
CHAPTER ONE

Target: A Useful Model

CRITERIA FOR MODEL SELECTION

Before we get lost in the technical details of manipulating functions, approximating
complicated phenomena, or designing and analyzing models, it is useful to establish
more clearly what exactly our target is. At a superficial level, this is easily stated. Our
target is a mathematical model of the biotechnological phenomenon of interest, and
this model should be valid, yet convenient for analysis, manipulation, and optimiza-
tion. Once we have such a model, we can screen hypotheses and perform test runs
on the computer, which is much faster and cheaper than implementing and executing
the actual experiments in the lab.

While the target is obvious, the difficulty is that no unique, optimal model entirely
satisfies all items on our wish list. Why is that? The complications begin with the
question of validity. What is a valid representation of a particular phenomenon? Al-
though initially surprising, the question of validity is not something absolute. Instead,
validity depends heavily on the purpose of the model analysis. A model for studying
the aerodynamics of a butterfly will normally not account for the color patterns of
its wings, and that is probably a valid omission. By contrast, the coloration may be
crucial for ecological questions of camouflaging and predation by birds.

As a familiar, yet illustrative example, consider the growth of a bacterial popu-
lation (Thornton 1922), as discussed by Lotka (1924, pp. 70–1; see Table 1.1 and
Figure 1.1).

The symbols in the figure show the observed size of the bacterial colony over time,
and the line is the graph of the logistic function

S(t) = 0.2524
exp(−2.128t) + 0.005125

. (1.1)

Inspection of Figure 1.1 suggests that the function S(t) fits very well. Nonetheless, as
the table indicates, there are discrepancies between observed and computed values.
Can the logistic function be considered a valid representation, even though it under-
estimates the true colony size at day 1 by almost 30%? There is no definite answer.
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2 PATHWAY ANALYSIS AND OPTIMIZATION IN METABOLIC ENGINEERING

Table 1.1. Observed and Calculated
Growth of a Bacterial Population
(Adapted from Lotka 1924)

Area in cm2

Age of Colony
(Days) Observed Calculated

0 0.24 0.2511
1 2.78 2.0324
2 13.53 13.0761
3 36.3 37.0479
4 47.5 47.3930
5 49.4 49.0231

Obviously, the function captures the saturating trend in colony growth and returns
sizes reasonably close to those observed. Furthermore, some error no doubt exists in
the data, which might account for the inaccuracies. After all, even in the ideal case
of perfectly circular colonies, the calculated and observed colonies at day 1 differ by
merely one-twentieth of an inch in radius. This simple analysis suggests that good
data fit alone is not a reliable criterion for the validity of a model.

Another aspect of the same example is whether the logistic function “explains”
anything. On one hand, the function allows us to make relatively accurate predic-
tions about the size of the colony between observations and beyond the observation
period. For instance, the function would have predicted the colony size at day 5 quite
accurately, even if it had not been measured. This power of prediction implies that
the model provides a certain degree of explanation. On the other hand, the parameter
values of the function (0.2524, 0.005125, and −2.128) are not meaningful, or even
measurable quantities that could be obtained from the bacterial colony itself. If we
had a new colony, these parameter values would most probably not be optimal. Also,
the simple logistic “model” does not capture any of the biological phenomena that
underlie the growth of the bacteria, their biochemistry, or their physiology. If we
wanted to predict the growth of the same type of colony under the influence of a
growth inhibitor, this model alone would not be too helpful.

In conclusion of the present discussion of validity, we must distinguish what is im-
portant to capture in a given model and what can be ignored. In the biotechnological
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Figure 1.1. Growth of a colony of bacte-
ria over a time period of five days. Cir-
cles indicate observations, the line is
the graph of a logistic function (see text
for details).
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TARGET: A USEFUL MODEL 3

setting of a microbial culture or chemostat, typical variables of interest are metabo-
lites, enzyme activities, fluxes, and controls such as pH, temperature, oxygen content,
cofactors, and of course substrates. The physical shape of the involved molecules is
clearly of importance for the enzyme-catalyzed reactions to proceed, but for typi-
cal batch processes it is often of secondary interest. Thus, returning to the issue of
identifying our target, we envision a model that allows us to ask questions about
changes in fluxes, metabolite concentrations, microbial population sizes, the relative
importance of fluxes that funnel material through the system of metabolic pathways,
and the effects of substrates and modulators. The model should enable us to map rel-
evant observations into a mathematical realm, which would then allow us to execute
“virtual experiments” and explore hypothetical scenarios.

