Tides: A scientific history

Throughout history, the prediction of earth's tidal cycles has been extremely important. This book provides a history of the study of the tides over two millennia, from the primitive ideas of the Ancient Greeks to the present sophisticated geophysical techniques which require advanced computer and space technology.

Tidal physics has puzzled some of the world's greatest philosophers, scientists and mathematicians: amongst many others, Galileo, Descartes, Bacon, Kepler, Newton, Bernoulli, Euler, Laplace, Young, Whewell, Airy, Kelvin, G. Darwin, H. Lamb, have all contributed to our understanding of tides. The problem of predicting the astronomical tides of the oceans has now been, in essence, almost completely solved, and so it is a perfect time to reflect on how it was all done from the first vague ideas to the final results. The volume traces the development of the theory, observation and prediction of the tides, and is amply illustrated with diagrams from historical scientific papers, photographs of artefacts, and portraits of some of the subject's leading protagonists.

The history of the tides is in part the history of a broad area of science, and the subject provides insight into the progress of science as a whole: this book will therefore appeal to all those interested in how scientific ideas develop. It will particularly interest those specialists in oceanography, hydrography, geophysics, geodesy, astronomy and navigation whose subjects involve tides.

David Cartwright's long and distinguished research career has taken him from the UK National Institute of Oceanography and Scripps Institute of Oceanography, on to become Assistant Director of the UK Institute of Oceanographic Sciences. On retirement from IOS in 1987, he accepted a Senior Research Associateship at the NASA–Goddard Space Flight Center. He is currently Visiting Research Fellow at Southampton Oceanography Centre, and a consultant on tidal matters to the NASA–Goddard Space Flight Center.

The pathfinders: Sir Isaac Newton (1642–1727) and Marquis Pierre Simon de Laplace (1749–1827). (Both by permission of the President and Council of the Royal Society, London.)

A SCIENTIFIC HISTORY

David Edgar Cartwright FRS

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521797467

© Cambridge University Press 1999

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1999

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication Data Cartwright, David Edgar, 1926– Tides : a scientific history / David Edgar Cartwright. p. cm. Includes bibliographical references and index. ISBN 0 521 62145 3 (hb) I. Tides. 2. Tides – History. I. Title. GC301.2.C37 1998 551.47'08–dc21 98-4660 CIP

> ISBN 978-0-521-62145-8 Hardback ISBN 978-0-521-79746-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

	Preface	<i>page</i> ix
	Acknowledgements	xii
1	Introduction – the overall pattern of enquiry	1
2	Early ideas and observations	5
	The Megalithic Age	5
	Early Indian and Arabic civilisations	6
	The ancient Greek, Babylonian and Roman civilisations	7
	The 'Dark Ages'	10
	Understanding of tides in ancient China	10
3	What moon maketh a full sea?	13
	The Venerable Bede and Gerald of Wales	13
	Albumasar, Grosseteste, and Chaucer	15
	Early tide prediction – London Bridge and the Chinese bore	16
	Brouscon's Almanacs	18
	Tide clocks	20
	Medieval and 17th century predictions compared	22
4	Towards Newton	25
	The Copernican Revolution	25
	William Gilbert and Francis Bacon	26
	Galileo's theory of tides	28
	John Wallis	30
	Johannes Kepler	31
	René Descartes	31
5	Newton and the Prize Essayists – the Equilibrium Theory	35
	The <i>Principia</i> – Book I	35
	Principia – Book III	40

