Index

n, 115
agent, 139
Arbib–Spira separator set, 114
arcs, 19
assigned \(F \) network, 168
assignment, 26
associated nondirected graph, 20
Assumption 4.2.1, 82
Assumption 4.2.2, 82
Assumption 7.1.1, 143
attainable production set, 163
automaton, 179

\([B \times_{L}(\mathcal{G})]_{L^2}\), 211
\([bh, x, \mathcal{F} G]_{L^2}\), 209
\(R(t), 129\)
bargaining problem, 96
bimatrix, 57
bordered Hessian, 48
branch node, 25
branch vertex, 25

\(\chi \int j \zeta\), 117
\(CH(pr g), 70\)
chain, 21
of length \(q \), 21
Chain Rule, 208
channels, 142
characteristics, 80, 162
circuit, 180
class \(F \), 46
class PPM(\(F \)), 117
class commodity, 162
complete ordered tree, 32

complexity of a function, 30
compute, 30
a function, 30
in a neighborhood, 199
conditional branching, 41
connected, 21
connection rule, 26
constraints, 141
coordinated, 139
coordination, 139
mechanism, 168
problem, 137
cost efficient, 169
cost function, 143
crosslink, 142
cycle, 21

\(D^{*}(t, d), 200\)
\(D_{\eta}, 50\)
\(DP^{*}(t, d), 200\)
\(DP_{\eta}\), 59
\(T_{\eta}\) networks, 59
d variable, 198
d-vector valued, 198
dag, 141
decision function, 138
degree of coordination, 139
deloping, 30, 35
Diag, 66
differentiably separable, 121
digraph, 18, 19
without cycles, 21
direct cycles, 142, 164
mechanism, 138
revelation mechanism, 116
Index

directed graph, 19
agreement point, 96
\((E^1/F) \times \cdots \times (E^n/F) \), 114
\(\epsilon \) approximation, 129
edge, 20
efficient assignment, 143
efficient production, 164
elementary chain, 21
ellipse, 96
elongation of paths, 185
empty arc, 19
encoded revelation mechanisms, 111, 113, 116
realizing \(F \), 120
encoded version of \(F \), 74
environment, 164
environmental characteristics, 80
equilibrium message, 81
equivalence class of an arc, 188
ERM\((F) \), 111, 112
essential revelation mechanism, 111, 117, 120
esential uniqueness, 58
execution of algorithms, 137
external crosslinks, 170
\(F \) networks, 18
\(\mathcal{F} \) networks, extended, 137
\(F \) equivalence, 117, 118
fan-in, 32
finite automaton, 179
forest, 187
full subtree with root \(R \), 223
function, computed, 197
by a subtree, 197
by an automaton, 180
by the network, 181
functions of eight variables, 57
\(\Gamma \) efficient, 169
\(\Gamma \) satisfactory, 169
\(\Gamma |(r, N) | 32\)
Gen, 67
General Leontief Theorem, 221
general quartic equation, 101
generalized bordered Hessian, 207
graph representing a network, 26
height of a tree, 31
hierarchies, 138

