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1

Introduction

We begin by surveying whatmacroscopic quantum phenomenaare, and what is
the significance of searching for such phenomena, thereby locatingmacroscopic
quantum tunnelingin the broad perspective of physics in the new century.

1.1 The cat and the moon

It should not be necessary to elaborate on a Young-type interference experiment,
which has by now been realized not only with electrons or neutrons but also with
atoms such as He, Ne and Na. In a typical experiment, a particle of a given kinetic
energy is sent through a double slit to a planar array of particle counters. What
happens is that one and only one of the counters fires and is marked by a bright
spot. As many particles of the same kind and the same kinetic energy as the first
particle are sent one by one successively, bright spots accumulate and eventually
emerge as an almost smooth interference pattern. This impressive emergence of
the pattern may best be appreciated by watching a movie that records such an
experiment in real time. In view of recent remarkable advances in experimental
technology, one cannot but be curious about the prospect in the not-unforeseeable
future: can the Young-type experiment be realized with an even bigger object, and
how big an object can one deal with? Here is a dialogue between Weizs¨acker1 and
Glauber2 at a meeting on quantum mechanics in the early 1990s.

W:However far the technology should advance, onewould not be able to see an interference
pattern with tennis balls.
G: It might be possible with soccer balls, though.3

1 C. F. von Weizs¨acker is a theoretician known for his contribution to nuclear physics, etc. He is a brother of the
former president of Germany.

2 R. J.Glauber is a theoretician known for his contribution to quantum optics, etc.
3 The molecule C60 consisting of 60 carbon atoms is often called a soccer ball because of its shape.Note added
in the English edition: In 1999, only 2 years after the Japanese edition was published, an interference pattern
was observed successfully with C60 (see Ref. [10] in the bibliography).
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2 1 Introduction

The fundamental equation of quantum mechanics4 is the Schr¨odinger equation5

which describes the time evolution of a given system. Its most important property
is linearity. Let|�(t)〉 be the state of the system at timet . (Hereafter astateis to
be understood as aquantum stateunless otherwise mentioned.) The Schr¨odinger
equation may be written generally in the following (integrated) form:

|�(t)〉 = Û (t)|�(0)〉. (1.1.1)

The symbolÛ (t) denotes a unitary operator determined by the HamiltonianĤ of
the system. For the present purpose, it is sufficient to regardÛ (t) as a sort of a linear
black box; given a state at time 0, (i) the state at an arbitrary timet is determined
uniquely by the above equation, and (ii) the following equality holds for arbitrary
|�1〉, |�2〉 andt :

Û (t)(|�1〉 + |�2〉) = Û (t)|�1〉 + Û (t)|�2〉. (1.1.2)

This relationship embodies the above-mentioned linearity, which is supported by
interference effects demonstrated in various experiments, especially ones of the
Young-type.
In the microscopic world,6 a variety of superpositions (namely, linear combina-

tions) of states have been confirmed experimentally. One of the familiar examples
is a superposition of spin-up and spin-down states. By virtue of the linearity (1.1.2),
a superposition in the microscopic world can in principle be magnified to one in
the macroscopic world. A mechanism of such a magnification is Schr¨odinger’s
linear theater, of which a simplified version would run as follows. On the stage is
a box containing a cat. The play is so designed that a radioactive nucleus is thrown
into the box and is swallowed by the cat at time 0, and that there are two possible
states|φ±〉 for the nucleus at time 0 such that the nucleus has not yet decayed if it is
in |φ+〉, but has decayed already if in|φ−〉. The cat will remain intact if the nucleus
is in |φ+〉 at time 0, but will eventually die due to radiation hazard if the nucleus
is in |φ−〉 at time 0. Let|ψ〉 be the state of the cat at time 0, and|�±〉 be the state
describing the cat either remaining intact (subscript+) or being dead (subscript−),
at some timeT, after swallowing the nucleus which was in|φ±〉. Note that|�±〉
are states of the entire system composed of the cat and the nucleus:

|�±〉 := Û (T)|ψ, φ±〉, |ψ, φ±〉 ≡ |ψ〉|φ±〉. (1.1.3)

The curtain is to be closed at the timeT . So much for the setting of the stage. Now,
immediately before the curtain is opened at time 0, the nucleus is to be prepared

4 Quantum mechanics here includes quantum field theory as well.
5 Some of the readers might associate the Schr¨odinger equation with the equation “Ĥ |�〉 = E|�〉”. The latter,
however, being a special case of the former, is appropriate only if “|�〉 is a stationary state”.

