Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process
John Watkins

Excerpt

More information

Chapter

Hmm, The Wheel you say! Well, | don’t wish to belittle your achievement, but
I've traveled far and wide and I've seen a great many of these things invented by

a great many people in a great many different caves!
Big Ugg, Neander Valley, 35,000 B.cC.

1.1 Purpose of the Book

This book provides comprehensive and rigorous guidance to workers in the field of
software testing for researching or setting up a software testing process within
organizations.

The book provides advice and guidance on all aspects of the testing process, including:

The need to test software and the approach to testing

Specific details of testing techniques with worked examples

The planning and management of testing projects

Testing roles and responsibilities

Comprehensive details of the testing phases

Extensive testing document templates, proformas, and checklists
Recommendations for testing process improvement and the role and use of
metrics

The testing issues facing developers of Object-Oriented and Component-
Based systems.

> > )

The book covers the testing of software from a number of sources, including soft-
ware developed or modified in-house, software that represents the modification or
extension of exisiting legacy software systems, and software developed on behalf of
an organization by a third party.

The book also covers the acceptance testing of commercial off-the-shelf (COTS)
software procured by an organization, or COTS software that has undergone
development either internally or by a third party on behalf of an organization.

This book should be used in a pragmatic manner, in effect providing a testing
framework that can be used by all members of staff involved in software develop-
ment and testing within an organization to improve the quality of the software they
deliver and to reduce timescales, effort, and cost of testing.

Alternatively, the testing process described in this book can be customized to match
the specific testing requirements of any particular organization, and a series of real-
world case studies are provided to illustrate how this can be achieved.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process

John Watkins

Excerpt
More information

2 | Introduction

1.2 Readership

The target audience for this book includes the following people:

A

A

Technical Director/Managers who need to improve the software testing
process within their organization (in terms of quality, productivity, cost,
and/or repeatability of the process)

Quality Assurance (QA) professionals (such as company QA Directors or
Managers) who need to put in place a formal organization-wide approach
to software testing

Project Managers/Leaders who need to save time, effort, and money and
improve quality by adopting a complete, standard, off-the-shelf solution to
their testing requirements

Independent Information Technology (IT), QA, or Management Consul-
tants who provide advice and guidance to clients on their software testing
process, for whom the book will represent a key item in their “Consultants
Tool Kit”

Testing/QA Professionals (such as Test Analysts, Testers, or QA Represen-
tatives) who wish to save time and effort by adopting predefined testing
artifacts (such as standard templates for Test Script, Test Plan, and Test
Specification documents)

IT Professionals who need to understand the software testing process (such
as developers involved in Unit or Integration testing)

Any staff members who are keen to improve their career prospects by
advocating a complete testing solution to their organizations’ software test-
ing needs, particularly where there is a need to improve quality or save
time, effort, and cost

Training Managers/Trainers who are in the process of writing or amending
testing training materials and who need to obtain a pragmatic view of the
testing process and its application

Students who need to obtain a pragmatic/real-world view of the applica-
tion of testing theory and principles to organizational software testing
requirements, or who have an interest in testing-process improvement and
the role and use of metrics.

1.3 How to Read This Book

This book is divided into three parts, all closely linked, but each of which can be
read and applied separately.

Part 1 (Chapters 2-13) documents the “traditional view” of the components com-
prising a software testing process. Part 1 provides detailed information that can be
used as the basis for setting up a testing-process framework tailored to the individ-
ual requirements of any organization involved in software testing.

Part 2 (Chapters 14-18) provides a series of case studies that show how a number
of organizations have implemented their own testing process based on the “classic
view” described in Part 1. These case studies can be read to provide real world

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process

John Watkins
Excerpt
More information

Introduction 3

guidance on how an individual organization can implement a testing-process
framework to meet its own testing requirements.

Part 3 (the appendices) contains a set of standard testing document templates, pro-
formas, and checklists plus a number of appendices that expand on topics described
in passing in the main body of the book. The standard testing document templates,
proformas, and checklists are also available from the following URL: <us.cam-
bridge.org/titles/052179546X> so that they can be used immediately without modi-
fication or customized to reflect the particular requirements of any organization
(such as a corporate style, branding, or documentation standard).

Terms in italics are fully defined in the glossary.