CONTENTS

	The System of the World	43
	Essays for the Académie Prize of 1740	44
	Colin Maclaurin and Leonhard Euler	45
	Daniel Bernoulli	46
6	Measurements and empirical studies, 1650–1825	51
	High Waters, Low Waters, times and heights	51
	Observations for the Royal Society of London	52
	Sir Robert Moray	53
	Henry Philips	54
	Joshua Childrey	55
	Flamsteed and Hallev	55
	Nevil Maskelvne	57
	Picard and La Hire at Brest	59
	Observations for the Académie Royale des Sciences	59
	Jacques Cassini	60
	I.I. de Lalande	64
	Observations at Brest for Marquis de Laplace	65
	Observations at Liverpool and London Docks	66
7	Laplace and 19th century hydrodynamics	68
	The Mécanique Céleste	69
	Laplace's Tidal Equations	73
	Tides without earth rotation	75
	Nonzero rotation, and the three principal species of tide	76
	First species	77
	Second species	77
	Third species	78
	Semi-empirical analysis	79
	G.B. Airy – tides in canals	82
	Kelvin waves and Poincaré waves	82
	Waves of first and second class – Lamb, Margules and Hough	84
8	Local analysis and prediction in the 19th century	88
	Renewed British interest	88
	Thomas Young	89
	Growth of organisation in the USA	90
	J.W. Lubbock's synthetic analytical method	91
	Analyses by Samuel Haughton	92
	The automatic tide recorder	93
	Advances in lunar theory	95
	The harmonic analysis of tides – William Thomson (Lord Kelvin)	97
	Harmonic analysis under G.H. Darwin	100
	Harmonic analysis under W.E. Ferrel	103
	The mechanical tide predictor	104
9	Towards a map of cotidal lines	110
	Interaction between Whewell and Lubbock	110

CAMBRIDGE

Cambridge University Press 978-0-521-79746-7 - Tides: A Scientific History David Edgar Cartwright Frontmatter More information

Contents

	Whewell's enterprise – the world oceans	111
	Tides of the German Ocean (North Sea)	113
	Points of no-tide, and Airy's objection	114
	Diurnal tides and mean tide level	116
	Captain Fitzroy on ocean tides	117
	Cotidal mapping by A.D. Bache	118
	The work of Rollin A. Harris	119
	Early mapping of the Arctic Ocean	124
10	Tides of the geosphere – the birth of geophysics	129
	Tides in the atmosphere	130
	Magnetic and electrical tidal variations	138
	Earth tides and rigidity	139
	Pendulum measurements of tidal attraction	141
	Polar motion and the pole tide	143
	Lunar acceleration, earth retardation and tidal friction	144
	Darwin's theory of evolution of the lunar orbit	147
11	Tidal researches between World Wars I and II	154
	The growth of research in natural sciences	154
	The emergence of physical oceanography	155
	IAPO Bibliography on Tides	155
	Oceanic tidal friction as earth brake	156
	Research on tidal currents – Sverdrup, Fjeldstad, van Veen	158
	Proudman, Doodson, and the Liverpool Tidal Institute	161
	Data analysis and prediction	163
	Fundamentals of Laplacian theory	165
	Tides in mathematical basins on a rotating sphere	166
	Tides in realistic oceans	168
	Empirical world cotidal maps by Gunther Dietrich	172
12	The impact of automatic computers, 1950–1980	178
	Introduction – Some benefits of wartime technology	178
	The computer revolution	179
	New solutions of tides in seas and oceans	180
	Analogue devices for shallow seas	183
	Tide models for the world ocean	185
	Ocean loading and self-attraction	188
	Normal modes of the ocean	192
	Spectral analysis of data – noise and coherence	195
	Data analysis and prediction by the Response Method	196
	More of the pole tide	198
	Quantifying global tidal dissipation	199
13	The impact of instrument technology, 1960–1990	204
	Early postwar advances in marine instrumentation	204
	Applications to tidal research	206
	Bottom pressure recorders	206

CAMBRIDGE

Cambridge University Press 978-0-521-79746-7 - Tides: A Scientific History David Edgar Cartwright Frontmatter More information

