


Life on Other Worlds The 20th-Century Extraterrestrial Life Debate

The recent discoveries of extrasolar planets and possible microfossils in Martian meteorite ALH 84001 are only the latest developments in a debate that spans millennia and that has been especially heated in the 20th century. From the furor over Percival Lowell's claim of canals on Mars at the beginning of the century to the biological experiments of the Viking spacecraft, the controversial "Mars rock," and the sophisticated Search for Extraterrestrial Intelligence (SETI) at its end, otherworldly life has often titillated and occasionally consumed science and the public. So too have crucially related areas such as the search for planetary systems, the quest for an explanation of UFOs, and inquiries into the origin of life. The theme has been elaborated by science fiction writers from H. G. Wells to Arthur C. Clarke and has resulted in some of the most popular films of all time, including E.T., Alien, Independence Day, and Contact.

Life on Other Worlds details in a readable and nontechnical manner the history of the 20th-century extraterrestrial life debate, one of the pervasive themes of our century. Unlike other works on the subject, it places the current debate in historical perspective, showing how the concept of extraterrestrial intelligence is a worldview of its own, a "biophysical cosmology" that seeks confirmation no less than physical views of the universe. It is, however, a subject at the very limits of science, and scientific attempts at confirmation therefore illuminate the nature of science itself. This history is not only important for an understanding of the nature of science, but is also central to any forward-looking concept of religion, philosophy, and numerous other areas of human endeavor. Extraterrestrial life will be one of the predominant themes of science in the 21st century.

Steven J. Dick is an astronomer and historian of science at the United States Naval Observatory in Washington, D.C. He is the author of *Plurality of Worlds: The Origins of the Extraterrestrial Life Debate from Democritus to Kant* (Cambridge University Press, 1982), *The Biological Universe: The Twentieth-Century Extraterrestrial Life Debate and the Limits of Science* (Cambridge University Press, 1996), and numerous articles in both scientific and historical journals, including *Space Science Reviews, Journal of the History of Ideas, Technology and Culture*, and *Journal for the History of Astronomy*. Dr. Dick has served as historian for NASA's Search for Extraterrestrial Intelligence (SETI) program and was a member of a NASA workshop examining the cultural aspects of success in SETI, including the short-term and long-term implications of contact with extraterrestrials. He was a member of the panel convened by Vice President Al Gore in 1996 to examine the implications of possible fossilized life in the Mars rock.

Frontispiece. Illustration by William R. Leigh from H. G. Wells, "The Things That Live on Mars," a nonfiction article that appeared in Cosmopolitan Magazine in March 1908 at the height of the Martian canals furor.

Life on Other Worlds

The 20th-Century Extraterrestrial Life Debate

STEVEN J. DICK

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521799126

© Steven J. Dick 1998

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1998

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Dick, Steven J.

Life on other worlds: the 20th-century extraterrestrial life debate / Steven J. Dick.

p. cm.

Includes bibliographical references and index.

ISBN 0-521-62012-0 (hardbound)

Mars (Planet) – Exploration,
 Life on other planets.

3. Exobiology. I. Title.

QB641.D52 1998

576.8'39 – dc21 98-20465

CIP

ISBN 978-0-521-62012-3 Hardback ISBN 978-0-521-79912-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To those who search for the meaning of Life

Glendower: I can call spirits from the vasty deep.

Hotspur: Why, so can I, or so can any man;

But will they come when you do call for them?

Shakespeare
Henry IV, Part I
Act 3, Scene I, 52-58

CONTENTS

		page ix
Αc	knowledgments	xii
Introduction		
1	From the Physical World to the Biological Universe: Democritus	
	to Lowell	6
	1.1 The Cosmological Connection	7
	1.2 Philosophical Explorations	15
	1.3 Scientific Foundations	17
2	Life in the Solar System	25
	2.1 Lowell and Mars: The Search for Intelligence, 1894–1924	26
	2.2 The Search for Martian Vegetation, 1924–1957	44
	2.3 The Space Age: Lowell's Legacy Overturned	53
	2.4 Reprise: Martian Fossils and Europan Seas	65
3	Solar Systems Beyond	70
	3.1 Skepticism: Close Encounters of the Stellar Kind	71
	3.2 Turning Point: 1943–1958	78
	3.3 Optimism: Observation to the Rescue	88
4	Extraterrestrials in Literature and the Arts: The Role of	
	Imagination	106
	4.1 The Invention of the Alien: Verne, Wells, and Lasswitz	107
	4.2 The Development and Uses of the Alien: Burroughs to	
	Bradbury	116
	4.3 The Alien Comes of Age: Clarke to E.T. and Beyond	125
5	The UFO Controversy and the Extraterrestrial Hypothesis	137
	5.1 The Rise of the Extraterrestrial Hypothesis	138
	5.2 The Peak of the Extraterrestrial Hypothesis, 1965–1969	150
	5.3 Aftermath: The Nature of Evidence and the Decline of the	
	Extraterrestrial Hypothesis in Physical Science	159
6	The Origin and Evolution of Life in the Extraterrestrial Context	169
	6.1 Origins of Life and Extraterrestrial Life: A Space Age	
	Symbiosis	170