6 The word “world” here is meant to represent vaguely the whole collection of various physical phenomena.



1.1 The cat and the moon 3

in neither of the two states|φ±〉, but in the superposition|φ+〉 + |φ−〉.7 Hence, the
initial state of the entire system is of the following form:

|�(0)〉 = |ψ〉(|φ+〉 + |φ−〉) = |ψ, φ+〉 + |ψ, φ−〉. (1.1.4)

Combining this with (1.1.1), (1.1.2) and (1.1.3), one finds the state at the timeT :

|�(T)〉 = Û (T)(|ψ, φ+〉 + |ψ, φ−〉) = |�+〉 + |�−〉. (1.1.5)

This equation shows that the superposition in the microscopic world (|φ+〉 + |φ−〉)
can be magnified to that in the macroscopic world (|�+〉 + |�−〉):

MMM: Magnification {microscopic−→ macroscopic}

Given the state|�(T)〉, which is a superposition of|�+〉 and |�−〉, the cat can
neither be said to be alive (|�+〉) nor dead (|�−〉); it may only be said to be in the
state of|�+〉 AND |�−〉.
In view of the fact that superposition of distinct states (e.g.|φ±〉 in the above ex-

ample) in themicroscopicworld hasbeenconfirmedexperimentally, theappearance
of macroscopic superposition(or, equivalently,macroscopic linear combination)
such as (1.1.5) cannot be avoided so long as linearity of the Schr¨odinger equation is
taken for granted. (Here, “macroscopic superposition” is meant to imply “super-
position ofmacroscopically distinctstates”.) However, this sort of strange state is
incompatible with themacrorealism,8 according to which the cat, exposed to the
radiation, must necessarily be either in the state|�+〉 or in |�−〉 (|�+〉 OR |�−〉);
a cat in the state|�+〉 AND |�−〉 is totally incomprehensible.9
During oneof hiswalks, Einstein is said to haveaskedhis colleague10 “Do you re-

ally believe that themoon is there only when you look at it?”What lies at the core of
the discussion is the problem of the transition11 from AND of quantum mechanics
to OR of macrorealism,

TAO: Transition{AND −→ OR}.

7 A radioactive nucleus evolves into a state of this type even if it was originally in|φ+〉.
8 Loosely speaking, a naive everyday-life realism. See Chapter 9 for details.
9 According to Schr¨odinger as translated into English, it is ‘ridiculous’; he ridiculed it by creating his linear
theater but without forgetting to mention ‘. . . the living and the dead cat (pardon the expression). . .’. Would
Schrödinger have said ‘Scat!’ to the S-Cat(≡ Schrödinger’s cat)? Note that the audience are not allowed to
enter the theater before the closing timeT ! They are invited to examine the cat only somewhat later. Then,
some of them will find the cat alive and the others will find it dead.

10 A. Pais,Rev. Mod. Phys.51 (1979), 863–914, Section X. Although this question may not have addressed
specifically to the problem concerning the macroscopic world, it is undoubtedly an eloquent representative of
the macrorealism.

11 Also called Collapse, Objectification or REalisation (put together as CORE).
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If a measuring apparatus replaces the cat, this problem reduces to the “problem of
measurement in quantum mechanics”, which has been debated since the birth of
quantum mechanics.
It should be noted that the state (1.1.5) is not a simple product of a state of the

nucleus and a state of the cat but a sum (linear combination) of such products. In
this state, the nucleus and the cat cannot be separated; rather they are as it were
inseparably entangled. In general such a state is called anentangled state(see
Chapter 4 for details).

1.2 Leggett program

Let us take a look at the “quantum measurement problem” or the “S-Cat
(Schrödinger’s cat) paradox” from a laboratory-rooted point of view. This paradox
presupposes the universal validity of quantum mechanics even in the macroscopic
world. This premise, however, lacks in experimental evidence. If it were not valid,
the paradox would either disappear or change its character. If, on the other hand,
the premise is valid and a macroscopic superposition is realized, one should expect
QIMDS,12 namely,quantum interference of macroscopically distinct states. The
question then is this: howmacroscopic can an object be for a laboratory experiment
to be able to detect QIMDS, thereby confirming a macroscopic superposition with
the object? Note here a traditional opinion against QIMDS:

Even if quantum mechanics was valid in the macroscopic world, it would be impossible
in practice to detect QIMDS.