\((i, j) \), 51
\((i, j)_i \), 200
in-degree, 20
independent set of \(d \) variables, 198
independent tuple of \(d \) variables, 198
individual verifier function, 81
information technology, 168
initial state, 28
initial vertex, 22
input line, 26
inputs, 179
interconnection, 18
internal crosslinks, 170
isomorphic graphs, 34
joins, 21
joint environment, 80
Kalai-Smorodinsky, 95
L\((T) \), 223
Lagrangian multiplier, 99, 105
leaf, 19, 25
length, 18
level of a tree, 31
loop, 19
map of a graph, 34
market agent, 166
market channel, 142
matrix of bordered Hessian, 211
matrix of the Jacobian, 208
mechanism, 149, 177
mechanism \(D \), 149
mechanism realizes a function, 80
mechanism realizing \(F \), 116
mechanisms, 80
message correspondence, 80
message function, 120
message space, 80
modular network, 179
module, 25
\(N^*_2 \), 26
network, 26
network computation of a function, 30
next-output function \(\lambda \), 28
next-state function, 28, 179
next-output function, 179
nodes, 19
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>Nomography</td>
</tr>
<tr>
<td>20</td>
<td>Nondirected graph, 20</td>
</tr>
<tr>
<td>198</td>
<td>Nonsingular at a point, 198</td>
</tr>
<tr>
<td>117</td>
<td>Not: $X_{\langle -j \rangle}$</td>
</tr>
<tr>
<td>20</td>
<td>Out-degree, 20</td>
</tr>
<tr>
<td>80</td>
<td>Outcome function, 80</td>
</tr>
<tr>
<td>26</td>
<td>Output line, 26</td>
</tr>
<tr>
<td>179</td>
<td>Outputs, 179</td>
</tr>
<tr>
<td>188</td>
<td>$[\pi, j, \pi]$, 188</td>
</tr>
<tr>
<td>185</td>
<td>$P_T(N)$, 185</td>
</tr>
<tr>
<td>67</td>
<td>$p_{r, g}$, 67</td>
</tr>
<tr>
<td>21</td>
<td>Path, 21</td>
</tr>
<tr>
<td>164</td>
<td>Performance criterion, 164</td>
</tr>
<tr>
<td>19</td>
<td>Points, 19</td>
</tr>
<tr>
<td>197</td>
<td>Present-output function, 29, 179</td>
</tr>
<tr>
<td>129</td>
<td>Principal vertex, 129</td>
</tr>
<tr>
<td>80</td>
<td>Privacy preserving, 80</td>
</tr>
<tr>
<td>162</td>
<td>Production units, 162</td>
</tr>
<tr>
<td>163</td>
<td>Profile of state, 163</td>
</tr>
<tr>
<td>114</td>
<td>Quotient object, 114</td>
</tr>
<tr>
<td>25</td>
<td>(r, d) module, 25</td>
</tr>
<tr>
<td>25</td>
<td>$R(T_1, \ldots, T_n)$, 25</td>
</tr>
<tr>
<td>32</td>
<td>Π, 32</td>
</tr>
<tr>
<td>32</td>
<td>r fan-in, 32</td>
</tr>
<tr>
<td>32</td>
<td>r tree, 32</td>
</tr>
<tr>
<td>128</td>
<td>Rectangular decomposition, 128</td>
</tr>
<tr>
<td>116</td>
<td>Revelation mechanism, 116</td>
</tr>
<tr>
<td>183</td>
<td>Roll right map, 183</td>
</tr>
<tr>
<td>25</td>
<td>Root, 25</td>
</tr>
<tr>
<td>32</td>
<td>$S_{[r, N]}$, 32, 183</td>
</tr>
<tr>
<td>166</td>
<td>Scope, 166</td>
</tr>
<tr>
<td>142</td>
<td>Selflink, 142</td>
</tr>
<tr>
<td>111</td>
<td>Separator sets, 111</td>
</tr>
<tr>
<td>201</td>
<td>Simple equivalence, 201</td>
</tr>
<tr>
<td>63</td>
<td>Simply equivalent, 63</td>
</tr>
<tr>
<td>182</td>
<td>Simulates, 182</td>
</tr>
<tr>
<td>80</td>
<td>Space of joint actions, 80</td>
</tr>
<tr>
<td>158</td>
<td>State, 158, 162</td>
</tr>
<tr>
<td>28</td>
<td>State of a network, 28</td>
</tr>
<tr>
<td>179</td>
<td>States, 162, 179</td>
</tr>
<tr>
<td>25</td>
<td>Subtree, 25</td>
</tr>
<tr>
<td>25</td>
<td>Subtrees of root R, 25</td>
</tr>
<tr>
<td>44</td>
<td>Symmetric, 44</td>
</tr>
<tr>
<td>45</td>
<td>Assignment, 44</td>
</tr>
<tr>
<td>162</td>
<td>Computation, 45</td>
</tr>
<tr>
<td>223</td>
<td>T_R, 223</td>
</tr>
<tr>
<td>185</td>
<td>$T'_R(N)$, 185</td>
</tr>
<tr>
<td>162</td>
<td>Technology, 162</td>
</tr>
<tr>
<td>21</td>
<td>Terminal vertex, 21</td>
</tr>
<tr>
<td>114</td>
<td>Tolerance, 114</td>
</tr>
<tr>
<td>157</td>
<td>Tolerances, 157</td>
</tr>
<tr>
<td>82</td>
<td>Trade-offs, 79, 82</td>
</tr>
<tr>
<td>57</td>
<td>Transferable utility, 57</td>
</tr>
<tr>
<td>208</td>
<td>Transpose of Jacobian, 208</td>
</tr>
<tr>
<td>186</td>
<td>Tree, 22</td>
</tr>
<tr>
<td>157</td>
<td>Type, 157, 168</td>
</tr>
<tr>
<td>130</td>
<td>Uniform decomposition, 130</td>
</tr>
<tr>
<td>111</td>
<td>Universal object, 111</td>
</tr>
<tr>
<td>26</td>
<td>Variable $[j, f]$, 26</td>
</tr>
<tr>
<td>81</td>
<td>Verification function, 81</td>
</tr>
<tr>
<td>81</td>
<td>Verification scenario, 81</td>
</tr>
<tr>
<td>19</td>
<td>Vertices, 19</td>
</tr>
<tr>
<td>80</td>
<td>Walrasian performance function, 80</td>
</tr>
<tr>
<td>120</td>
<td>X'/F, 120</td>
</tr>
<tr>
<td>179</td>
<td>X^*, 179</td>
</tr>
</tbody>
</table>