1.4 Structure and Content of This Book

Specifically, the chapters and appendices comprising this book are:

A Chapter 2, which discusses just how challenging it is to thoroughly test
even the most simple software system, reviews a number of definitions of
testing, provides a brief overview of the approach to software testing, and
lists definitive testing references for further reading.

A Chapter 3, which describes the principal techniques used in designing effec-
tive and efficient tests for testing software systems and provides, where
appropriate, references to illustrative worked examples in the appendices.

A Chapter 4, which deals with the issues associated with the management
and planning of the testing process, provides guidance on the organization
of testing and testing projects and on the need for thorough planning,
describing a number of techniques for supporting the planning process.

A Chapters 5-11, which provide details on each of the testing phases (from
Unit Testing to Acceptance Testing and on to Regression Testing') and
their interrelationships. Each chapter is presented in a standard format
and covers:

— the overall testing approach for that phase

— test data requirements for that phase

— the roles and responsibilities associated with that phase

— any particular planning and resourcing issues for that phase

— the inputs to and the outputs from that phase

— a review of the specific testing techniques that are appropriate to that
phase.

A Chapter 12 considers the need for process improvement within the testing
process and reviews the role of metrics (proposing a pragmatic metrics set that
can be used effectively within and across testing projects). It also provides ref-
erences to further sources of information on test process improvement.

'While not strictly speaking a separate testing phase, Regression Testing is included in this list for
the sake of completeness.

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press
052179546X - Testing IT: An Off-the-Shelf Software Testing Process
John Watkins

Excerpt
More information
4 Introduction

A Chapter 13, which for organizations adopting the testing process described
in this book or using it as the basis for setting up their own testing-process
framework, discusses the approach to introducing testing into an organi-
zation and managing its successful adoption, reviews the need to maintain
that testing process, and proposes an approach to satisfy this requirement.

A Chapters 14-18 provide a series of real-world case studies describing how
a number of commercial organizations have implemented their own cus-
tomized view of the testing process described in Chapters 2—13. Specifical-
ly, the organizations covered in the case studies are:

The British Library
Reuters Product Acceptance Group

Crown GQuality Assurance Group
The Wine Society
Automatic Data Processing [(ADP) Limited.

A Appendices A-] provide a set of testing document templates, proformas,
and checklists:

terms of reference for testing staff

summary testing guides for each testing phase

a Test Plan document template

a Test Specification document template

a Test Script template

a Test Result Record Form template

a Test Log template

a Test Certificate template
a Re-use Pack checklist

a Test Summary Report template.

Appendices K-M present a series of worked examples of testing techniques
described in Chapter 3.

Appendices N-Q expand on topics described in passing in the main body
of the book and include:

— a scheme and set of criteria for evaluating the relative merits of com-
mercially available autorated software testing tools

— an overview of the process of Usability Testing and its application

— a scheme and set of criteria for performing an audit of a testing
process

— a discussion of the issues involved in the testing of object-oriented
and component-based applications.

A A list of the references cited in the book.
A A glossary of terms used in this book.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process
John Watkins

Excerpt

More information

Part

The

Traditional
Testing
Process

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process
John Watkins

Excerpt

More information

Chapter

An Overview
of Testing

As we strive to implement the new features of our applications,
there is one thing we can say with absolute certainty —

that at the same time, we also introduce new defects.

2.1 Introduction

This chapter gives an overview of testing in order to provide an understanding of
what testing is and why it is such a challenge, and to emphasize that whenever we
test software, the process must be made to be as efficient and effective as possible.

Readers familiar with the need for efficient and effective testing may not find it
necessary to read this chapter.

2.2 The Challenge of Testing

So, just how difficult is testing? To help answer this question, consider the follow-
ing example:

Imagine we have a requirement to test a simple function, which adds two thirty-
two-bit numbers and returns the result. If we assume we can execute 1000 test
cases per second, just how long will it take to thoroughly test this function?

If you guessed seconds, you are way out. If you guessed minutes, you are still cold.
If you guessed hours or days or even weeks, you are not even slightly warm. The
actual figure is 585 million years.'