The argument runs as follows:13

A macroscopic system has a large number of degrees of freedom. Accordingly, QIMDS
must result as a sum of a large number of interference effects. Even if each of the
effects separately produces such a clear-cut interference pattern as that in the Young-type
experiment, the net result of summing these patterns would be the disappearance of any
interference effect, because in general they are slightly out of phase with each other; that
is, the peaks in one of the patterns are slightly displaced compared to those in another.
In the example of Schr¨odinger’s linear theater, the entire system in fact consists of the
nucleus, the cat and the whole environment surrounding them, although the environment
was disregarded for brevity in the preceding section. Thus, the number of degrees of
freedom is infinite in effect, and interference will completely disappear.

12 An acronym invented by A. J. Leggett.
13 This argument is often followed by the statement “Therefore, AND is synonymous with OR for all practical
purposes”. As emphasized in the ensuing paragraph, however, this sort offor all practical purposes argument
does not resolve the TAO problem.
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The disappearance of interference just argued is called thedecoherencedue to
theenvironment.14 This argument will certainly apply to a majority of situations
including a real cat. However, since there is no definite boundary between the
microscopic and the macroscopic worlds, possibilities should remain for QIMDS
to be detectable with a fairly macroscopic object, so long as quantum mechanics
is valid. Even if the number of degrees of freedom is formally infinite, it might
not be impossible to reduce the number of those which are harmful to QIMDS;
an appropriate control (e.g. cooling to a sufficiently low temperature) over the
environment could achieve the desired reduction.
These considerations led Leggett to propose the following program around 1980

(in what follows, “QM≡ quantum mechanics” and “MR≡ macrorealism”):

(0) Search both experimentally and theoretically for a macroscopic system which is
expected, provided that QM remains valid, to show evidence of QIMDS under an
appropriately controlled environment.

(1-0) If the experimental result can be interpreted, on the basis of QM, to show evidence
of QIMDS, proceed to the step (2) below.

(1-1) If the experimental result unambiguously denies QIMDS against the quantum-
mechanical prediction, then QM may be concluded to be invalid for a system as
macroscopic as the one in question. Proceed to modify QM in the light of the nega-
tive result.

(2) Scrutinize,without invokingQM,whether or not theexperimental result is compatible
with MR.

(2-0) If it is, the experiment in question can not decide between QM and MR. Go back to
the step (0) and refine the experiment.

(2-1) If it is not, one may conclude that MR is not valid but QM remains to be valid for a
system as macroscopic as the one in question. Go back to the step (0) to continue the
search for still more macroscopic candidates of QIMDS.

A comment is in order on the step (2). However uncomfortable one might feel
with macroscopic superposition predicted by QM, it is illegitimate to reject QM
on the basis of one’s subjective feeling. A way to quantify this discomfort is to
adopt MR, on the basis of which one may derive certain inequalities (Leggett–
Garg inequalities15) to be satisfied by somemeasurable quantities (time-correlation
functions). Furthermore, it can be shown that there are circumstances where QM

14 Theenvironment here includesmany internal degrees of freedomof themacroscopic system in question (e.g. the
cat) apart from those which are reserved to distinguish the macroscopically distinct states (e.g. to distinguish
whether the cat is alive or dead). Of course, interference between microscopically different states can also
be affected and often washed out by environment. The thesis of the above traditional argument is that the
decoherence is inevitable and fatal in the case of QIMDS.

15 They correspond and have the same mathematical structure as Bell’s inequalities which are appropriate in the
Einstein–Podolsky–Rosen problem, namely, testing QM against the local realism.
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violates these inequalities. A sufficiently skilful experiment should be able to reveal
this discrepancy, thereby deciding between QM and MR. See Chapter 9 for details.
Hidden in this program is the expectation that quantum mechanics will cease to

be valid for a sufficiently macroscopic system.16 The program itself, however, is
independent both of this expectation and of a belief that QM is absolutely valid; it is
a down-to-earth research program to enlarge the range of applicability of QM step-
by-step from the microscopic world to the more macroscopic one. This program is
to be called theLeggett program.17