Validity is certainly important, but it is not the only criterion in the selection of
a model. A second requirement for a good model is its mathematical tractability.
Only a model that permits effective evaluation, preferably both algebraically and
computationally, has the potential of becoming a general tool in an applied science.
We shall see in the next sections that some of the traditional models of enzyme
kinetics are very useful for studying individual processes, but that they can become
mathematically unwieldy in a network of just a few pathways.

If we had no history of modeling biochemical phenomena, our first stab at a useful
model would probably be some linear system. The reason for this choice would be
that no other branch of mathematics offers as rich a repertoire of theorems, methods,
and tools as linear mathematics, and validly representing our phenomena of interest
with linear methods would be half the battle. However, it has been said that focusing
on linear functions within the huge realm of nonlinearities is like dividing the animal
kingdom into elephants and non-elephants. Indeed, if one goes by the number of
all possible mathematical structures, linear models are negligible. Even so, it is still
often well worth considering linear systems, because they have very many unique
and desirable features. This will become apparent throughout the book.

The drawback with linear functions in a biotechnological context is that they are
often simply not appropriate descriptions of natural phenomena. For instance, es-
sentially all processes in living organisms saturate if the dependent variable becomes
very large. The growth of a population may be linear or exponential (i.e., linear in
the logarithm) for small population sizes, but eventually the growth cannot continue
unabated and the growth function ultimately flattens. Another limitation of linear
models is their inability to represent stable oscillations that return to their original dy-
namics after a small perturbation. There are many oscillatory phenomena in biology,
and many of them are stable in this sense. The inability of linear models to capture
these oscillations is therefore a drawback. The same applies for chaotic responses,
which also require nonlinear descriptions.

If linear functions are not justified, one has three options for model selection.
First, one could use linear functions anyway and accept the consequent inaccuracies.
This may sound like too drastic a simplification, but much of engineering is based
on linear systems, and the enormous accomplishments of engineering attest to the
validity of this approach. However, a crucial difference between engineering and
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4 PATHWAY ANALYSIS AND OPTIMIZATION IN METABOLIC ENGINEERING
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Figure 1.2. Function z = 0.25 · sin[5π (x2 + y2)1/2] of two independent variables, x and y, and its
“wiremesh” representation, which corresponds to a two-dimensional piecewise linear approxima-
tion, if each quadrilateral is dissected into two triangles.

biology is that engineers are often in a position to design systems according to their
own specifications, and these may include linear response functions. Biologists, by
contrast, must live with what nature presents, and that is usually nonlinear.

The second option is using a piecewise linear representation. To represent a func-
tion in this fashion, one replaces it with sufficiently many small linear pieces, and
the analysis shifts from piece to piece, depending on the value of the dependent
variable. The analogous procedure may be applied to higher-dimensional functions
(Figure 1.2).

Obviously, the smaller the individual pieces, the closer the agreement between
the piecewise linear model and the modeled nonlinear reality. But, of course, there is
again a drawback: smaller individual pieces require more breakpoints or “breaklines”
between adjacent pieces and thus complicate the computational implementation and
analysis.

The third option is to accept and confront the nonlinearities as they appear.
The challenge here is that the true structure of the nonlinearity is seldom known.
Even smooth and nearly error-free data that show a nonlinear trend do not uniquely
identify the mathematical form of the underlying function. As an example, consider
fabricated “data” with modest experimental error from a simple saturated process
(Figure 1.3). Without further information, these data could be adequately modeled
by a variety of functions, such as a shifted Hill function f1(x), an arctangent f2(x) or
logistic function f3(x), or even a statistical distribution function f4(x). The function
f4(x) is the cumulative of the normal distribution N(1.7, 1.2), multiplied with 1.85.
Similarly, other cumulative frequencies, like Student’s t-distribution, could be used to
model the data. Even the sine function f5(x) = 0.8 · sin(0.82 · x+ 4.8) + 1 fits rather
well.