But surely, this is a daft example? Nobody in his or her right mind would test such
a function by trying out every single possible value! In practice, we would use some
formal test design techniques such as boundary analysis and equivalence partition-
ing to help us select specimen data to use in our test cases (see Chapter 3 for details

The calculation is quite straightforward (with a calculator): 2032*32)/1000/60/60/24/365.25 =
584542046 years.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process
John Watkins

Excerpt

More information

8 The Traditional Testing Process

of test design techniques). Using this test data, we would make the assumption
that if the function performed satisfactorily for these specimen values, it will per-
form satisfactorily for all similar values, reducing the time needed to test the func-
tion to an acceptable timescale.

However, as testers, we should not start feeling too confident too soon — there are
many other issues that can complicate the testing of our “simple” function. For
example:

A What if the function needs to interoperate with other functions within the
same application?

A What if the data for the calculation are obtained across a complex
Client/Server system and/or the result is returned across the Client/Server
system?

A What if the calculation is driven via a complex Graphical User Interface
with the user being able to type the addition values into fields and push the
buttons to perform the calculation in any arbitrary order?

A What if this function has to be delivered on a number of different operat-
ing systems, each with slightly different features, and what if individual
users are able to customize important operating system features?

What if this function has to be delivered on a number of different hard-
ware platforms, each of which could have different configurations?
What if the application this function belongs in has to interoperate with
other applications, and what if the user could be running an arbitrary
number of other applications simultaneously (such as e-mail or diary
software)?

These are all typical requirements for software systems that a great many testers

face every day during their testing careers, and which act to make software sys-
tems highly complex and make testing an immense challenge!

2.3 What Is Testing?

The process of testing is by no means new. The Oxford English Dictionary tells us
that the term “test” is derived from the Latin expression testum, an earthenware
pot used by the Romans and their contemporaries in the process of evaluating the
quality of materials such as precious metal ores.

Computer programs have undergone testing for almost as long as software has
been developed. In the early days of software development there was little formal
testing, and debugging was seen as an essential step in the process of developing
software.

As the software development process has matured, with the inception and use of
formal methods (such as Reference 6), the approach to testing has also matured,
with formal testing methods and techniques (such as Reference 8) being adopted
by testing professionals.

Most workers in the field of modern software development have an intuitive view
of testing and its purpose. The most common suggestions include:

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process
John Watkins

Excerpt

More information

An Overview of Testing 9

To ensure a program corresponds to its specification

To uncover defects in the software

To make sure the software doesn’t do what it is not supposed to do
To have confidence that the system performs adequately

To understand just how far we can push the system before it fails
To understand the risk involved in releasing a system to its users.

>> > h

Here are some more formal definitions of testing:

Testing is any activity aimed at evaluating an attribute or capability of
a program or system and determining that it meets its required
results. (Reference 1)

This definition addresses the traditional testing approach — that is, does the system
conform to its stated requirements? This appears to be an intuitive view of testing:
we have some statements about how the system should behave, and we confirm
that these requirements are met. This approach is also known as Positive Testing.

Here is another view of testing;:

Testing is the process of executing a program or system with the
intent of finding defects. (Reference 2)

This definition is less intuitive and does not, strictly speaking, consider the require-
ments of the system.? Instead, it introduces the notion of actively looking for defects
outside the scope of the software requirements, which in practice could be any
problem or defect in the system. This approach is also known as Negative Testing.

In practice, testing will combine elements of both Positive and Negative testing —
checking that a system meets its requirements, but also trying to find errors that
may compromise the successful operation or usefulness of the system.?

Most recently, the notion of defining testing in terms of risk has become increasing-
ly popular. In this use, the term “risk” relates to the possibility that the Application
Under Test (AUT) will fail to be reliable or robust and may cause commercially
damaging problems for the users. Here is a definition of testing in terms of risk:

Testing is the process by which we explore and understand the status
of the benefits and the risk associated with release of a software
system. (Reference 28)

Within this definition of testing, the role of the tester is to manage or mitigate the
risk of failure of the system and the undesirable effects this may have on the user.

Defining testing in terms of risk provides the tester with an additional strategy
for approaching the testing of the system. Using a risk-based approach, the tester
is involved in the analysis of the software to identify areas of high risk that need
to be tested thoroughly to ensure the threat is not realized during operation

‘Although, a “defect” could be considered to be a failure of the system to support a particular
requirement.