1.3 What is meant by “macroscopic”?

1.3.1 Intuitive consideration

We have frequently used the wordmacroscopic. In order to avoid confusion, it is
necessary to agree on its meaning as it is used in this book. As a starting point let
us consider a Young-type experiment, where a pair of distinct states is involved;
they represent a particle passing through either the upper or the lower slit. If the
distance between the two slits is macroscopic (say 0.1mm), one might be inclined
to regard the pair of states as macroscopically distinct from each other, even if the
system in question is amicroscopic particle such as an electron or a neutron.What is
macroscopic here, however, is a mere distance; the number of particles involved is
only one. By contrast, theword “macroscopic” in this book refers to those situations
where a large number of particles are involved, or to be more precise, the number
N of thedynamical degrees of freedomis large.
Thephrase“dynamicaldegreesof freedom”(hereafter tobeabbreviatedasdegrees

of freedom)shouldalsobeusedwith caution. Imaginea tennisball passing througha
wall without being squeezed. There can be no objection to calling this phenomenon
amacroscopic tunneling; if the ball is regarded as a collection of atoms, the number
of degrees of freedom involved in this phenomenon is comparable to the number of
atoms. However, the same phenomenon can also be described by a single degree
of freedom, namely, the center of mass. These two descriptions are related to each
other by a transformation of variables and are mathematically equivalent. On the
basis of this example, it could be argued that the number of degrees of freedom
involved, which is not invariant under transformations of variables, cannot quantify
the word “macroscopic”; a physical conclusion should not depend on the choice

16 See A. J. Leggett,The Problems of Physics, Oxford University Press (1987), Chapter 5, Skeletons in the
cupboard.

17 The program announced by Felix Klein (1849–1925) on the occasion of his appointment to a professorship at
the University of Erlangen, well known as Erlangen Programm, was so insightful that it played a long-lasting
leading role in the synthesis of geometry. The Leggett program, which is still under development, will be
regarded by the late twenty-first century physicists to have played a role in physics comparable to the Klein
program in twentieth century mathematics.
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of a mathematical description. This objection, which might look reasonable at
first sight, may be disposed of as follows. Our intuition which regards the above
phenomenon as a macroscopic tunneling does not rely on the number ofcollective
degrees of freedomsuch as the center of mass but on the number ofmicroscopic
degrees of freedomsuch as the positions of constituent atoms. Collective degrees of
freedom are the elite degrees of freedomwhich are singled out by rearranging the
microscopic ones, all of which our intuition leads us to treat on an equal footing. In
accordance to our intuition, we adopt the democraticway of counting the number
of degrees of freedom, which in general is of the same order as the number of
particles composing the system in question. Thus, the above objection is irrelevant.
Of course, the number of constituent particles depends on what we count as funda-
mental particles;N neutrons may be counted as 3N quarks, for instance. However,
the difference betweenN and 3N is irrelevant aswell; theword “macroscopic”may
be quantified only by orders of magnitude.

1.3.2 S-Cattiness

Until the 1970s, the phrase macroscopic quantum phenomena represented collec-
tively superfluidity and superconductivity. For example, the phenomenon of liquid
He creeping up along the wall of a glass and flowing out of it is both undoubtedly
macroscopic and explicable only in terms of quantum mechanics. In this kind of
phenomena, however, microscopic interference at the level of one (or two) par-
ticles is enhanced by virtue of cooperation of many particles (or, many pairs of
particles), resulting in an effect of macroscopic scale; QIMDS is not involved.
Today they are often calledmacroscopic quantum phenomena of the first kindand
are distinguished frommacroscopic quantum phenomena of the second kindin
which QIMDS is involved.
Let us elaborate on the difference between the two kinds. Consider, as a typical

example of the first kind, superfluid4He flowing out of a glass. The wavefunction
representing its state is conceptually of the form:18

N∏
k=1

{ψ(r k − d/2)+ ψ(r k + d/2)}, (1.3.1)

wherer k denotes the position of thek-th of theN atoms composing the liquid4He,
d/2 that of the center of the glass, and−d/2 a position outside the glass (Fig. 1.1).
Equation (1.3.1) implies that each of the atoms is in a state of superposition
ψ(r −d/2)+ ψ(r + d/2) and that the state of the entire liquid is their product.