The point of this comparison is that the criterion of a close data fit is rather weak
and unreliable. In particular, a good data fit alone does not provide strong guidance
for model selection. Sorribas, March, and Voit (2000) reached a similar conclusion
in the context of identifying the best-fitting statistical distribution for a given data
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Figure 1.3. Numerous functions provide pleasing fits to the fabricated data in the top left
panel. Shown here are a shifted Hill function ( f1(x ) = 2.2x2

2.32+x2 + 0.2), an arctangent function
( f2(x ) = 0.77 · arctg(0.9x − 1.6) + 1), a logistic function ( f3(x ) = 1.9

1+exp(2.2−1.3x ) ), a stretched nor-
mal cumulative ( f4(x ) = 1.85√

2.4π

∫ x
−∞ exp(− 1

2.88 (u − 1.7)2) du), and a sine function ( f5(x ) = 0.8 ·
sin(0.82 · x + 4.8) + 1). The data fit alone is not sufficient to prefer any of these functions to
an alternative.

set. They drew random numbers from a given distribution and showed that in a high
percentage of cases these data were better fitted by a different distribution than the
original that had been used to generate the random numbers.

With no reliable guidance from a graph of data, one has two choices of model
selection. One may use a black-box model that fits the data as the logistic func-
tion fits the measured bacterial growth data and the functions f1 through f5 fit the
manufactured data in Figure 1.3. A function found this way is often simple and
robust, but its explanatory value is limited, as discussed previously. The alternative
approach is to search for valid descriptions of the underlying processes. In most bi-
ological phenomena, these processes are not isolated but highly interconnected, and
if we are to capture the essential features of these phenomena, we must find effective
mathematical ways of representing systems.

The following sections describe some approaches to developing explanatory can-
didate models. We begin with a very brief review of the derivation of the best-known
biochemical model, the Michaelis–Menten rate law. This rate law has proven ex-
tremely useful for the analysis of individual reactions in vitro, and thousands of
articles deal with the characteristic parameters of this rate law, the Michaelis constant
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6 PATHWAY ANALYSIS AND OPTIMIZATION IN METABOLIC ENGINEERING

KM, and the maximal velocity of the reaction, Vmax. Although widely used, the
Michaelis–Menten rate law has serious disadvantages. Again, they fall in two cate-
gories: validity and tractability. Some generalizations of the original rate law over-
come problems with the validity of the underlying assumptions. However, these gen-
eralizations exacerbate the challenges of tractability. Ultimately, rate laws of this type
lead to so many mathematical and biological challenges that we have to search for
other solutions.

The proposed solution in this chapter, and indeed throughout this book, is to
use power-law approximations of processes. The advantages of these approxima-
tions include a relatively wide range of validity, mathematical justification, a good
fit to observations, and the feature of scale-invariance, which has also been called
the telescopic property (Savageau 1979a, 1985). Whether the system is small or
large, whether a process involves two or 200 variables, whether the model addresses
a phenomenon at a low or a high level of biological organization, the mathemat-
ical structure of these representations remains the same. This scale-invariance has
tremendous implications, from both a conceptual and a practical point of view.

MODELS OF BIOCHEMICAL PROCESSES

Fortunately, our search for the best mathematical representation of a biochemical sys-
tem does not have to start from scratch. In fact, the history of quantitatively studying
chemical and biochemical processes is almost 200 years old. Three major roots of
today’s understanding of biochemical processes and networks are thermodynamics,
kinetics, and stoichiometry. We summarize some key findings of these disciplines,
and proceed by identifying approaches that offer a good balance between validity,
justifiability, interpretability, and mathematical effectiveness and efficiency.

