Index

adaptation: and evolution, 10–12; and ingestion of sodium, 14–15; and levels of calcium in diet, 116
adolescence, and dietary requirements for calcium, 111
adrenocorticotropin hormone (ACTH), 103, 105
age; and dietary calcium requirements, 110–12; and mineral ingestion, 136f; and serum levels of parathyroid hormone, 115
aldosterone, 105–6
Alheid, G. F., 53
allegories, 19
amenorrhea, 120
amphibians, and calcium storage mechanisms, 24
amygdala, 103, 108
amylophagia, 82
anemia, and pica, 54
angiotensin, 63, 96, 105
anorexia nervosa, 120
anticipation, and nutritional needs, 20–1
appetite, for calcium: and brain regions, 107–8; and calcium hormones, 91, 105–6; and calcium regulation, 4; calcium transport and calcium-binding proteins, 102; and consummatory behavior, 37, 39–40; growth and development, 61–2; and gustatory system, 56–7; and phosphorus ingestion, 54–6; studies of in chickens, 40–1; studies of in rats, 41–5, 105
avoidance, and ingestive behavior, 17, 19
beans, as sources of calcium, 140
behavior: and anticipation of nutritional needs, 20–1; calcium ingestion and physiology, 135; consummatory for calcium and appetitive, 37, 39–40; gustatory anatomy and ingestive, 27–30; innate and learned categories of, 18–19; and motivation for calcium ingestion, 35–6
Bernard, Claude, 10, 12, 143n1
Berridge, Kent, 19
bighorn sheep, 21
biological clocks, 20
biophosphonates, 129
birds, and calcium ingestion, 24. See also chickens
blood pressure, and calcium in diet, 130
bone fractures, 125, 127. See also osteoporosis
bones: calcium homeostasis and health of after pregnancy and lactation, 116–19; calcium in diet and mass of, 111; calcium ingestion and calcium hormones, 123–5; and calcium ingestion during and after menopause, 119–22; as dietary source of calcium, 6; and effects of high- and low-calcium diets on trabeculae in humeri, 13, 14f; and phosphorus appetite, 54; physical activity, calcium ingestion, and health of, 125–6. See also bone fractures; osteoporosis
brain: and calcitonin, 99–100, 100f; and calcium appetite, 102, 136; gonadal steroid hormones and development of, 58–9; and gustatory system, 29–30, 31f; and mineral appetite, 107–8; and parathyroid hormones, 96–7, 98f; and vitamin D, 91–6
bread, and nutrition, 23–4
Cabanac, Michel, 19
caffeine, 126
INDEX