18 It should be noted that the following expression is merely schematic. Bose–Einstein condensation by itself
is not enough to give rise to superfluidity; interaction among atoms is necessary for a state roughly of the
following form to be kept stable.
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d/2−d/2
Fig. 1.1. Superfluid4He flowing out of a glass (macroscopic quantum phenomena of the
first kind).

It shows that all the atoms are in one and the same “one-particle state”. This is
nothing but the situation called theBose–Einstein condensation, which realizes the
cooperation of many particles as mentioned above.
The representative of macroscopic quantum phenomena of the second kind is,

of course, the S-Cat.19 Unfortunately, however, quantum states representing a real
cat are hard to write down. Consider instead a ball passing through double slits. If
the ball is assumed to behave as a rigid body, its state is represented conceptually
by a wavefunction of the form

N∏
k=1

ψk(r k − d/2)+
N∏

k=1
ψk(r k + d/2), (1.3.2)

where r k denotes the position of thek-th of the N atoms composing the ball,
and±d/2 are the positions of the upper and the lower slit, respectively. In this
wavefunction the first and the second terms represent the state in which the center
of the ball is located near±d/2, respectively (Fig. 1.2).
Eachψ in Eq. (1.3.2) carries the subscriptk, which takes account of the fact

that each atom occupies a different position within the ball. This is not important,
however, in the comparison of (1.3.1) and (1.3.2).What is essential is the difference
in the order of the sum (i.e. linear combination) and the product; the sum is the first
to be taken in (1.3.1), whereas the product is the first in (1.3.2).
In what follows, a macroscopic quantum phenomenon of the second kind is to

be simply called a macroscopic quantum phenomenon and abbreviated as MQP.

19 The present author has not found out why Schr¨odinger invoked a cat instead of a dog for instance. Perhaps, a
cat is more suitable for germinating a sense of strange uneasiness. Also, S-Cat is reminiscent of Carroll’s cat
in Alice in Wonderland.
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d/2

−d/2

Fig. 1.2. A ball passing through double slits (MQP).

It is desirable to have a measure to quantify the extent to which a given MQP is
macroscopic. Such a measure is to be calledS-Cattinessand denoted byD. It may
be defined20 roughly as:

the maximum number of those democratically-counted degrees of freedom which are
involved in an irreducible linear combination,

where an irreducible linear combinationis a superposition that can not be factorized
into linear combinations involving fewer degrees of freedom. According to this
definition,D ∼ 1 in the state (1.3.1),D ∼ N in the state (1.3.2), and so on. The
largerD becomes, the closer the given QIMDSwill be to the full-fledged S-Cat and
the harder to detect experimentally.

1.4 Macroscopic quantum tunneling

1.4.1 Leggett program and macroscopic quantum tunneling

In the previous section, we have briefly described the traditional argument against
QIMDS. Let us examine it in more detail. Consider for simplicity a system of
N spins{ŝ(1), ŝ(2), . . . , ŝ(N)} with each of the spins being of magnitude 1/2, and
suppose that it has been prepared in the following state|�〉 (see Appendix D for
the notation concerning spin):

|�〉 := c+|�+〉 + c−|�−〉, (1.4.1)

|�±〉 ≡
N∏

k=1

∣∣∣∣ ± 1

2

〉(k)
, |c+|2 + |c−|2 = 1, (1.4.2)

20 A more precise mathematical definition has been given by Leggett in Ref. [1] in the bibliography, where the
measure was called thedisconnectivity. Later it was also informally called cattiness.
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where

ŝ(k)3

∣∣∣∣ ± 1

2

〉(k)
= ±1

2

∣∣∣∣ ± 1

2

〉(k)
. (1.4.3)

This state|�〉 has the structure in common with the state (1.3.2). Accordingly
its S-Cattiness is of orderN. How can one detect an interference effect predicted
by the superposition (1.4.1)? To answer this question, it is helpful to review the
Young-type experiment. Pay attention to any one of the counters and suppose that
its center is situated atx0 and that it occupies a spatial regionC(x0). Then the
probabilityP(x0) for the counter to click at timeT is given roughly as

P(x0) =
∫

C(x0)
dx |ψ(x)|2, ψ(x) ≡ 〈x|ψ〉, (1.4.4)

where|ψ〉, being the state of the particle at the timeT , is a superposition of|ψ±〉
which describe the particle having passed through the upper and the lower slit,
respectively:

|ψ〉 = |ψ+〉 + |ψ−〉. (1.4.5)