Thermodynamics

Biological systems are based on physical principles. They must satisfy the laws of
physics just like any other entity in the physical world. Among the laws and princi-
ples of physics, the results of thermodynamics are of particular interest for chemical
and biochemical processes, because they govern the relationships between mass, en-
ergy, work, and heat. They describe which processes are possible and which are
energetically infeasible. As Callen (1960) put it, “Thermodynamics is the study of
the macroscopic consequences of myriads of atomic coordinates, which, by virtue
of statistical averaging, do not appear explicitly in a macroscopic description of a
system.” Many theoretical results of thermodynamics were first observed in experi-
ments addressing questions that related energy to pressure, temperature, and volume
in ideal gases. Only later were the results formulated as laws and corollaries. “The
basic problem of [classical] thermodynamics is the determination of the equilibrium
state that eventually results after the removal of internal constraints in a closed com-
posite system” (Callen 1960, p. 7). A simple example is the observation that coffee,
if left to its own devices, after a while assumes room temperature.
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TARGET: A USEFUL MODEL 7

A significant finding of thermodynamics is that systems tend toward states of
minimal energy. In terms of biological systems, this is quite counterintuitive, because
organisms apparently violate these laws all the time. Plants generate high-energy
compounds like complex sugars out of lower-energy substrates like CO2 and water,
which contrasts simple thermodynamic arguments that would postulate the opposite,
namely the degradation of high-energy compounds into lower-energy compounds.
Even though organisms have tasks that require increases in energy, they cannot simply
ignore or violate the laws of thermodynamics but instead must find ways to complete
their tasks in spite of them.

Many books have been written on thermodynamics, some by celebrated scien-
tists such as Max Planck (1945) and Enrico Fermi (1956). These treatises address
the topic from a purely physical viewpoint and often use mathematical concepts of
considerable sophistication. A reasonably intuitive introduction to the area from a
biological perspective is Jou and Llebot (1990); the discussion below more or less
follows this book. Katchalsky and Curran (1967), Westerhoff and van Dam (1987),
and Heijnen (2001) also treated the topic in the context of biological processes. Two
more general texts are Callen (1960) and Kestin (1966).

The first law of thermodynamics asserts that the change in energy within a closed
system, which does not gain or lose matter, is equivalent to the sum of heat and
of energy-increasing work that the system receives from the outside. Hermann von
Helmholtz (1821–94) formulated this law as the widely acknowledged impossibility
of constructing a perpetuummobile, a machine of perpetual motion (of the first kind)
that would indefinitely produce more energy than it received (Gerthsen and Kneser
1971).

The second law further limits possible transitions within a system. It asserts that
heat does not pass spontaneously from a cold to a hot body, unless other processes
are in effect. Such a transition would be possible according to the first law, according
to which the overall state of energy remains constant, but is not possible according
to the second law. The second law is not only valid for isolated systems but also can
be formulated to include more realistic, nonisolated systems. Such systems are closed
with respect to matter, but exchange heat and work with the environment. The vast
majority of biological systems are nonisolated and, furthermore, open with respect to
the flux of matter. Their openness presents a significant challenge for thermodynamic
considerations.

One reformulation of the second law of thermodynamics is based on Gibbs’ (1839–
1903) concept of free energy, which is defined as the sum of the internal energy of
a state of the system and the product of pressure and volume, from which the prod-
uct of temperature and entropy is subtracted. The entropy characterizes the current
state of the system and, in some sense, is a measure of the disorder or statistical ho-
mogeneity of its molecules (see Callen 1960, Appendix B for intuitive explanations
of the concept of entropy). Highly structured systems have low entropy, whereas
unstructured systems have high entropy. In this terminology, the second law of ther-
modynamics states that the change in Gibbs free energy must be less than zero for
any spontaneous process in a closed system that operates under constant pressure
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8 PATHWAY ANALYSIS AND OPTIMIZATION IN METABOLIC ENGINEERING

and constant temperature. Expressed differently, the entropy in such a system cannot
decrease and the order cannot increase.