’It is possible to argue that in a perfect world of complete requirements and accurate specifica-
tions, there would be no need for negative testing, since every aspect of the Application Under Test
(AUT) would be specified. Unfortunately, the reality is somewhat short of perfection, and so testing
is always likely to include a degree of Negative Testing.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process
John Watkins

Excerpt

More information

10 The Traditional Testing Process

of the system by the user. Furthermore, the notion of risk in a project manage-
ment context is well known and understood, and a great many tools and tech-
niques exist that can be applied to the testing process (such as References 28, 29,
and 30).

It may be difficult for the staff involved in the planning and design of tests to iden-
tify specific risks for a particular AUT (especially when they may not be familiar
with the domain of operation of the software). In assessing risk, it is essential that
the following issues be considered:

The business, safety, or security criticality of the AUT

The commercial/public visibility of the AUT

Experience of testing similar or related systems

Experience of testing earlier versions of the same AUT

The views of the users of the AUT

The views of the analysts, designers, and implementers of the AUT.

> >

The need to analyze risk in the testing process is addressed in Chapter 4 — The
Management and Planning of Testing.

2.4 \Verification and Validation

Another two testing terms, which are frequently used but often confused, are
verification and validation. Reference 40 provides a formal definition of these
terms:

Verification is the process by which it is confirmed by means of exami-
nation and provision of objective evidence that specific requirements
have been fulfilled (during the development of the AUT).

Validation is the process by which it is confirmed that the particular
requirements for a specific intended use (of the AUT) are fulfilled.

Reference 26 provides a succinct and more easily remembered definition of these
terms:

Verification: Are we building the product right?
Validation: Are we building the right product?

In essence, verification deals with demonstrating that good practice has been
employed in the development of the AUT by, for example, following a formal
development process (such as Reference 8).

Validation deals with demonstrating that the AUT meets its formal requirements,
and in that respect conforms closely to the Hetzel definition of testing discussed
earlier in this chapter (Reference 1).

Both verification and validation (also termed V&'V) are key to ensuring the quality
of the AUT and must be practiced in conjunction with a rigorous approach to
requirements management. Chapter 4 provides guidance on the role of require-
ments management and its role within V&V.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

Cambridge University Press

052179546X - Testing IT: An Off-the-Shelf Software Testing Process
John Watkins

Excerpt

More information

An Overview of Testing "

2.5 What Is the Cost of Not Testing?

Many examples exist, particularly where systems have had safety critical, business
critical, or security critical applications, where the failure of the system has, either
through litigation or loss of public confidence, resulted in the provider of the soft-
ware going out of business.

Even where a system does not deal with a critical application, failure of high-pro-
file systems, such as an organization’s Web Site, free shareware, or demonstration
software, can still have serious commercial implications for the organization in
terms of loss of public confidence and prestige.

Some defects are very subtle and can be difficult to detect, but they may still have
a significant effect on an organization’s business. For example, if a system fails
and is unavailable for a day before it can be recovered, then the organization may
lose a day’s effort per person affected. If an undetected defect simply causes the
performance of a system to degrade, then users may not even notice that a prob-
lem exists. If, however, the defect causes a loss of productivity of just 30 minutes
per day, then the organization could lose in the order of 20 days effort per person
per year!

2.6 Testing - The Bottom Line

Phrases like “Zero Defect Software” or “Defect Free Systems” are hyperbole, and
at best can be viewed only as desirable but unattainable goals.*

In practice, it is impossible to ensure that even relatively simple programs are free
of defects because of the complexity of computer systems and the fallibility of the
development process and of the humans involved in this process.

In simple terms, it is impossible to perform sufficient testing to be completely cer-
tain a given system is defect free. When this problem is combined with the fact
that testing resources are finite and (more typically) in short supply, then adequate
testing becomes problematical. Testers must focus on making the testing process as
efficient and as effective as possible in order to find and correct as many defects as
possible.

Ultimately, testing can only give a measure of confidence that a given software sys-
tem is acceptable for its intended purpose. This level of confidence must be bal-
anced against the role the system is intended for (such as safety critical, business
critical, secure, confidential, or high-profile applications) and against the risk of
the system failing in operation, before the decision to release or to accept software
can be made.

‘Even with mathematically rigorous methods (such as Z and VDM), it is still impossible to say that
any but the simplest pieces of software will be defect free.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052179546X