By use of theprojector21 onto the regionC(x0) defined by

�̂x0 :=
∫

C(x0)
dx |x〉〈x|, (1.4.6)

the above probability may be rewritten as

P(x0) = 〈ψ |�̂x0|ψ〉
= 〈ψ+|�̂x0|ψ+〉 + 〈ψ−|�̂x0|ψ−〉 + 2〈ψ+|�̂x0|ψ−〉. (1.4.7)

This is just a roundabout rephrasing of the elementary result; the last term is what
is called the interference term:

〈ψ+|�̂x0|ψ−〉 =
∫

C(x0)
dx ψ∗

+(x)ψ−(x), ψ±(x) ≡ 〈x|ψ±〉. (1.4.8)

The lesson to be learnt from this example is the following:

There exists an operator (i.e.�̂x0) such that (a) it corresponds to the experimental pro-
cedure of counting a particle, and (b) its off-diagonal element (i.e. (1.4.8)) does not
vanish.

It is this condition that renders the Young-type interference effect detectable.
This consideration may be generalized to conclude that the following condition

is necessary for the interference between|�±〉 in the superposition (1.4.1) to be
detectable:
21 Abbreviation ofprojection operator.
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There exists an operator̂O such that (a) it corresponds to the actual measurement,
and (b)

〈�+|Ô|�−〉 �= 0. (1.4.9)

If itwerenot for anoperatorwith this property, thesuperposition (1.4.1)wouldbe in-
distinguishable from themixture22 represented by the following density operator ˆρ:

ρ̂ = |c+|2|�+〉〈�+| + |c−|2|�−〉〈�−|. (1.4.10)

For example, the operator̂O ≡ ŝ(1)1 ŝ(2)1 does not satisfy the above condition:

〈�+|Ô|�−〉 =
2 (k)∏

k=1

〈
1

2

∣∣∣ ŝ(k)1
∣∣∣−1
2

〉(k) N (k)∏
k=3

〈
1

2

∣∣∣−1
2

〉(k)
= 0.

(1.4.11)

Hence, no measurement of the physical quantity represented by this operator can
reveal the desired interference effect. Any operator of the form of a product of
N − 1 spins or less will not do either. A product involving all of theN spins
is needed. However, an experimental realization of such an operator would be
impossible for a system with a largeN (say,N ∼ 1010).
It might seem hopeless to dispute this argument. Fortunately, however, any phys-

ical system is endowed with a time-evolution operatorÛ (t). This operator contains
all the powers (i.e.Ĥ , Ĥ2, Ĥ3, . . .) of the HamiltonianĤ , which in turn contains
all the degrees of freedom relevant to the system. Therefore, even if an operatorÔ
contains only a few degrees of freedom, its time evolution

Ô(t) ≡ Û
†
(t)ÔÛ (t) (1.4.12)

can have the property

〈�+|Ô(t)|�−〉 = 〈�+(t)|Ô|�−(t)〉 �= 0 , |�±(t)〉 ≡ Û (t)|�±〉. (1.4.13)

Thus, although an experimenter can not prepare a desired operator, nature can; it
is sufficient for an experimenter to measureÔ for the system in the state|�±(t)〉
instead of the original state|�±〉. Detection of QIMDS will be possible only if this
naturally endowed property is successfully exploited. To start with, of course,|�+〉
and|�−〉 should be macroscopically distinct from each other. This condition may
be guaranteed if a sufficiently large potential barrier separates these two states. In
order to exploit (1.4.13), however,|�+〉 should be able to evolve in time to|�−〉
22 It is often the case that a mixture is called a “mixed state” in contrast to a “pure state” which is synonymous
with the phrase “quantum state” as used in this book. Readers are warned not to confuse the word “mixed”
in “mixed state” with the word “mixing” used in “mixing angle”, “s–p mixing” and so on. In these phrases,
“mixing” implies a linear combination; for instance, an “s–p-mixed state” (≡ “state with s–p mixing”) is a
“pure state”.
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and vice versa. Both of these requirements may be met by a situation where the
macroscopic system is able to undergo quantum tunneling.
For this reason, macroscopic quantum tunneling, the title of this book, occupies

the central position in the Leggett program. To recapitulate, its significance lies in
the following features23 which are obviously interrelated:

� It is genuinely quantummechanical. Although quantum-mechanical effects are involved
in oneway or another in any physical phenomena, theymay be identified unambiguously
in a phenomenon without classical-mechanical analogue. Quantum tunneling is a typical
case.