calbindin, 102
calcitonin: and bone loss in
 postmenopausal women, 124; and
 brain regions, 99–100, 100f; and
 calcium homeostasis, 88–91; and
 calcium ingestion, 100; and lactation,
 75, 77f; and pregnancy, 72, 73, 74f
 calcium: appetitive and consummatory
 behaviors, 37, 39–40; basic
 considerations in regulation of, 2–6;
 and behavioral regulation, 13–16;
 brain regions and appetite for, 107–8,
 136; dietary requirements for, 83t,
 109–12; disorders of regulation of,
 127–33; end-organ systems and health,
 137; and evolution, 10–12, 24–6, 135;
 food sources of, 7f, 139–41; functions
 regulated by intracellular, 4t; growth
 and development and appetite for,
 61–2; hypertension and metabolism of
 during pregnancy, 130–2; influences
 on absorption of, 126–7; innate and
 learned behaviors and regulation of,
 18–19; and internal milieu, 12;
 literature on regulation of, 1; and
 menstrual cycle, 64; metabolism of
 and hormonal regulation during
 pregnancy and lactation, 72–6; and
 neural toxicity, 127; and nutritionists,
 22–4; and popular press, 1; pregnancy
 and distribution of, 72t; and sodium in
 plants, 143n4; taste of, 20, 30, 32–3;
 transport of and calcium-binding
 proteins, 102; and vitamin D, 85–6,
 112–15. See also appetite, for calcium;
 calcium deficiency; calcium
 homeostasis; calcium ingestion;
 transport, of calcium
 calcium-binding proteins, 102
 calcium deficiency: diet and calcium
 ingestion, 37; and gender, 60; and
 ingestion of sodium, 45–9, 50f, 57; and
 peripheral gustatory neurons, 32–3;
 and pica, 52–4; and reluctance to
 ingest unfamiliar foods, 49, 51;
 secretion of calcium hormones
 following, 91; stress hormones and
 sodium appetite, 105
 calcium homeostasis: and bone health
 following pregnancy and lactation,
 116–19; and calcitonin, 88–91; and
 calcium transport, 143n1; and internal
 milieu, 13; parathyroid hormone, 86,
 88; predictive versus reactive, 21; and
 pregnancy, 72; receptors and
 mechanisms of, 102–3, 104f; and
 vitamin D, 85–6
 calcium ingestion: biological basis of, 22;
 bone health, calcium hormones, and,
 123–5; and calcitonin, 100; and
 culture, 5, 82, 84, 136–7; and gonadal
 steroid hormones, 59–61, 84; and
 gustatory anatomy, 27–30, 56–7;
 hormones and appetite, 91, 105–6;
 influences on absorption and, 126–7;
 and lactation, 82–4; menopause, bone
 health, and, 119–22; motivation for,
 35–6; and parathyroid hormone, 97,
 99; physical activity, bone health, and,
 125–6; and physiology, 135; and
 pregnancy, 78, 84; and stress
 hormones, 103, 105
 calretinin, 102
 Cannon, Walter, 10, 13, 14, 135, 143n2
 carbohydrates: menstrual cycle and
 ingestive behavior, 64; specific hunger
 for, 17
 carnivores, and calcium ingestion, 25
 celiac disease, 53
 chickens, studies of calcium appetite in,
 40–1
 childhood pica, 53
 children. See infants
 chorda tympani nerve, 32–3, 34f
 cod liver oil, 112
 colorectal cancer, 132–3, 134f
 consummatory behavior, and calcium
 appetite, 37, 39–40
 coprophagy, 65
 corticotropin-releasing hormone (CRH),
 103
 corticosterone, 105
 cortisol, 103
 Craig, Wallace, 37
 cranial nerves, and gustatory information,
 29–30, 33
 culture: and calcium ingestion, 5, 82,
 84, 136–7; dietary patterns and
 mineral absorption, 22, 24, 26; food
 cravings and aversions during
 pregnancy, 79, 80; and phosphorus
 ingestion, 115

