FINITE PACKING AND COVERING

Finite arrangements of convex bodies were intensively investigated in the second half of the twentieth century. Connections were made to many other subjects, including crystallography, the local theory of Banach spaces, and combinatorial optimization. This book, the first one dedicated solely to the subject, provides an in-depth, state-of-the-art discussion of the theory of finite packings and coverings by convex bodies. It contains various new results and arguments, besides collecting those scattered throughout the literature, and provides a comprehensive treatment of problems whose interplay was not clearly understood before. To make the material more accessible, each chapter is essentially independent, and two-dimensional and higher dimensional arrangements are discussed separately. Arrangements of congruent convex bodies in Euclidean space are discussed, and the density of finite packing and covering by balls in Euclidean, spherical, and hyperbolic spaces is considered.
CAMBRIDGE TRACTS IN MATHEMATICS

General Editors

B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWIN,
P. SARNAK, B. SIMON

154 Finite Packing and Covering
Károly Böröczky Jr.
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest

Finite Packing and Covering
To Csilla and Csenge
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>xvii</td>
</tr>
</tbody>
</table>

Part 1. Arrangements in Dimension Two

1 Congruent Domains in the Euclidean Plane 3
1.1 Periodic and Finite Arrangements 3
1.2 The Hexagon Bound for Packings Inside an Octagon 8
1.3 The Hexagon Bound for Periodic Packings 12
1.4 Packings Inside Any Convex Container 14
1.5 Noncrossing Coverings 16
1.6 Packing and Covering by Similar Convex Domains 23
1.7 Coverings by Fat Ellipses 26
1.8 Minimal Perimeter and Diameter for Packings 29
1.9 Covering the Maximal Perimeter 30
1.10 Related Problems 32

2 Translative Arrangements 34
2.1 About the Minkowski Plane 34
2.2 Periodic Packing and Covering by Translates 38
2.3 Finite Packings of Centrally Symmetric Domains 42
2.4 Asymptotic Structure of Optimal Translative Packings 47
2.5 Finite and Periodic Coverings 49
2.6 The Bambah Inequality for Coverings 51
2.7 The Fejes Tóth Inequality for Coverings 53
2.8 Covering the Area by ρ-Symmetric Convex Domains 59
2.9 The Hadwiger Number 63
2.10 The Generalized Hadwiger Number 65
2.11 Related Problems 69

3 Parametric Density 74
3.1 Planar Packings for Small ρ 75
3.2 Planar Packings for Reasonably Large ρ 78

ix
Contents

3. Parametric Density for Coverings
- 3.3 Parametric Density for Coverings 80
- 3.4 Examples 84

4. Packings of Circular Discs
- 4.1 Associated Cell Complexes and the Triangle Bound 98
- 4.2 The Absolute Version of the Thue–Groemer Inequality 104
- 4.3 Minimal Area for Packings of \(n \) Unit Discs 108
- 4.4 Packings on the Sphere 112
- 4.5 Packings of Spherical Discs of Radius \(\pi/6 \) 117
- 4.6 Packings of Hyperbolic Circular Discs 123
- 4.7 Related Problems 128

5. Coverings by Circular Discs
- 5.1 The Delone Complex and the Triangle Bound 135
- 5.2 The Bambah Inequality and the Fejes Tóth Inequality 139
- 5.3 Covering the Area by Euclidean Discs 144
- 5.4 Coverings by Spherical Discs 145
- 5.5 Coverings by Hyperbolic Discs 148
- 5.6 The Moment Inequality and Covering the Maximal Area 157
- 5.7 Covering the Perimeter by Unit Discs 162
- 5.8 Related Problems 169

Part 2. Arrangements in Higher Dimensions

6. Packings and Coverings by Spherical Balls
- 6.1 Packing \(d + 2 \) Balls on \(S^d \) 175
- 6.2 Packing at Most \(2d + 2 \) Balls on \(S^d \) 178
- 6.3 Density Bounds for Packings on \(S^d \) 179
- 6.4 The Simplex Bound for Packings on \(S^3 \) 182
- 6.5 Covering \(S^d \) by at Most \(d + 2 \) Balls 189
- 6.6 Covering \(S^d \) by \(d + 3 \) Balls 190
- 6.7 Covering \(S^d \) by Eight Balls 192
- 6.8 Economic Coverings of \(S^d \) by Equal Balls 194
- 6.9 The Simplex Bound for Hyperbolic Ball Packings 199

