
The aim of this short preliminary chapter is to introduce a few of the most com-

mon geometric concepts and constructions in algebraic topology. The exposition is

somewhat informal, with no theorems or proofs until the last couple pages, and it

should be read in this informal spirit, skipping bits here and there. In fact, this whole

chapter could be skipped now, to be referred back to later for basic definitions.

To avoid overusing the word ‘continuous’ we adopt the convention that maps be-

tween spaces are always assumed to be continuous unless otherwise stated.

Homotopy and Homotopy Type

One of the main ideas of algebraic topology is to consider two spaces to be equiv-

alent if they have ‘the same shape’ in a sense that is much broader than homeo-

morphism. To take an everyday example, the letters of the alphabet can be writ-

ten either as unions of finitely many

straight and curved line segments, or

in thickened forms that are compact

regions in the plane bounded by one

or more simple closed curves. In each

case the thin letter is a subspace of

the thick letter, and we can continuously shrink the thick letter to the thin one. A nice

way to do this is to decompose a thick letter, call it X , into line segments connecting

each point on the outer boundary of X to a unique point of the thin subletter X , as

indicated in the figure. Then we can shrink X to X by sliding each point of X−X into

X along the line segment that contains it. Points that are already in X do not move.

We can think of this shrinking process as taking place during a time interval

0 ≤ t ≤ 1, and then it defines a family of functions ft : X→X parametrized by t ∈ I =

[0,1] , where ft(x) is the point to which a given point x ∈ X has moved at time t .

Naturally we would like ft(x) to depend continuously on both t and x , and this will

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-79540-1 - Algebraic Topology
Allen Hatcher
Excerpt
More information

http://www.cambridge.org/9780521795401
http://www.cambridge.org
http://www.cambridge.org


2 Chapter 0 Some Underlying Geometric Notions

be true if we have each x ∈ X − X move along its line segment at constant speed so

as to reach its image point in X at time t = 1, while points x ∈ X are stationary, as

remarked earlier.

Examples of this sort lead to the following general definition. A deformation

retraction of a space X onto a subspace A is a family of maps ft :X→X , t ∈ I , such

that f0 = 11 (the identity map), f1(X) = A , and ft ||A = 11 for all t . The family ft
should be continuous in the sense that the associated map X×I→X , (x, t)�ft(x) ,

is continuous.

It is easy to produce many more examples similar to the letter examples, with the

deformation retraction ft obtained by sliding along line segments. The figure on the

left below shows such a deformation retraction of a Möbius band onto its core circle.

The three figures on the right show deformation retractions in which a disk with two

smaller open subdisks removed shrinks to three different subspaces.

In all these examples the structure that gives rise to the deformation retraction can

be described by means of the following definition. For a map f :X→Y , the mapping

cylinder Mf is the quotient space of the disjoint union (X×I)	Y obtained by iden-

tifying each (x,1) ∈ X×I

with f(x) ∈ Y . In the let-

ter examples, the space X

is the outer boundary of the

thick letter, Y is the thin

letter, and f :X→Y sends

the outer endpoint of each line segment to its inner endpoint. A similar description

applies to the other examples. Then it is a general fact that a mapping cylinder Mf
deformation retracts to the subspace Y by sliding each point (x, t) along the segment

{x}×I ⊂ Mf to the endpoint f(x) ∈ Y . Continuity of this deformation retraction is

evident in the specific examples above, and for a general f :X→Y it can be verified

using Proposition A.17 in the Appendix concerning the interplay between quotient

spaces and product spaces.

Not all deformation retractions arise in this simple way from mapping cylinders.

For example, the thick X deformation retracts to the thin X , which in turn deformation

retracts to the point of intersection of its two crossbars. The net result is a deforma-

tion retraction of X onto a point, during which certain pairs of points follow paths that

merge before reaching their final destination. Later in this section we will describe a

considerably more complicated example, the so-called ‘house with two rooms.’
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Homotopy and Homotopy Type Chapter 0 3

A deformation retraction ft :X→X is a special case of the general notion of a

homotopy, which is simply any family of maps ft :X→Y , t ∈ I , such that the asso-

ciated map F :X×I→Y given by F(x, t) = ft(x) is continuous. One says that two

maps f0, f1 :X→Y are homotopic if there exists a homotopy ft connecting them,

and one writes f0 
 f1 .