202
dairy products: and pregnancy-related hypertension, 132; as sources of calcium, 7f, 139, 141; and vitamin D supplementation, 112
Darwin, Charles, 10, 11, 20
Davis, Clara, 15
Denton, D. A., 22, 54
development: and appetite for calcium, 61–2; gonadal steroid hormones and brain, 68–9. See also infants
diet: bone density, calcium ingestion, and calcium hormones, 123–5; bone density, calcium ingestion, and menopause, 119–22; bone health, calcium ingestion, and physical activity, 123–6; calcium homeostasis and bone health after pregnancy and lactation, 116–19; and calcium requirements, 22–4, 83f, 109–12; calcium and vitamin D, 112–15; and influence on behavior, 14; and influences on calcium ingestion and absorption, 126–7; and phosphorus, 115–16. See also calcium deficiency; foods; nutrition
dirt, ingestion of minerals from, 22. See also pica
disorders, of calcium regulation, 127–33
Eckert, J. F., 35
ecology, and mineral ingestion, 21–2
elderly: and importance of calcium to health of, 138; and vitamin D deficiencies, 124
elk, 21
endocrine system. See hormones
estrogen: calcium ingestion and bone health after menopause, 119–22; and extracellular-fluid regulation of water and sodium, 62–3; and ingestive behavior, 64. See also hormone-replacement therapy
ethnicity, and food cravings during pregnancy, 79, 80. See also culture evolution: and adaptation, 10–12; and calcium ingestion, 24–6, 135, 136f, 137; and calcium regulation, 3
exercise, and bone mass, 126
extracellular-fluid regulation, of water and sodium, 62–3
facial expressions, and tastes, 19–20
“failure to thrive,” and hypercalcemia, 129
fetus, calcium transport and hypercalcemia, 72–3. See also infants; pregnancy
fish, and calcium regulation, 3
flour, and calcium salts, 24
Food and Drug Administration, 111
foods: alimentary reactions and palatability judgments, 20; calcium deficiency and reluctance to ingest unfamiliar, 49, 51; cravings and aversions during pregnancy, 79–80, 81t; estrogen levels and intake of, 63; ingestive behavior and selection of, 28; as sources of calcium, 5–6, 7f, 139–41. See also diet; nutrition
foraging behavior, and mineral ingestion, 21–2, 26
fruits, as sources of calcium, 7f, 140
Galef, B. G., Jr., 16
Cambia, and calcium ingestion during pregnancy and lactation, 82, 83t, 110, 116, 136–7
gender: and dietary calcium requirements, 110–12; and differences in ingestion of fluids and food sources, 59. See also women’s health
 genetics: and disorders of calcium regulation, 134; parathyroid hormones and gene expression, 98f; and potential bone health and density, 119; and vitamin D-mediated gene expression, 87f
geophagia, 53–4
glossopharyngeal cranial nerve, 33
glucocorticoids: and calcium ingestion, 105; and calretinin regulation in brain, 102; and neural toxicity of calcium, 127
glucose regulation, and internal milieu, 12
gonadal steroid hormones: and sexual dimorphism, 58–9; and sodium and calcium ingestion, 59–61, 84. See also hormones
grains, and dietary sources of calcium, 25, 140
Great Britain, and calcium intake during pregnancy and lactation, 82, 83t, 110, 116, 136–7

© in this web service Cambridge University Press www.cambridge.org
INDEX

Green, Henry, 54

growth, and appetite for calcium, 61–2. See also development; infants

gustatory system: and calcium appetite, 56–7, 136; calcium taste and

peripheral, 30, 32–3; ingestive

behavior and anatomy of, 27–30; schematic summary of in rat brain, 31f

Harris, L. J., 16

health, and importance of calcium, 134,

137, 138. See also disorders, of
calcium regulation; elderly; life

expectancy; women’s health

Heaney, Robert, 122, 135

herbivores: foraging behavior and mineral

ingestion, 21–2; and phosphorus

deficiency, 56

hip fractures, and calcium supplements,

127

homeostasis. See calcium homeostasis
hormone replacement therapy (HRT),

121–2, 123–4, 125

hormones: bone health and calcium

ingestion, 123–5; brain regions and

mineral appetite, 107–8; and calcium

metabolism in pregnancy and
lactation, 72–6; secretion of following
calcium deficiency, 91; and sodium

and calcium ingestion, 105–6; stress

and calcium ingestion, 103, 105. See also estrogen; gonadal steroid
hormones

hypercalcemia, 72–3, 89, 127–9

hyperparathyroidism, 128

hypertension, and calcium metabolism
during pregnancy, 130–2

hypocalcemia, 89, 129–32

iguanas, and role of vitamin D in calcium

regulation, 11, 12f

industrial revolution, calcium and

vitamin D deficiencies, 112

infants: facial expressions and tastes,

19–20; failure to thrive and

hypercalcemia in, 129; and

hypocalcemia, 129; and self-selection

studies, 15. See also lactation
native behavior, 18–19

insectivores, and calcium ingestion, 25

Institute of Medicine, 112, 115–16, 126

internal milieu, and calcium regulation, 12

iron deficiency, and pica, 54, 81

Irving, J. T., 1

Kanis, J. A., 135

kidneys: and evolution, 10; impairment of

and calcium ingestion, 136, 137f

koala, 17, 22

lactation: and animal studies of ingestive

behavior, 65–72; calcium homeostasis

and bone health following, 116–19;
calcium ingestion and metabolic needs
during, 5, 82–4; and hormonal