vii

CONTENTS

	6.2	Evolution and Extraterrestrials: Chance and Necessity	
		Revisited	192
7	SET	I: The Search for Extraterrestrial Intelligence	200
	7.I	Cornell, Ozma, and Green Bank: The Opening of the	
		Electromagnetic Spectrum for SETI	201
	7.2	A Rationale for SETI: Optimists, Pessimists, and the	
		Drake Equation	212
	7.3	A Strategy for SETI: The Development of Observational	
		Programs	222
8	The	Meaning of Life: Implications of Extraterrestrial	
	Intel	ligence	236
	8.1	Perceptions of Cultural Impact	237
	8.2	Astrotheology	245
	8.3	Life and Purpose in the Universe: The Anthropic Principle	254
9	Sum	mary and Conclusion: The Biological Universe	261
	9.1	The Triumph of Cosmic Evolution	261
	9.2	The Biological Universe as Cosmological Worldview	265
	9.3	The Problem of Evidence and the Limits of Science	266
	9.4	The Cultures of Science	269
	9.5	Exobiology as Protoscience	270
	9.6	Cultural Significance of the Debate	271
Select Bibliographical Essay			274
Ina	Index		

viii

ILLUSTRATIONS AND TABLES

Illustrations

1.1	Giordano Bruno	page 11
1.2	Frontispiece from Fontenelle	13
1.3	R. A. Proctor	19
1.4	C. Flammarion	20
1.5	Wallace's anthropocentric image of the universe, 1903	22
1.6	The Hubble Deep Field	23
2.1	Lowell at the 24-inch telescope	27
2.2	Research publications on Mars, 1900–1957	30
2.3	Most favorable and least favorable oppositions of Mars,	
	1877-1995	31
2.4	The Mars of Lowell (1895)	36
2.5	E. M. Antoniadi	38
2.6	Antoniadi's map of Mars (1930)	40
2.7	Antoniadi's comparison of his Mars observations with	
	Schiaparelli's	41
2.8	Lowellian canal network compared to Mariner cartography	42
2.9	Kuiper's observation of carbon dioxide bands on Mars	50
2.10	Sinton's observation of infrared bands, interpreted as	
	evidence of vegetation	52
2.11	Joshua Lederberg	55
2.12	Viking biology package	61
2.13	ALH 84001	66
2.14	Possible Martian microfossils in ALH 84001	67
2.15	Europa – enigmatic moon of Jupiter	69
3.I	Chamberlin-Moulton hypothesis	73
3.2	Jeans-Jeffreys hypothesis	75
3.3	James Jeans	77
3.4	Planet hunter Peter van de Kamp with telescope	81
3.5	Astrometric evidence of planetary systems	91
3.6	Material observed around the star Beta Pictoris	95
3.7	Hubble Space Telescope observations of protoplanetary	
	systems in Orion	98

ILLUSTRATIONS AND TABLES

3.8	Direct image of a brown dwarf	99
3.9	Evidence of a planet around 51 Pegasi	100
3.10	Classes of objects in the search for planetary systems	104
4.I	Kurd Lasswitz	110
4.2	H. G. Wells	113
4.3	1927 Amazing Stories depiction of War of the Worlds	117
4.4	Overlord from Arthur C. Clarke's Childhood's End	128
5.1	1929 Science Wonder Stories depiction of flying saucer	142
5.2	J. Allen Hynek	144
5.3	Donald Menzel	146
5.4	Edward U. Condon	153
6.1	Melvin Calvin	173
6.2	Evolution of chemical and biological complexity	178
6.3	Organized element in meteorites	182
6.4	Scheme for delivery of organics to Earth	185
7.1	U.S. Army listening for Martian signals (1924)	202
7.2	Philip Morrison	203
7.3	Frank Drake and NRAO 85-foot telescope	206
7.4	Microwave window	207
7.5	Carl Sagan	211
7.6	Project Cyclops	226
7.7	The Cosmic Haystack	229
7.8	Santa Cruz SETI Conference (1991)	234
8.1	Boston University symposium on life beyond Earth (1972)	239
9.1	NASA depiction of cosmic evolution	264
9.2	Alien teacher	272
	Tables	
2.1	Observational highlights of Martian canals, 1877–1924	28
2.2	Milestones in Martian observations related to life,	
	1924-1957	46
2.3	Space Age observations of Mars relevant to life	59
3.I	Estimates of frequency of planetary systems, 1920–1961	87
3.2	Observational milestones in the search for extrasolar	
	planets	93
3.3	Extrasolar planets in order of discovery	101
5.1	Number of UFO reports received each month by Project	
	Blue Book, 1950–1968	139
5.2	Spectrum of scientific cultures on the UFO question	164
7.1	Estimates of factors in the Drake Equation for	
	communicative civilizations	217