In these terms, a deformation retraction of X onto a subspace A is a homotopy

from the identity map of X to a retraction of X onto A , a map r :X→X such that

r(X) = A and r ||A = 11. One could equally well regard a retraction as a map X→A

restricting to the identity on the subspace A ⊂ X . From a more formal viewpoint a

retraction is a map r :X→X with r 2 = r , since this equation says exactly that r is the

identity on its image. Retractions are the topological analogs of projection operators

in other parts of mathematics.

Not all retractions come from deformation retractions. For example, a space X

always retracts onto any point x0 ∈ X via the constant map sending all of X to x0 ,

but a space that deformation retracts onto a point must be path-connected since a

deformation retraction of X to x0 gives a path joining each x ∈ X to x0 . It is less

trivial to show that there are path-connected spaces that do not deformation retract

onto a point. One would expect this to be the case for the letters ‘with holes,’ A , B ,

D , O , P , Q , R . In Chapter 1 we will develop techniques to prove this.

A homotopy ft :X→X that gives a deformation retraction of X onto a subspace

A has the property that ft ||A = 11 for all t . In general, a homotopy ft :X→Y whose

restriction to a subspace A ⊂ X is independent of t is called a homotopy relative

to A , or more concisely, a homotopy rel A . Thus, a deformation retraction of X onto

A is a homotopy rel A from the identity map of X to a retraction of X onto A .

If a space X deformation retracts onto a subspace A via ft :X→X , then if

r :X→A denotes the resulting retraction and i :A→X the inclusion, we have ri = 11

and ir 
 11, the latter homotopy being given by ft . Generalizing this situation, a

map f :X→Y is called a homotopy equivalence if there is a map g :Y→X such that

fg 
 11 and gf 
 11. The spaces X and Y are said to be homotopy equivalent or to

have the same homotopy type. The notation is X 
 Y . It is an easy exercise to check

that this is an equivalence relation, in contrast with the nonsymmetric notion of de-

formation retraction. For example, the three graphs are all homotopy

equivalent since they are deformation retracts of the same space, as we saw earlier,

but none of the three is a deformation retract of any other.

It is true in general that two spaces X and Y are homotopy equivalent if and only

if there exists a third space Z containing both X and Y as deformation retracts. For

the less trivial implication one can in fact take Z to be the mapping cylinder Mf of

any homotopy equivalence f :X→Y . We observed previously that Mf deformation

retracts to Y , so what needs to be proved is that Mf also deformation retracts to its

other end X if f is a homotopy equivalence. This is shown in Corollary 0.21.
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4 Chapter 0 Some Underlying Geometric Notions

A space having the homotopy type of a point is called contractible. This amounts

to requiring that the identity map of the space be nullhomotopic, that is, homotopic

to a constant map. In general, this is slightly weaker than saying the space deforma-

tion retracts to a point; see the exercises at the end of the chapter for an example

distinguishing these two notions.

Let us describe now an example of a 2 dimensional subspace of R3 , known as the

house with two rooms, which is contractible but not in any obvious way. To build this

∪ ∪

space, start with a box divided into two chambers by a horizontal rectangle, where by a

‘rectangle’ we mean not just the four edges of a rectangle but also its interior. Access to

the two chambers from outside the box is provided by two vertical tunnels. The upper

tunnel is made by punching out a square from the top of the box and another square

directly below it from the middle horizontal rectangle, then inserting four vertical

rectangles, the walls of the tunnel. This tunnel allows entry to the lower chamber

from outside the box. The lower tunnel is formed in similar fashion, providing entry

to the upper chamber. Finally, two vertical rectangles are inserted to form ‘support

walls’ for the two tunnels. The resulting space X thus consists of three horizontal

pieces homeomorphic to annuli plus all the vertical rectangles that form the walls of

the two chambers.

To see that X is contractible, consider a closed ε neighborhood N(X) of X .