� It guaranteesmacroscopic distinctness. Two states, which can evolve into each other only
via quantum tunneling, are prohibited to do so classically. Hence, an experimenter can
unambiguously distinguish them with a macroscopic parameter by preparing them in a
nearly classical situation.

Before closing this subsection, we should dispose of an opinion, which insists
that it is impossible to detect quantum tunneling in a macroscopic system. The
argument goes as follows:24

In general the probabilityof tunneling is proportional to exp(−2S/h̄), whereS is the
action characteristic of the tunneling in question.25 Let N be the number of degrees of
freedom involved in the tunneling, then

S/h̄ ∼ N � 1. (1.4.14)

Thus, the probability of tunneling, which decreases exponentially asN increases, prac-
tically vanishes for a macroscopic system. Furthermore, a system may be said to be
macroscopic with rigor only in the limit

N → ∞. (1.4.15)

In this limit, the probability of tunneling vanishes rigorously.

This opinion would certainly be right if the word “macroscopic” is defined by the
condition (1.4.14). Although this condition is expected to hold in many cases, it
does not necessarily agree with what we mean intuitively by “macroscopic”. Even
if many particles are involved and the two states in question are macroscopically
distinct, the potential barrier separating the two states might not necessarily be
large. Such a situation as

S/h̄ = O(1) (1.4.16)

23 These are necessary forMQP in general, but quantum tunneling is not. A candidate ofMQPwithout tunneling is
a superposition of macroscopically distinct coherent states of light (i.e. electromagnetic field), which, however,
is outside the scope of this book.

24 This is another example of afor all practical purposesargument. cf. Footnote 13.
25 This action is proportional roughly to the square root of the area of the potential barrier.
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could be realized; even ifS is formally proportional to the large numberN, the
coefficient of proportionality could be controlled to be small. The situation of in-
terest in this book is not themathematical limit (1.4.15) but a realistic circumstance
where the condition (1.4.16) holds in spite ofN �1.

1.4.2 Classification of macroscopic quantum tunneling: MQC and MQT

Given a macroscopic system, letR be the set of relevant macroscopic degrees of
freedom (i.e. collective degrees of freedom) to describe its quantum tunneling. The
number of such degrees of freedom need not be one. For example, in the case of the
ball discussed in the preceding section,R is the center-of-mass position which is a
three-component vector, that is,R consists of three degrees of freedom. The entire
number of degrees of freedom of the given macroscopic systemmay be rearranged
into R and the rest. For simplicity, suppose thatR consists of a single degree of
freedom and that its quantum-mechanical behavior is governed by the Schr¨odinger
equation of the same form as that for a particle:

i h̄
d

dt
|ψ(t)〉 = ĤS |ψ(t)〉, (1.4.17)

ĤS := 1
2M P̂

2 + U (R̂), (1.4.18)

[ R̂, P̂] = i h̄, (1.4.19)

whereM is a positive constant (effective inertial mass),P̂ is the momentum oper-
ator conjugate to the position operatorR̂, andU (R̂) is an appropriate potential to
be specified later. Hereafter, the macroscopic degrees of freedomR is to be called
themacrosystemas distinguished from the original macroscopic system as awhole;
the set of the remaining degrees of freedom is called theenvironment(i.e. the envi-
ronment forR). Accordingly the abovêHS , which refers to themacrosystem alone,
is to be called themacrosystem Hamiltonian.26 The Hamiltonian for the entire sys-
tem consists of three parts: the macrosystem Hamiltonian, the part referring to the
environment alone, and the part specifying the interaction of the macrosystem with
the environment. It is, therefore, not obvious whether the fundamental quantum-
mechanical description canbe reduced to the form (1.4.17)–(1.4.19)which is closed
with respect toR. This issue is to be discussed in detail in the fourth and subse-
quent chapters. For the moment, we assume that the closed form (1.4.17)–(1.4.19)
is valid; the aim of this subsection and the following two chapters is to achieve a
conceptual understanding of macroscopic quantum tunneling.
Macroscopic quantum tunneling is grossly classified into MQC (macroscopic

quantum coherence) and MQT (macroscopic quantum tunneling in the narrow

26 The subscriptS stands for the system, namely, not the entire macroscopic system but the macrosystem which
is of primary interest.
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Rm−R0

