numerical solutions of
Schrödinger’s equation. Nevertheless, there will always be important
problems that a strict ab initio approach based on a more fundamental
theory are unlikely to resolve.

The problems discussed in this book are all represented by coarse-
grained long-wavelength “hydrodynamic” models, with the detailed
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physics packaged into a small number of phenomenological coupling
constants. To illustrate the approach, we discuss two interesting but
unusual situations in which ratios of long-wavelength hydrodynamic
parameters are themselves universal constants, just like the universal
exponents at a critical point. The first is the universal value of the
Prandtl number of a two-dimensional incompressible fluid (it equals
( �1)/2) and the second is the universal (negative!) value of
Poisson’s ratio associated with polymerized membranes or “tethered
surfaces” (it is about � ). We then review the role of topological defects
in destabilizing the hydrodynamic surface of fixed points associated
with two-dimensional crystals. Here, the physics associated with strong
thermal disorder leads to models dominated by fluctuations in the phase
of the translational and orientational order parameters, instead of the
usual amplitude fluctuations associated with mean field or Landau the-
ories. Amplitude fluctuations now reside only in the cores of defects
such as dislocations and disclinations. We discuss the new fixed point
that takes over in membranes characterized by a bending rigidity, where
defects such as dislocations can buckle easily out of the plane. This
introduction concludes with an overview of the contents of the rest of
the book.

1.2 The universal Prandtl number in
two-dimensional hydrodynamics
Understanding chaotic fluid flows, particularly those at high Reynolds
numbers, remains one of the most challenging problems in theoretical
physics and fluid mechanics, despite the concerted efforts of many
experts during the past half century [4]. Under many circumstances,
it is expected that the fluid velocity field v(r, t) and the concentration
�(r, t) of tracer particles are described by the equations

�tv�(v·�)v�� �p���2v, (1.1)

� ·v�0, (1.2)

�t��(v ·�)��D�2�, (1.3)

where � is the kinematic viscosity, � is the density of the fluid, D is the
diffusivity of the tracer particles and the condition of incompressibility
(which is valid in the limit of velocities much less than the speed of
sound) is enforced by Eq. (1.2). This condition can be used to eliminate
the term involving the pressure field, p(r, t), in Eq. (1.1). The dynamics
becomes insensitive to the density. Equations (1.1)–(1.3) then represent
a “universal” long-wavelength, low-frequency description of a large
number of atomic and molecular fluids, parameterized only by the

1
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viscosity � and the diffusivity D. If a colored dye of tracer particles
is injected into water, one has � �10�2 cm2 s�1 for the viscosity and
D�10�6 cm2 s�1 for the molecular diffusivity and thus the dimension-
less “Prandtl number” is

Pr��/D�104. (1.4)

However, in general, one would expect that the Prandtl number could
assume any positive value in a three-dimensional fluid. This is not the
case in two dimensions!

By including various additive forcing terms on the right-hand side
of Eqs. (1.1) and (1.3), one can simulate the effects of thermal fluctua-
tions or even random stirring which can provoke chaos and high-
Reynolds-number turbulence. The influence of the nonlinear terms
((v ·�)v and (v ·�)�) on the physics at long wavelengths can be assessed
by the iterative coarse-graining procedure embodied in the renormaliza-
tion group. The idea behind this perturbative renormalization proce-
dure is reviewed in Fig. 1.1 [6, 7]. The velocity field of a d-dimensional
fluid is first decomposed into Fourier modes according to

v(r, t)� v(k,	)eik·r�i	t. (1.5)

The spatial modes are cut off above a spatial wavevector k�
 of order
the inverse interparticle separation and the frequencies are uncon-
strained. The equations of motion for modes in the range 
/e��k�
 are
formally solved (via a diagrammatic perturbation theory) and these solu-
tions then substituted into the equations of motion for the remaining

�
k�


ddk
(2�)d �



�

d	

2�
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k
e–l

Fig. 1.1. The degrees of
freedom for a randomly
stirred Navier–Stokes fluid,
indexed by wavevector and
frequency, with wavevectors
above a cutoff 
 excluded. A
renormalization group
transformation focusing on
the long-wavelength
hydrodynamic behavior can
be constructed by iterative
elimination of Fourier modes
in a shell of wavevectors in
the range 
exp(��)�k�


indicated by the shaded
region.
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modes in the range 0�k�
/e�. After averaging over forcing contribu-
tions in the range 
/e��k�
 and rescaling frequencies and wavevectors,
one finds a coupled set of equations for the remaining modes which have
the same form as the initial set. Thus, this procedure can be iterated indef-
initely. By tracking the effect of repeated transformations on the cou-
pling constants and correlation functions, this implementation of the
renormalization group often allows a systematic resummation of
Feynman diagrams in regimes for which conventional perturbation
theory fails. This renormalization procedure also predicts situations in
which it, too, fails, i.e., when the perturbative coupling constants iterate
outside the range accessible to perturbation theory. Related implemen-
tations of this type of renormalization group underpin much of this
book.