regulation of calcium metabolism,

72–6, 77f; and milk as primary source
of calcium for neonates, 24–5. See also
infects; pregnancy

lactose intolerance, 126

latent learning, 42

lead, calcium deficiency and ingestion of,

52–3

learning and learned behavior: and
calcium appetite in chickens, 40–1;

and innate behavior, 18–19; and
theories of ingestive behavior, 17

life expectancy, and calcium deficiency,

114–15

liking, and palatability judgments, 20

McCullom, E. V., 14

mammals, and milk as calcium source for

neonates, 24–5. See also herbivores

marmoset, common, 22

meats, as sources of calcium, 139–40

medical management, of hypercalcemia,

129

menarche, and calcium in diet, 111

menopause: and calcium in diet, 111;
estrogen levels, bone health, and
calcium ingestion, 119–22

menstrual cycle, and ingestive behavior,

64

mineralocorticoids, 108

minerals: brain regions and appetite for,

17–18; and ecological determinants of

ingestion, 21–2. See also calcium;
phosphorus; sodium; zinc

mineral waters, as sources of calcium, 7f,

141

moose, and mineral ingestion, 21

204
INDEX

National Health and Nutrition Examination (NHANES), 131f
natural selection, 10
neonates. See infants
neural toxicity, and calcium, 127
Newsweek, 1
New York Times, 1
nutrition: and behavioral anticipation of needs, 20–1; choice of foods and calcium regulation, 16–18; and dietary calcium requirements, 22–4, 109–10. See also diet; foods

ocean, and concentration of calcium, 2, 24
osteomalacia, 115
osteoporosis: and calcium in diet, 111; estrogen levels and menopause, 120; and lactation, 117. See also bone fractures
oxytocin, 66, 76

pagophagia, 54
palatability judgments, 19–20
parabrachial region: calcium deficiencies and ingestion of sodium, 48–9, 50f; and gustatory system, 30
parathyroid glands and parathyroidectomy, and behavioral changes in calcium ingestion, 15–16, 35–7, 38f, 39–40, 42, 48, 62, 100
parathyroid hormone (PTH): age and serum levels of, 115; and bone mass, 125; and calcium ingestion, 97, 99; and hyperparathyroidism, 128; and lactation, 75, 76, 77f; and pregnancy, 72, 73, 74f; and receptors in brain, 96–7, 98f
parathyroid tumors, 128
perimenopause, and changes in calcium homeostasis, 120, 121
phosphate, levels of during pregnancy and lactation, 74f, 77f
phosphorus: appetite and ingestion of, 54–6; grains as dietary source of, 25; and nutritional requirements, 115–16
physical activity, calcium ingestion and bone health, 125–6
physiology, and calcium ingestion, 135
pica, 52–4, 56, 80–2, 84
placenta, and transport of calcium, 73
plants, and calcium sensors, 143n4

Plouffe, L., 121
polyethylene glycol (PEG), 106
polyuria, 127
Power, Michael, 116
predictive homeostasis, 21
preeclampsia, 130
pregnancy: and animal studies of ingestive behavior, 65–72; calcium homeostasis and bone health after, 116–19; calcium ingestion and metabolic needs during, 5; and dietary calcium requirements, 110–12; food cravings and aversions during, 79–80, 81f; and hormonal regulation of calcium metabolism, 72–6; hypocalcaemia and hypertension during, 130–2; intake of calcium during, 78, 84; and pica, 80–2
premenstrual disorder, and calcium, 132
Prentice, Ann, 82, 110, 116
prolactin, 66, 76
proteins: and calcium-binding proteins, 102; specific hunger for, 17; and urinary calcium loss, 126, 127
PTH-related peptide (PTHrP), 74f, 75–6, 88, 96–7, 98f