Instead of supposing that pressure and temperature are constant, other variables,
such as the internal energy of the system and the volume could be considered constant.
Each set of variables that are assumed to be constant yields a different constraint in
the other variables, and these constraints are called thermodynamic potentials. In
closed systems, the different thermodynamic potentials are in a sense equivalent,
and each contains all the thermodynamic information about the systems, such as
specifications of the equilibrium state to which the system moves, including stability
of this state, characteristics of phase changes, and relationships between the various
thermodynamic quantities.

If expressing similar phenomena in different ways seems confusing, be consoled
by Callen (1960, p. 85), “The peculiar multiplicity of formulation and reformulation
of the basic thermodynamic formalism is responsible for the apparent complexity of
a subject which in its naked form is quite simple.” This simplicity stems from the fact
that essentially all thermodynamic constraints are computed as partial derivatives of
one and the same function, which describes the energy status of the system.

If the system is open, the thermodynamic potentials are not only functions of
temperature, volume pressure, and free energy, but also of the numbers of moles
of each chemical species present. The change in energy that accompanies a change
in the number of moles is called the chemical potential. The chemical potentials
of all species (types of molecules) relate to the internal energy of the system in a
fashion analogous to temperature. For instance, two connected systems exchange
energy until both attain the same temperature, and two connected compartments
containing different chemical species move toward molecular homogeneity. In both
cases, the systems move toward the state of maximal entropy, and one can show that
this state corresponds to one of minimal energy. This has significant implications for
the characterization of such phenomena as osmotic pressure, diffusion, freezing point
depression, and boiling point elevation. The tendency of systems toward a state of
lower energy can be observed macroscopically. As early as 1872, Ludwig Boltzmann
(1844–1906) furthermore showed that this tendency could be explained in terms of
microstates, which correspond to locations and properties of individual molecules.
The use of probabilistic arguments for predictions of transitions between macrostates
has led to the subfield of statistical thermodynamics.

Alberty (1994) reviewed thermodynamic concepts for systems consisting of chem-
ical and biochemical reactions. The equilibrium in such a system is affected by the
ionic milieu and typically changes if the pH is altered. Ion effects on changes in free
energy are particularly important for reactions involving nucleic acids, proteins, and
other polyelectrolytes. To account for these effects, Alberty (1994, 2000) proposed
to include the pH as an additional independent variable in thermodynamic computa-
tions, just like temperature, volume, pressure, and chemical potentials, and to redefine
fundamental quantities like the Gibbs free energy and entropy correspondingly.

Although classical thermodynamics has been called “one of the outstanding
achievements of the scientific mind” (Katchalsky and Curran 1967), it is limited
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TARGET: A USEFUL MODEL 9

in scope, because it provides a theory for systems that are either in equilibrium or
are undergoing reversible processes. Idealized physical systems may satisfy these re-
quirements, but biological systems rarely do so. Organisms are nonisolated and open,
regularly exchanging not only heat, but also matter. Equilibrium states and transi-
tions between them, which constitute the cornerstone of classical thermodynamics,
are not as relevant for an organism, because equilibrium would mean death. Instead,
biological systems operate at nonequilibrium stationary states. These states are char-
acterized by influxes and effluxes of matter and energy that are in balance and keep
the concentrations of all chemical species (more or less) constant over time. Such
states can only be maintained by an external supply of energy.

Nonequilibrium thermodynamics thus deals with questions of energy that are
linked to transport and metabolism in open, dissipative systems, which require the
influx of energy. These systems usually contain irreversible processes, which Callen
(1960) defines as requiring an increase in entropy. All systems in the real world are
of this type. Dissipative systems must overcome the constraints given by the laws of
thermodynamics through the coupling of two or more processes. One process leads
to a structure with higher energy and lower entropy, thereby running in the direction
opposite to the one predicted by its thermodynamic affinity. The energetic gain in this
process, which apparently violates the second law of thermodynamics, is “paid for”
by energy released in a concomitant reaction that supplies energy and moves in the
direction predicted by its thermodynamic affinity. A typical example is the coupling
of phosphorylation with oxidation. Phosphorylation is crucial for the storage of
chemical energy; probably the most prominent case is the conversion of ADP into
ATP. The increase in energy during this process is coupled with energy transfer from
another reaction, such as the oxidation of NADH to NAD+. In animals, the external
energy supply is chemical, whereas plants, of course, may also use sunlight for some
of the reactions that lead to higher-energy compounds.