Although some progress is possible when the fluid is driven far out
of equilibrium with appropriate forcing functions [7], we concentrate
here on equilibrium forcing representing thermal fluctuations that obey
the fluctuation–dissipation theorem. In three dimensions, one finds that
the nonlinearities are “irrelevant variables,” in that short-distance fluc-
tuations lead only to finite renormalizations of the viscosity and diffu-
sivity. However, in two dimensions the situation is more interesting.
Here, thermal fluctuations couple into long-range hydrodynamic back-
flow, which causes the renormalized wavevector-dependent kinematic
viscosity �R(k) to diverge at small wavevectors k [7],

�R(k)�� , (1.6)

where kB is Boltzmann’s constant and T is the temperature. Here, �(k)
controls the rate of relaxation of a velocity fluctuation on wavelength
2�/k, which decays like exp[��(k)k2t] as t→. Thus, the apparent vis-
cosity will depend (logarithmically) on the length scale �k�1 of the
measurement! The renormalized diffusivity DR(k) is also affected by the
velocity fluctuations and it too diverges as k→0,

DR(k)�ln1/2(
/k). (1.7)

Although both �R and DR diverge, it can be shown that the Prandtl
number Pr remains well defined and approaches a universal constant
characteristic of all incompressible fluids in the limit k→0 [8],

Pr � lim
k→0

� �1). (1.8)

As is evident from Eq. (1.6), the dimensionless coupling constant
which controls the strength of nonlinear effects in two-dimensional
hydrodynamics is

1
2 ( �17

�R(k)
DR(k)

�1�
kBT
��2  ln�


k �	
1/2
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�� . (1.9)

The effective coupling constant g(�) in d dimensions after the short-
distance cutoff has been reduced from 
 to 
/e� is the solution of the
renormalization-group differential equation,

� (2�d )��Ad�2

���(g), (1.10)

where Ad is a positive constant. As illustrated in Fig. 1.2, conventional
linearized hydrodynamics is described by a “Navier–Stokes” fixed point
g�g*�0. For d�2, g(�) decays rapidly to zero and linearized hydrody-
namics is stable. In two dimensions, the slow decay to zero of g(�) for
large � (g(�)�1/�) leads to logarithmic corrections to linearized hydro-
dynamics discussed above. There is an interesting nontrivial stable fixed
point with g*�0 for d�2. Unfortunately, incompressible fluid flow is
not very meaningful in the physically relevant limit d�1. However, non-
trivial hydrodynamic fixed points do appear in two and three dimen-
sions for forcing functions that do not obey the fluctuation–dissipation
theorem [7]. In the next section, we discuss the nontrivial fixed point
which describes the anomalous long-wavelength elastic properties and
bending rigidity of a two-dimensional solid membrane, free to fluctate
in three dimensions and subject to thermal fluctuations.

1.3 The universal Poisson ratio in fluctuating
polymerized membranes
Like fluid mechanics, the continuum elastic description of solids subject
to arbitrary deformations has a long and rich history. It reached its

1
2

d�(�)
d�

kBT
�� 2
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g* g

(g)

d = 2 –

Fig. 1.2. The function � (g)
which determines the flow of
the dimensionless coupling
constant kBT/(��2) describing
driven Navier–Stokes fluids in
2�� dimensions, with 0��

��1. The fixed point at g�0
describes conventional
linearized hydrodynamics.
The stable nontrivial fixed
point at g�g*�O(�) indicates
a breakdown of conventional
hydrodynamics. The two fixed
points merge for d�2 and the
fixed point at the origin
dominates the physics for all
d�2.
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current form early in the twentieth century. The theory of the bending
of thin plates resembles a simplified form of general relativity and both
subjects use the language of differential geometry. A thin elastic plate
can be parameterized by two internal indices, x1 and x2, which we can
take as the particle positions in the flat undeformed state. Its deforma-
tions in the xy-plane are described by phonon coordinates u1(x1,x2) and
u2(x1,x2). Out-of-plane deformations are parametrized via a perpendic-
ular displacement f(x1,x2). The actual position in three dimensions of a
particle labeled by (x1,x2) in the deformed membrane is thus given by

r(x1,x2)�

�
x1�u1(x1,x2)�r(x1,x2)� x2�u2(x1,x2)  . (1.11)

f(x1,x2).