CONTENTS

	Early mechanical devices	207
	The modern era of pressure recording	208
	Pelagic tide recording in USA and Britain	210
	An international Working Group on ocean tides	212
	Tidal currents and internal tides	213
	Generating mechanisms	217
	Barotropic waves of second class – Rossby waves and Continental	
	Shelf waves	219
	Sir Robert Moray's 'extraordinary tydes'	220
	Advances in understanding earth tides	221
	Instruments and results	224
14	The impact of satellite technology, 1970–1995	229
	Prelude: 1957–1969	229
	Tidal variations in satellite orbits	232
	Laser ranging to the moon	236
	Radar altimetry of the sea surface – Skylab, GEOS-3, Seasat	238
	Geosat, ERS-1, and TOPEX/POSEIDON	241
	Tide models for TOPEX/POSEIDON	246
	Global parameters for earth–moon dynamics	249
15	Recent advances in miscellaneous topics, and final retrospect	252
	The long-period tides	252
	Observational evidence for normal modes and Q of the ocean	254
	Interactions between air tides and ocean tides	256
	Oceanic tidal dissipation in the geological past	261
	Variable earth rotation at tidal frequencies	264
	Final retrospect	267
	Appendices	272
	A Common astronomical terms	272
	B Terms commonly applied to tides	2/4
	C Development of the tide-generating potential	2/6
	D Internal tidal waves in a flat rotating sea of uniform depth	2/8
	Extension to air tides	280
	E Some simplified cases of barotropic waves of second class –	202
	Rossby waves and Continental Shelf waves	282
	F Spherical harmonic expansion of a globally defined tide constituent	284
	Author index	286
	Subject index	289

Preface

This book describes the growth of scientific understanding of a phenomenon which is superficially familiar but subtly complex, starting with primitive ideas in the remote past and leading up to sophisticated geophysical relationships which require modern computers and space technology for their evaluation. It is not an encyclopedic review of modern tidal knowledge, but it is the story of how such knowledge came about. It is not a catalogue of every book and paper that has been written about tides, but it includes at least a brief account of every major discovery and most branches of related research, whether they involve physical observations, theory, analysis of data or prediction technique.

Those readers who are themselves historians of science should realise that, unlike the history of physics or astronomy, the history of tidal research during the last two centuries has been very largely neglected. The present work not only summarises the early history which has been treated, at least piecemeal, by others, but it attempts to provide for the first time a basic framework and perspective for the vast area of all post-Newtonian tidal science, whose history is practically unwritten. This framework is mostly based on the published record of scientific papers and reviews, interpreted with specialist understanding of the subject from many years' personal experience of all aspects of tide research. I must, however, leave the *minutiae* of biographies, private correspondence and notebooks to the specialist historian who wishes to focus on a particular period, subject or personality.

Inevitably the subject requires the use of at least some of the terminology of elementary mathematical physics, but I have kept such terminology to the minimum necessary to make work in a wide range of disciplines intelligible to the general scientific reader who understands mathematical language, without trivialising the thought behind it. The essence of what I wish to convey is the historical growth of ideas over the centuries. In general, I have used equations only to express relationships between physical quantities which would be hard CAMBRIDGE

Cambridge University Press 978-0-521-79746-7 - Tides: A Scientific History David Edgar Cartwright Frontmatter More information

PREFACE

to express succinctly in words. I trust that readers who find a particular section 'difficult' will practise the art of skipping to a more accessible page or chapter in the interest of following the march of scientific history, perhaps to return later when the context has become clearer. I have added appendices and diagrams to some chapters in order to explain unavoidable jargon or to enlarge on some point of theory for those who would appreciate it, without interrupting the main text.