Nonequilibrium thermodynamics allows the estimation of energy requirements
in dissipative systems, the extent and stoichiometry of reactions or pathways, and
the degree of coupling among them. It also characterizes the efficiency of coupled
reactions, which is defined as the ratio of free energy consumed in one direction over
the energy liberated in the opposite direction. For example, it permits the estimation
of the number of moles of oxygen needed for the phosphorylation of one mole of
ADP and the computation of the efficiency of photosynthesis. Deductions from the
principles of nonequilibrium thermodynamics have also led to the insight that, in
the vicinity of the thermodynamic equilibrium, stationary nonequilibrium states are
characterized by minimum entropy production (Prigogine 1947/1955). At such a
state, the system loses minimal amounts of free energy and is energetically most
economical, which might be a rationale for the uncounted control mechanisms with
which organisms tend to preserve this state (Katchalsky and Curran 1967). Overall,
nonequilibrium thermodynamics provides a collection of constraints that observed
or hypothetical reactions in vitro and in vivo must satisfy. Ricard (1999) provides
good explanations of the relationships between nonequilibrium thermodynamics and
chemical and biochemical rate equations.
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10 PATHWAY ANALYSIS AND OPTIMIZATION IN METABOLIC ENGINEERING

An intrinsic feature of the thermodynamic approach is its strict focus on energy,
which almost completely excludes time. Thus, a typical result characterizes the en-
ergetic possibility or likelihood of a reaction, but it gives no indication whether this
reaction occurs on a time scale of seconds or years. Sometimes, temporal consid-
erations are not necessary, but in other cases timing is crucial. If that is the case,
thermodynamics is usually not the optimal approach, and one will instead focus on
kinetic representations of reactions.

Kinetics

Thermodynamics and kinetics are not entirely unrelated. In fact, kinetics may be
considered an “empirically based form of generalized thermodynamics” (Westerhoff
and van Dam 1987). Kinetics does not focus on energy levels as much as thermody-
namics. Instead, it addresses the temporal aspects of a reaction. How fast does the
reaction proceed? What is the half-life of a metabolite? What affects the speed of the
reaction? Certainly, answers to these questions involve thermodynamics at a deeper
level, but kinetic studies minimize aspects of energy and instead center directly on
metabolite concentrations and fluxes, as well as their fluctuations over time.

In the overwhelming majority of studies, kinetic analyses ignore spatial features.
Instead, it is implicitly assumed that all participants of a reaction are available in
a homogeneous mix. It is also typically assumed that the substrate concentration
is much higher than the enzyme concentration, so that the availability of enzyme
drives the process. Some newer studies have questioned some of these assumptions
and propose alternative descriptions. We will discuss a few of them throughout the
chapter.

The typical chemical or biochemical rate function relates the temporal change in
a chemical compound or metabolite concentration to the concentration itself. In the
simplest case of a first-order degradation process that does not involve an enzyme,
the rate is directly proportional to the concentration. In straightforward notation,
this elemental chemical reaction reads

v(X) = −kX. (1.2)

The rate constant k is positive by definition, because it represents the turnover per
time unit, which cannot be negative. The negative sign indicates that material X is
actually lost from the existing pool. The mathematical form of the equation results
from considerations of statistical thermodynamics that go back more than a hun-
dred years to Svante Arrhenius (1859–1927). Details can be found in textbooks on
thermodynamics and kinetics.

Because the rate v(X) represents the change in concentration over time, we can
write it as a derivative with respect to time, namely

dX
dt

= Ẋ= −kX. (1.3)

In kinetic studies, the differentiation variable is almost always time, t, and it is
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