The energy of a thin plate for small deformations is characterized by a
bending rigidity � and in-plane elastic constants � and � [9],

F� � d 2x (�2f )2� d 2x (2�u2
ij��u2

kk), (1.12)

where uij(x1,x2) is the nonlinear strain matrix. (For more details, see
Chapters 5 and 6.) Like general relativity, the theory is intrinsically non-
linear, which shows up at this level in the relation between the strain
matrix and the displacements u(x1,x2) and f(x1,x2) [9],

uij(x1,x2)� (�iuj��jui)� (�i f )(�j f ). (1.13)

To determine the deformation of plates subjected to edge forces with
various boundary conditions, one must minimize Eq. (1.12). Upon
eliminating uij(x1,x2) in favor of the Airy stress function �(x1,x2), via
�ij(x1,x2)�2�uij(x1,x2)��ukk(x1,x2)�ij��im�jn�m�n�(x1,x2), where �ij�

�i1�j2��j1�i2 is the antisymmetric unit matrix in two dimensions, one
obtains the von Karman equations,

��4f� , (1.14)

�4��� . (1.15)

The negative of the Gaussian curvature det(�2f/�xi�xj) of the deformed
surface appears as a source on the right-hand side of (1.15). According
to Landau and Lifshitz [9], these nonlinear equations are “very compli-
cated, and cannot be solved exactly, even in very simple cases.”However,
at least the elastic constants �, � and � are indeed constants for long-
wavelength deformations in the von Karman theory! When thermal
fluctuations are taken into account, these parameters depend on the

�2f
�x2

�2f
�y2 � � �2f

�x �y�
22� � �

4�(� � �)

�2�

�y2

�2f
�x2 �

�2�

�x2

�2f
�y2 � 2

�2�

�x �y
�2f

�x �y

1
2

1
2

�1
2�1

2
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wavelength, even more strongly than do the diverging viscosity and
diffusivity in Eqs. (1.6) and (1.7).

Equation (1.12) also describes biological sheet polymers that are one
molecule thick, such as the spectrin skeleton on the inside walls of red
blood cells [10, 11]. When these polymers are extracted from red blood
cells and put into water solution, the nodes of this “biological fishnet”
are subject to violent thermal fluctuations in the form of Brownian
motion [12]. The equilibrium statistical mechanics of this structure
(similar to the fluctuations of semiflexible linear polymer chains) can be
modelled by assuming that configurations occur with probability pro-
portional to exp[�F/(kBT )]. Because the out-of-plane displacement
f(x1,x2) occurs in the generalized strain matrix (1.13), there is a nontriv-
ial coupling between in-plane and out-of-plane displacements.

This nonlinearity can be studied by first expanding u1, u2 and f in
Fourier modes in the range 0�k�
, where 
 is a suitable microscopic
cutoff. Upon integrating Fourier modes in the interval 
/e��k�


out of the partition function (defined as a functional integral over u1, u2

and f )

Z� Du(x1,x2) Df(x1,x2)exp(�F/kBT ), (1.16)

and rescaling degrees of freedom and wavevectors, one can implement
a renormalization group similar to that for the Navier–Stokes equations
discussed in the previous section. Iterating this transformation deter-
mines effective dimensionless coupling constants �̄ (�)�kBT�/(
2�2)
and �̄ (�)�kBT�/(
2�2) that describe the statistical mechanics for wav-
evectors k�
/e�. Figure 1.3 shows schematically the solutions of the
renormalization-group differential equations for �̄(�) and �̄(�) for fluc-
tuating membranes embedded in three dimensions [13]. The “von
Karman” fixed point at the origin describes the physics at zero temper-
ature, i.e., situations to which Eqs. (1.14) and (1.15) apply with constant
elastic parameters �, � and �. However, this fixed point is unstable at
any finite temperature relative to a fixed point where conventional elas-
ticity theory breaks down at long wavelengths. Indeed, at this fixed point
the renormalized wavevector-dependent bending rigidity �R(k) diverges
strongly as k goes to zero [14], while the renormalized wavevector-
dependent elastic parameters �R(k) and �R(k) vanish in this limit [13].
Among the best current estimates of these singularities are those of
Radzihovsky and Le Doussal [15],

�R(k)�1/k0.82, �R(k)�k0.36, �R(k)�k0.36, (1.17)

where these power-law singularities are governed by universal critical
exponents.

��
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