Computation and Complexity in Economic Behavior and Organization

This book presents a model of computing and a measure of computational complexity that are intended to facilitate the analysis of computations performed by people, machines, or a mixed system of people and machines. The model is designed to apply directly to models of economic theory, which typically involve continuous variables and smooth functions, without requiring an analysis of approximations. The model permits an analysis of the feasibility and complexity of the calculations required of economic agents in order for them to arrive at their decisions. The treatment contains applications of the model to game theory and economics, including a comparison of the complexities of different solution concepts in certain bargaining games, to the trade-off between communication and computation in an example of an Edgeworth Box economy, and to problems of economic organization.

Kenneth R. Mount is Emeritus Professor of Mathematics at Northwestern University, where he has spent 40 years on the faculty. Professor Mount received the E. Leroy Hall Award for excellence in teaching at Northwestern, and he also served as a visiting professor and researcher in France and Argentina. Professor Mount’s articles and coauthored articles have appeared in leading refereed publications such as the Journal of Mathematical Economics, Advances in Mathematics, Proceedings of the American Mathematical Society, Econometrica, Journal of Complexity, and Economic Theory. His professional research has been supported by the National Science Foundation, NATO, and UNESCO.

Stanley Reiter is Morrison Professor of Economics and Mathematics in the Weinberg College of Arts and Sciences and Morrison Professor of Managerial Economics and Decisions Sciences in the Kellogg School of Management, Northwestern University, where he directs the Center for Mathematical Studies in Economics and Management Science. He previously served as Kramer Professor of Economics and Mathematics at Purdue University. A Fellow of the American Academy for the Advancement of Science, the American Academy of Arts and Sciences, the Guggenheim Foundation, and the Econometric Society, Professor Reiter is the editor of Studies in Mathematical Economics (1987), coeditor of Information, Incentives, and Economic Mechanisms (1987), and associate editor of the journals Economic Design and Complex Systems.
Additional Praise for *Computation and Complexity in Economic Behavior and Organization*

“This book summarizes the research done over the past two decades by these two pioneers in the theory of bounded rationality in organizations. Anyone who is trying to model economic agents in an organization, and especially anyone who is concerned with the processing of information by organization, will find this an important reference. The models in this book, where agents are information processors within a network, are significantly richer than the conventional model of a single boundedly rational agent as a finite automaton. This approach offers a fresh perspective and tools for modeling computational complexity in an organization, tools that will be very valuable in capturing within a model the limited computational capabilities of both individuals and organizations. The treatment is both insightful and rigorous, making the book particularly suitable to advanced graduate students and researchers.”

– In-Koo Cho, University of Illinois

“This book opens a challenging new path in the theory of organization. An organization’s task is to compute a function of certain external variables. A well-designed organization does so quickly. It breaks the task into subtasks, each requiring a unit of time to complete, with the result becoming an input for a higher subtask. Some of the subtasks can be performed simultaneously. The challenge is to arrange the subtasks in a network so as to minimize the total elapsed time until the full task is finished. This is a novel and fruitful way to look at efficient organizations and to compare the difficulty of the tasks they undertake. Some general results are obtained and they are illustrated in a rich assortment of examples, including resource-allocating organizations and games. Contemporary work in the economic theory of organization has many motives and many approaches. Those who seek to move it in new directions ought to make a serious study of this book.”

– Thomas Marschak, University of California, Berkeley

“Mount and Reiter overcome the idiosyncratic, problem specific nature of previous models of computation and complexity by developing an approach based around the most common building blocks of economic models: real numbers and smooth functions. On the technical side this powerful innovation opens the way for the use of classical analysis and algebra in analyzing complexity of decision-making. At the same time the use of real numbers and smooth functions makes Mount and Reiter’s approach immediately applicable to standard models in game theory and organizational economics. The detailed examples in the text allow the applied theorist to see this new approach at work in familiar problems without having to master all the theoretical underpinning of this powerful new theory.”

– Kieron Meagher, University of New South Wales, Australia
To Bertha, Cynthia, John, Lisa and Greg.
K.R.M.

To Nina, Carla, Frank, Carrol and Miles.
S.R.
Contents

Acknowledgments ix

1. Introduction 1
 1.1. The Modeling of Computing and Economic Agents 1
 1.2. Complexity, Mathematics, and Human Capacities 7
 1.2.1. Complexity and Computability 8
 1.3. Computing and Economic Organization 9
 1.4. Chapter Summaries 15

2. Networks 18
 2.1. Graphs and Trees 18
 2.1.1. The Network Model 25
 2.1.2. Conditional Branching 41
 2.1.3. Symmetrical Computation 42

3. Networks of Real-Valued Functions 46
 3.1. The Leontief Theorem 46
 3.1.1. Necessary Conditions 48
 3.1.2. An Example 50
 3.1.3. Sufficient Conditions 53
 3.2. Local Conditions 57
 3.3. Computability in Excess Time 65

4. Applications to Economics 73
 4.1. Computation with Human Agents 73
 4.1.1. Example 1: Reading Handwriting 74
 4.1.2. Example 2: Chernoff Faces 77
 4.2. Decentralized Mechanisms 79
 4.3. The Edgeworth Box Economy 83
 4.3.1. Linear Coordinate Changes in the Message Space 89
 4.3.2. Linear Coordinate Changes in Parameter Spaces 90
 4.4. The Efficient Frontier 91
Contents

5. Applications to Games 95
 5.1. Bargaining Games 95
 5.1.1. Bargaining Games with Quadratic Boundaries 95
 5.1.2. The Kalai–Smorodinsky Solution for Quadratic Boundaries 97
 5.1.3. The Nash Solution for Quadratic Boundaries 99
 5.1.4. Bargaining Games with Cubic Boundaries 103
 5.2. Computational Power and Strategic Advantage 105

6. Lower Bounds and Approximations 111
 6.1. Revelation Mechanisms 111
 6.1.1. Constructions 117
 6.2. Finite Approximations 128
 6.2.1. Lattice Decomposition of \mathbb{R}^n 128
 6.2.2. A Limit Theorem 130

7. Organizations 137
 7.1. Coordination Problems 137
 7.1.1. Costs of Information Processing and Efficient Assignments 140
 7.2. Two Examples 145
 7.2.1. Example 1 145
 7.2.2. Example 2 157
 7.3. A Formal Model 162
 7.3.1. Technology and Production 162
 7.3.2. Efficient Production 164
 7.3.3. Information, Communication, and Coordination 164
 7.4. Structure of Organizations 170
 7.4.1. Larger Organizations 170
 7.4.2. Revised Cost Model 170
 7.4.3. Example 3 171

A Appendix to Chapter 2: Graph Theory 179
B Appendix to Chapter 3: Real-Valued Functions 196
 B.1. Uniqueness Results 197
 B.1.1. An Example 202
 B.2. Leontief’s Theorem 207
 B.2.1. An Example 209
 B.2.2. Example of the General Leontief Theorem in a Low-Dimensional Case 214

C Appendix to Chapter 5: Application to Games 225

Bibliography 229
Index 235
Acknowledgments

We are indebted to Tom Marschak for extensive comments on an earlier version of this book, a debt that cannot adequately be recognized in the references. We are also grateful to Tim Van Zandt and to Leo Hurwicz for their interest and for helpful discussions. We thank Fran Walker for her help in preparing the manuscript, including some graphics, and for her cheerful patience in dealing with many changes in its evolution. Thanks also to Sondra Fargo for a very helpful editorial contribution.

Research reported in this book was supported by National Science Foundation Grants IST-8314504, IST-8509678, and IRI-9020270/01.