I feel that a few direct quotations and photographic excerpts from the original writings of classic sages convey valuable insight of the 'period flavour' of ideas and the way they were originally expressed. I have used standard English translations where the original writings were in Latin. The one exception is Figure 5.2, photographed directly from Newton's Principia, where the illustrated passages formed the first major turning point in our understanding of the tides. Sufficient explanation in English is given in the Figure caption and in the main text. The second major turning point was Laplace's enunciation of his equations of tidal dynamics, and I have displayed in Figure 7.1 an even longer excerpt from Laplace's seminal paper of 1776, in the hope that more readers are able to appreciate the classic French style than understand Latin. French scientists supplied important initiatives at several points in the history of tidal science, especially in the 18th and 19th centuries, and I have seen fit to include photographs of other classic pages of French (Figures 5.4, 6.1-6.3, 10.1, 13.1), which are rarely if ever referred to in modern scientific literature, English or French. At the suggestion of a referee, I have added my own English translation to all French quotations in the text. In return, I hope that English readers will accept the legitimate spelling 'tide-gage' to rhyme with 'greengage', instead of the more conventional spelling which suggests the sound of 'gauze' or 'gaunt'.

Chapters 1–5 follow progress more or less chronologically, but in Chapters 6–10 I have found it more appropriate to allocate a specific subject to each Chapter, with looser chronological sequence. Chapters 11–15 are firmly in the 20th century (with occasional retrospect) and the increasing pace of research forces narrower time limits with consideration of several subjects making contemporary progress. However, the time intervals stated in some Chapter headings are interpreted with a good deal of elasticity; they are intended merely as a rough guide to the central epoch of the Chapter. The subject matter reaches to about the end of 1995, but I have endeavored to avoid imitating the style of the modern scientific *Review*, with its comprehensive survey of every item of published literature.

Following the usual historical convention, dates of birth and death of scientists are quoted once, where known, at first or nearly their first mention. I am disinclined to quote the names of scientists still living and active at the time of writing (including of course my own name) in an essentially historical context. Chapters 12–15 therefore progressively ascribe the origins of research to institutions rather than to individuals, with a few practically unavoidable exceptions.

Preface

The names of the individual authors involved are retrievable from the numbered references.

I have for long felt the historical background to tidal studies to be unjustifiably neglected. I hope that the present work will fill a gap in the literature available to the modern science historian, and that it will also be interesting to those specialists in oceanography, hydrography, geophysics, geodesy, astronomy and navigation whose subjects involve tides, and of course to more general amateurs of earth science.

Acknowledgements

Research for this book has been aided by a one-year Research Grant from the Royal Society of London, with the Proudman Oceanographic Laboratory at Bidston Observatory, Birkenhead (a distant successor to the Liverpool Tidal Institute of 1919–1968) named as 'Host Institution'. The Library and Archives at POL provided valuable material for Chapters 11 and 12 in particular, and various staff members gave advice and technical assistance for line-drawings. I have also made extensive use of the National Oceanographic Library at Southampton and of its predecessor at Wormley, Surrey (originally part of the National Institute of Oceanography of 1949–1973 under Sir George Deacon).

Outside oceanography, I have found much useful material in the British Library, Bloomsbury, and in the libraries of the Royal Astronomical Society, London and of the National Maritime Museum, Greenwich. However, my most important source of historic scientific literature before about 1850 has been the Library and Archives of the Royal Society of London, whose staff have always been so helpful. More papers on tides have appeared in the *Philosophical Transactions* and the *Proceedings* of the Royal Society from Volume 1 (1665) onwards than in any other scientific journal in the world.

On the personal level, Dr. Philip Woodworth of POL gave helpful opinions on Chapters 7, 10 and 14; likewise, Professor George Platzman of Chicago on Chapter 15. Professor Willard J. Pierson jr. of CUNY made useful suggestions regarding the early days of satellite altimetry as an oceanographic tool, with which he was closely associated, and general encouragement for the book as a whole. But I am especially grateful to my ex-colleague Richard D. Ray at NASA/ Goddard Space Flight Center, who volunteered to read through and criticise the entire text from the point of view of science history. The comments from all these people and from Professor Carl Wunsch of MIT as referee resulted in improvements and additions to the text. Finally, I must thank my wife, Anne-Marie, for cheerfully supporting some 40 Moons of asocial behavior from her spouse.

> David E. Cartwright, Petersfield, Hampshire

xii