U−+U0

U(R)

Rm Rm+R0

U−

R

Fig. 1.3. MQC-situation: symmetric double well.

sense). In a phenomenon classified as MQC, a macrosystemR oscillates in time
between macroscopically distinct states. Such an oscillation may be said to be
a temporal counterpart of the Young-type interference pattern that is spatial (see
Section 2.2); QIMDS is involved directly. Thus, MQC is a convenient substitute
for Young-type experiments, which are presumably difficult for a macrosystem. As
mentioned in the preceding subsection, one need not construct a delicate double-slit
apparatus to produce a desired macroscopic superposition, which may be prepared
naturally by the time evolution of themacrosystem itself. A typical potential giving
rise toaMQC-situation is thesymmetric doublewell (Fig. 1.3). Thecentral barrier is
supposed tobeso large that the inter-well distance2R0 is amacroscopicquantity and
that the macrosystem initially localized in the left well cannot go over to the right
well classically but can do so only via quantum tunneling. In this way, the left state
(i.e. the state in which themacrosystem is localized in the left well) is guaranteed to
bemacroscopically distinct from the right state. The oscillation of themacrosystem
between the two wells is analogous to the classical-mechanical resonance of a pair
of coupledpendulumsor tuning forkswith a commoneigenfrequency.Hence,MQC
may as well be calledmacroscopic quantum resonant oscillation.
In a phenomenon classified asMQT, on the other hand, amacrosystemR tunnels

only once froma state to another with the latter beingmacroscopically distinct from
the former. A typical potential giving rise to a MQT-situation is thebumpy slope27

(Fig. 1.4), where the barrier is supposed to be sufficiently large as in the MQC-
situation. If the macrosystem is initially localized in the well, it cannot escape to-
wards the right of the barrier classically but can do so only via quantum tunneling.

27 A better nickname may be desirable.
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U−+U0

U(R)

Rm+R0

U−

R

Fig. 1.4. MQT-situation: bumpy slope.

U(R)

R

Fig. 1.5. Free-tunneling situation: simple barrier.

This situation is analogous to theα-decay of a nucleus, for instance; the initial state
is metastable, and the well aroundR = Rm is called themetastable well. Thus,
MQT may as well be calledmacroscopic quantum decayof ametastable state. As
in the case of the MQC-situation, the large barrier guarantees that this metastable
state (i.e. the state in which the macrosystem is localized in the metastable well) is
macroscopically distinct from thedecayedstate (i.e. thestate inwhich themacrosys-
tem has escaped to the right of the barrier). Although MQT cannot provide direct
evidence for QIMDS (see Chapter 9), its detection would dramatically demonstrate
that a macrosystem can exhibit a quantum-mechanical behavior without a classical
analogue.
Perhaps the most familiar type of quantum tunneling is the situation depicted in

Fig. 1.5, which may be called the free tunneling, since no force acts on the particle
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either before or after the passage of the barrier.28 It seems, however, difficult to set
up a corresponding situation for a macrosystem.
Incidentally, MQT is often described as a free tunneling followed by several

oscillations inside the metastable well. In a situation where this popular account
is valid, however, the probability of tunneling would be too small for MQT to be
detected. It is therefore advisable to distinguish MQT from free tunneling.

Exercises

Exercise 1.1.Devise a mathematically precise definition of the S-Cattiness (cf. Ref. [1]).
Exercise 1.2.Given a state|�〉, the density operator ˆρ� representing it is defined by the
property

Tr(ρ̂� Â) = 〈�|Â|�〉 for an arbitrary operator̂A, (1.4.20)

or equivalently as

ρ̂� := |�〉〈�|. (1.4.21)

For |�〉 given by (1.4.1), show that
ρ̂� = ρ̂ + c+c∗

−|�+〉〈�−| + c−c∗
+|�−〉〈�+|, (1.4.22)

where ˆρ represents the mixture as given by (1.4.10).
Exercise 1.3.Design a Young-type experiment with C60; estimatethe required orders of
magnitude of the inter-slit separation, the distance between the double slits and the array of
counters, and so on (cf. the actual experiment in Ref. [10] in the bibliography).

28 Hence, the particle behaves asymptotically as a free particle.