7. Congruent Convex Bodies
- 7.1 Periodic and Finite Arrangements 201
- 7.2 Density for Finite Packings and Coverings 203
- 7.3 Minimal Mean Projection for Packings 209
- 7.4 Maximal Mean Width for Coverings 210
- 7.5 Related Problems 218

8. Packings and Coverings by Unit Balls
- 8.1 The Newton Number 220
- 8.2 Periodic Arrangements of Balls 222
Contents

8.3 Finite Ball Packings of Maximal Density 224
8.4 Minimal Mean Projection for Ball Packings 231
8.5 Packings and Coverings with Respect to a Larger Ball 234
8.6 Optimal Finite Coverings by Unit Balls 239
8.7 Comments on Ball Packings and on Shapes in Nature 242
8.8 Translative Arrangements 243
8.9 Minkowski Geometry and the Busemann Surface Area 244
8.10 Finite Translative Tilings 245
8.11 Optimal Arrangements of a Large Number of Translates 247
8.12 Periodic Arrangements and Clusters 249
8.13 Economic Periodic Packings and Coverings by Translates 252
8.14 The Hadwiger Number 254
8.15 Lower Bound for the Hadwiger Number in Low Dimensions 257
8.16 The Generalized Hadwiger Number 259
8.17 Lower Bound for the Generalized Hadwiger Number 260
8.18 The Asymptotics of the Generalized Hadwiger Number 261
8.19 Fairwise Touching Translates and Antipodal Points 267
8.20 Economic Translational Clouds 271
8.21 Clouds Require Plentiful Balls 277
8.22 Sparse Clouds 279
8.23 The Hadwiger–Gohberg Number 282
8.24 Related Problems 284
10.1 Parametric Density 287
10.2 Sausage Packings 289
10.3 Near-Sausage Coverings 292
10.4 Cluster-like Optimal Packings and Coverings 294
10.5 Asymptotic Density for Packings and Coverings 296
10.6 The Critical Radius for Packings and Coverings 300
10.7 The Sausage Radius for Packings 304
10.8 The Critical and the Sausage Radius May Not Be Equal 307
10.9 Ball Packings 309
10.10 Packings of Parallelepipeds 310
10.11 Coverings by Parallelepipeds 311
10.12 Finite Lattice Packings and the Wulff-Shape 312
10.13 Finite Lattice Packings in Three Space 322
Appendix: Background 325
A.1 Some General Notions 325
A.2 Convex Sets in \mathbb{R}^d 328
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3 The Space of Compact Convex Sets in \mathbb{R}^d</td>
<td>330</td>
</tr>
<tr>
<td>A.4 The Spherical Space and the Hyperbolic Space</td>
<td>331</td>
</tr>
<tr>
<td>A.5 Surfaces of Constant Curvature</td>
<td>332</td>
</tr>
<tr>
<td>A.6 Mixed Areas in \mathbb{R}^2</td>
<td>340</td>
</tr>
<tr>
<td>A.7 Polyhedral Sets and Polytopes in \mathbb{R}^d</td>
<td>341</td>
</tr>
<tr>
<td>A.8 Associated Balls and Ellipsoids in \mathbb{R}^d</td>
<td>343</td>
</tr>
<tr>
<td>A.9 Volume, Surface Area, and Lebesgue Measure in \mathbb{R}^d</td>
<td>344</td>
</tr>
<tr>
<td>A.10 Hausdorff Measure and Lipschitz Functions in \mathbb{R}^d</td>
<td>347</td>
</tr>
<tr>
<td>A.11 Intrinsic Volumes in \mathbb{R}^d</td>
<td>348</td>
</tr>
<tr>
<td>A.12 Mixed Volumes in \mathbb{R}^d</td>
<td>350</td>
</tr>
<tr>
<td>A.13 Lattices in \mathbb{R}^d and Tori</td>
<td>353</td>
</tr>
<tr>
<td>A.14 A Little Bit of Probability</td>
<td>355</td>
</tr>
<tr>
<td>Bibliography</td>
<td>357</td>
</tr>
<tr>
<td>Index</td>
<td>379</td>
</tr>
</tbody>
</table>
Preface