ILLUSTRATIONS AND TABLES

7.2	Explanations for the apparent absence of extraterrestrials	
	on Earth	221
7.3	Characteristics of selected SETI observing programs	225
7.4	Selected conferences on extraterrestrial life	232

ACKNOWLEDGMENTS

It is a pleasure to thank once again those who helped with *The Biological Universe*, of which this is an abridgment and update. They include Michael J. Crowe (University of Notre Dame), Ronald Doel, David DeVorkin (National Air and Space Museum), Joshua Lederberg (Rockefeller University), Ronald Schorn, Karl S. Guthke (Harvard University), H. P. Klein (Santa Clara University), Robert Shapiro (New York University), Betty Smocovitis (University of Florida), Philip Klass, David Jacobs (Temple University), Michael Swords (Western Michigan University), and Peter Sturrock (Stanford University).

Among libraries, the unparalleled astronomy collections of the U.S. Naval Observatory Library have been essential for the astronomical portions of this study, as has the assistance of its librarians, Brenda Corbin and Gregory Shelton. In addition, the Library of Congress and the library of The American University have helped fill gaps in nonastronomical literature. I am grateful for access to archives at the British Library, London (A. R. Wallace papers); the Royal Society, London (James Jeans papers); the American Philosophical Society Library, Philadelphia (E. U. Condon and D. H. Menzel papers); Lowell Observatory, Flagstaff, Arizona; University of Arizona, Tucson (A. E. Douglass and G. P. Kuiper papers); Mary Lea Shane archives of the Lick Observatory (Robert Trumpler papers); U.S. Naval Observatory, Washington, D.C. (Clemence papers); and NASA Ames and the SETI Institute in Mountain View, California, for access to SETI archives.

I also wish to thank the SETI Institute for support in undertaking oral history interviews and for the cooperation of all those interviewed. These include John Billingham (NASA Ames), Peter Backus (SETI Institute), David Brocker (NASA Ames), Melvin Calvin (University of California, Berkeley), Gary Coulter (NASA headquarters), Frank Drake (University of California, Santa Cruz), Sam Gulkis (JPL), Nikolai Kardashev, Philip J. Klass, H. P. Klein (Santa Clara University), Michael Klein (JPL), Joshua Lederberg (Rockefeller University), Edward Olsen (JPL), Bernard M. Oliver (NASA Ames), Michael Papagiannis (Boston University), Tom Pierson (SETI Institute), Carl Sagan (Cornell University), Charles Seeger (SETI Institute), Jill Tarter (SETI Institute), and Peter van de Kamp. Oral history interviews of related interest will be found at the Center for the History of Physics of the American Institute of Physics, located at the American Center for Physics in College Park,

xii

ACKNOWLEDGMENTS

Maryland. It is a pleasure to acknowledge the usefulness of David Swift's published interviews in *SETI Pioneers* (University of Arizona Press: Tucson, 1990).

I am grateful to Garland Publishing for permission to draw from my previous article "Plurality of Worlds," *Encyclopedia of Cosmology*, N. Hetherington, ed. (Garland, 1993), 502–512, for Chapter 1 and to Reidel Publishers for permission to use portions of my article "The Search for Extraterrestrial Intelligence and the NASA High Resolution Microwave Survey (HRMS): Historical Perspectives," *Space Science Reviews*, 64 (1993), 93–139, for Chapter 7. I wish to thank those publications allowing me to reproduce illustrations, as stated in the credits, and Suzanne Débarbat (Paris Observatory) and the Juvisy Observatory for help in obtaining the Flammarion photograph. My thanks to Alex Holzman, my editor at Cambridge University Press, and to Helen Wheeler and Helen Greenberg for their help in seeing the volume through the production process.

Finally, thanks once again to my wife, Terry, and my sons, Gregory and Anthony, who continue with me to explore new worlds.