rats, and studies of calcium ingestion, 41–5, 48–9, 50f, 105
reactive homeostasis, 21
reproductive status, and dietary calcium requirements, 110–12. See also lactation; menopause; pregnancy
reptiles, evolution of and calcium ingestion, 24
Richter, Curt, 10, 13–16, 35, 41, 91, 135
rickets, 112, 115
Rocky Mountain goats, 21
salt and mineral licks, 21, 45
Schulkin, J., 121
search, and mineral ingestion, 19
seawater, elements in, 2f
selenium deficiency, 54
self-selection theory, and calcium ingestion, 15, 16–18
sexual dimorphism: and calcium ingestion, 60; and evolution, 11; and gonadal steroid hormones, 58–9
smoking, and bone health, 126
INDEX

sodium: calcium deficiency and ingestion of, 45–9, 50f, 57, 105; and calcium retention, 126; estrogen levels and extracellular-fluid regulation of, 62–3; gonadal steroid hormones and ingestion of, 59–61; hormones and ingestion of calcium and, 105–6; and ingestive behavior as adaptive response, 14–15; ingestive behavior and gustatory system, 28; and innate specific appetite, 18; lactation and intake of, 66; plants and calcium sensors, 143n4; pregnancy and ingestion of, 65, 66
South Africa, study of ethnicity and food cravings during pregnancy, 79
speciation and variation, and evolution, 11
Sri Lanka, and food cravings during pregnancy, 79
stress hormones: calcium deficiency and salt appetite in rats, 105; and calcium ingestion, 103, 105
stria terminalis, bed nucleus of, 108
sunlight, vitamin D and exposure to, 112, 113–14
supplements, dietary: and calcium, 110, 118–19, 121, 127, 130, 141; and vitamin D, 113, 124
sweets: menstrual cycle and craving for, 64; as sources of calcium, 7f, 141
taste: and calcium, 20, 30, 32–3; and facial expressions of infants, 19–20; four groups of, 28–9; functions of, 27–8; gender and reactions to sodium, 60; and taste-aversion learning, 17
taste buds, 28
thalamic gustatory region, lesions of, 37, 38f
thiamine: deficiency of and learned appetite, 18; and ingestive behavior, 17
tissues, and distribution of calcium in human, 4f
tongue, and gustatory anatomy, 28, 29

Tordoff, M. G., 47, 91, 105
transport, of calcium: calcium-binding proteins and calcium appetite, 102; and calcium homeostasis, 143n1; and cellular mechanisms, 108; and evolution, 3; from mother to fetus during pregnancy, 72–3
ultraviolet B radiation, 114
urbanization, and calcium or vitamin D deficiencies in diet, 112
vegetables, as sources of calcium, 7f, 140
vegetarian diets, and calcium ingestion, 126
vertebrates: amount of calcium in body of, 2; and evolution of calcium regulation, 3
vitamin D: and bone health, 123–4; and brain, 91–2; and calcium in diet, 112–15; and calcium homeostasis, 85–6; and calcium ingestion, 67–70, 92–6, 123–4; and calcium regulation in iguanas, 11, 12f; and colorectal cancer, 132–3; deficiencies of, 67–70, 95–6; and gene expression, 87f; and hypocalcemia, 129; increased concentrations of during pregnancy, 73; and preeclampsia, 130
wanting, and palatability judgments, 20
water: and concentration of calcium in ocean, 2, 24; estrogen levels and extracellular-fluid regulation of sodium and, 62–3; pregnancy and ingestion of, 70
women's health, and importance of calcium, 5, 138. See also lactation; pregnancy
World War II, and healthy diets, 23
Zaire, and calcium intake during pregnancy and lactation, 82
zinc, and pica, 54