The year 1964 witnessed the publication of two fundamental monographs about infinite packing and covering: László Fejes Tóth’s *Regular Figures*, which focused on arrangements in surfaces of constant curvature, and Claude Ambrose Rogers’s *Packing and Covering*, which discussed translates of a given convex body in higher dimensional Euclidean spaces. This is the finite counterpart of the story told in these works. I discuss arrangements of congruent convex bodies that either form a packing in a convex container or cover a convex shape. In the spherical and the hyperbolic space I only consider packings and coverings by balls. The most frequent quantity to be optimized is the density, which is the ratio of total volume of the congruent bodies over the volume either of the container or of the shape that is covered. In addition, extremal values of the surface area, mean width, or other fundamental quantities are also investigated in the Euclidean case. A fascinating feature of finite packings and coverings is that optimal arrangements are often related to interesting geometric shapes.

The main body of the book consists of two parts, followed by the Appendix, which discusses some important background information and prerequisites. Part 1 collects results about planar arrangements. The story starts with Farkas Bolyai and Axel Thue, who investigated specific finite packings of unit discs in the nineteenth century. After a few sporadic results, the theory of packings and coverings by copies of a convex domain started to flourish following the work of László Fejes Tóth. Here are some of the highlights: Given a convex domain K in \mathbb{R}^2, Hugo Hadwiger proposed to find the minimal number of non-overlapping translates of K touching K. The Hadwiger number of K turns out to be eight if K is a parallelogram, and six otherwise (see Theorem 2.9.1). For density-type problems, when K is centrally symmetric, the hexagon bound holds for packing a high number of congruent copies of K into any convex container (see Theorem 1.4.1) and for covering any convex shape by at least seven translates of K (see Theorem 2.8.1). In addition, the optimal packing of n unit discs has been determined for about 96% of all n (see Section 4.3).
Concerning packings and coverings by equal spherical discs, the optimal arrangements have been determined when the number of discs is small, and the corresponding triangle bound has been verified with respect to any convex domain (see Sections 4.4 and 5.4). Moreover, the Euclidean triangle bound has been verified for both packings or coverings of equal circular discs with respect to large circular discs in the hyperbolic plane (see Sections 4.6 and 5.5).

Part 2 considers problems in higher dimensional spaces. For arrangements in \mathbb{R}^d, an important inspiration was László Fejes Tóth’s celebrated Sausage Conjecture; namely, if $d \geq 5$ and the convex hull of n nonoverlapping unit balls is of minimal volume then the centers are aligned, hence the convex hull is a “sausage”. By now the conjecture has been verified for $d \geq 42$. Because the argument is very involved in lower dimensions, we present the proof only when the dimension is very high (see Section 8.3). Concerning mean projections, let K be a convex body. If a certain mean projection of the convex hull of n congruent copies of K is minimal then the convex hull is approximately some ball for large n (see Theorem 7.3.1). In addition, a convex compact set of maximal mean width that is covered by n congruent copies of K is close to some segment (see Theorem 7.4.1). Chapter 10 discusses the so-called parametric density of finite arrangements of translates of K, a notion due to Jörg M. Wills. For example, assuming that K is centrally symmetric and the parameter ϱ is not too small, the convex hull of the translates in the optimal lattice packing is essentially homothetic to a certain polytope, namely, to the so-called Wulff-shape, which is well known from crystallography.

Part 2 also discusses local translative arrangements in \mathbb{R}^d. The Hadwiger number is proved to be exponential in the dimension d where the optimal upper bound is $3^d - 1$, and the optimal lower bound is 12 in \mathbb{R}^3 (see Sections 9.6 and 9.7). In addition, a family of nonoverlapping translates of K that do not overlap K is called a translational cloud if every half line emanating from K intersects the interior of at least one translate. It has been verified that the minimal cardinality of clouds is exponential in d^2 (see Sections 9.12 to 9.14).

Chapter 6 of Part 2 is concerned with packing and covering by equal spherical balls on S^d for $d \geq 3$. For example, the vertices of any simplicial Euclidean regular $(d + 1)$-polytope determine an optimal ball packing on S^d. In addition, the optimal packings have been established in various cases using the so-called linear programming bound. For coverings, the optimal arrangements are known only in a very few cases, but the density estimates are very sound.

I do not discuss the arguments that use the linear programming bound in detail because related topics are thoroughly discussed in the recent
monographs by J. H. Conway and N. J. A. Sloane [CoS1999], T. Ericson and V. Zinoviev [ErZ2001], and Ch. Zong [Zon1999a]. In addition to these results, many others are only surveyed at the ends of the chapters. The basic methods of proofs in this book are local volume estimates and the use of isoperimetric type inequalities. The theory of mixed volumes (the so-called Brunn–Minkowski theory) is an essential ingredient of various arguments, whereas many others are based on ingenious, rather elementary ideas. The results are not presented in their most refined form in many cases; the emphasis is rather on the underlying ideas.

I tried to keep the chapters as independent as possible; hence some ideas are repeated in a more general form in a subsequent chapter. Yet Chapter 3 and Chapter 10 rely heavily on Chapter 2 and Chapter 9, respectively. To avoid interrupting the flow of the presentation, the history of the topics is told only at the end of the sections, which is also the place to review related results.

Finally, I have to express my gratitude to many people whose help was essential in getting this project done. First, I thank my father, whose guidance from my early days led me into the Reign of Beauty and Deception called Geometry. The manuscript has been improved to a great extent by conversations with I. Bárány, U. Betke, A. Bezdek, K. Bezdek, G. Fejes Tóth, Z. Füredi, P. M. Gruber, M. Henk, A. Heppes, D. Ismailescu, W. Kuperberg, J. C. Lagarias, D. Larman, E. Makai, G. Moussong, J. Pach, T. Réti, A. Schürmann, R. Strausz, P. G. Szabó, I. Talata, T. Tarnai, Á. Tóth, G. Wintsche, and Ch. Zong. I learned the fundamental facts and methods concerning finite packings under the guidance of T. Bisztriczky and J. M. Wills. I would like to thank Béla Bollobás, Editor of the series Cambridge Tracts in Mathematics, for constant encouragement, and Roger Astley, Senior Editor at Cambridge University Press, for patiently answering all my inquiries. Finally, there are no words that express how much I owe to Csilla, who provides continuous inspiration in all aspects of my life.
Notation

#X: the cardinality of X if X is finite
convX: the minimal convex set containing X
V(·): volume (Lebesgue measure)
$\mathcal{H}^k(·)$: k-dimensional Hausdorff measure
C + K: the family of x + y, where x ∈ C and y ∈ K
C ⊖ K: the family of points x satisfying x + K ⊂ C
L⊥: the orthogonal complement of the affine subspace L
u⊥: the family of vectors orthogonal to the nonzero vector u
X|L: the orthogonal projection of a set X into L
X/L: the orthogonal projection of a set X into $L^⊥$
affX: the minimal affine subspace containing a set X
$\chi_K(·)$: the characteristic function of a set K
∂K: the relative boundary of a compact convex set K
h_K(·): the support function of a compact convex set K
|K|: the relative content of a compact convex set K
dimK: the dimension of the affine hull of a compact convex set K
$\delta(K)$: the packing density of a convex body K
$\delta_T(K)$: the translatative packing density of a convex body K
$\hat{\delta}(K)$: the covering density of a convex body K
$\hat{\delta}_T(K)$: the translatative covering density of a convex body K
$\lVert·\rVert_K$: the norm with respect to the o-symmetric convex body K
$\langle·,·\rangle$: scalar product
$\lVert·\rVert$: Euclidean norm
detΛ: the determinant of a lattice Λ
B^d: the Euclidean unit ball in \mathbb{R}^d
κ_d: $V(B^d)$
S^d: the d-sphere
H^d: hyperbolic d-space
\mathcal{S}/Λ: the quotient of the space \mathcal{S} with respect to a lattice Λ
$\lfloor x \rfloor$: the largest integer that is at most x
$\lceil x \rceil$: the smallest integer that is at least x