This clearly deformation retracts onto X if ε is sufficiently small. In fact, N(X)

is the mapping cylinder of a map from the boundary surface of N(X) to X . Less

obvious is the fact that N(X) is homeomorphic to D3 , the unit ball in R
3 . To see

this, imagine forming N(X) from a ball of clay by pushing a finger into the ball to

create the upper tunnel, then gradually hollowing out the lower chamber, and similarly

pushing a finger in to create the lower tunnel and hollowing out the upper chamber.

Mathematically, this process gives a family of embeddings ht :D3→R
3 starting with

the usual inclusion D3↩R
3 and ending with a homeomorphism onto N(X) .

Thus we have X 
 N(X) = D3 
 point , so X is contractible since homotopy

equivalence is an equivalence relation. In fact, X deformation retracts to a point. For

if ft is a deformation retraction of the ball N(X) to a point x0 ∈ X and if r :N(X)→X

is a retraction, for example the end result of a deformation retraction of N(X) to X ,

then the restriction of the composition rft to X is a deformation retraction of X to

x0 . However, it is quite a challenging exercise to see exactly what this deformation

retraction looks like.
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Cell Complexes Chapter 0 5

Cell Complexes

A familiar way of constructing the torus S1×S1 is by identifying opposite sides

of a square. More generally, an orientable surface Mg of genus g can be constructed

from a polygon with 4g sides

by identifying pairs of edges,

as shown in the figure in the

first three cases g = 1,2,3.

The 4g edges of the polygon

become a union of 2g circles

in the surface, all intersect-

ing in a single point. The in-

terior of the polygon can be

thought of as an open disk,

or a 2 cell, attached to the

union of the 2g circles. One

can also regard the union of

the circles as being obtained

from their common point of

intersection, by attaching 2g

open arcs, or 1 cells. Thus

the surface can be built up in stages: Start with a point, attach 1 cells to this point,

then attach a 2 cell.

A natural generalization of this is to construct a space by the following procedure:

(1) Start with a discrete set X0 , whose points are regarded as 0 cells.

(2) Inductively, form the n skeleton Xn from Xn−1 by attaching n cells enα via maps

ϕα :Sn−1→Xn−1 . This means that Xn is the quotient space of the disjoint union

Xn−1
∐
αD

n
α of Xn−1 with a collection of n disks Dnα under the identifications

x ∼ ϕα(x) for x ∈ ∂Dnα . Thus as a set, Xn = Xn−1
∐
αe

n
α where each enα is an

open n disk.

(3) One can either stop this inductive process at a finite stage, setting X = Xn for

some n < ∞ , or one can continue indefinitely, setting X =
⋃
n X

n . In the latter

case X is given the weak topology: A set A ⊂ X is open (or closed) iff A∩ Xn is

open (or closed) in Xn for each n .

A space X constructed in this way is called a cell complex or CW complex. The

explanation of the letters ‘CW’ is given in the Appendix, where a number of basic

topological properties of cell complexes are proved. The reader who wonders about

various point-set topological questions lurking in the background of the following

discussion should consult the Appendix for details.
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6 Chapter 0 Some Underlying Geometric Notions

If X = Xn for some n , then X is said to be finite-dimensional, and the smallest

such n is the dimension of X , the maximum dimension of cells of X .

Example 0.1. A 1 dimensional cell complex X = X1 is what is called a graph in

algebraic topology. It consists of vertices (the 0 cells) to which edges (the 1 cells) are

attached. The two ends of an edge can be attached to the same vertex.

Example 0.2. The house with two rooms, pictured earlier, has a visually obvious

2 dimensional cell complex structure. The 0 cells are the vertices where three or more

of the depicted edges meet, and the 1 cells are the interiors of the edges connecting

these vertices. This gives the 1 skeleton X1 , and the 2 cells are the components of

the remainder of the space, X − X1 . If one counts up, one finds there are 29 0 cells,

51 1 cells, and 23 2 cells, with the alternating sum 29− 51+ 23 equal to 1. This is

the Euler characteristic, which for a cell complex with finitely many cells is defined

to be the number of even-dimensional cells minus the number of odd-dimensional

cells. As we shall show in Theorem 2.44, the Euler characteristic of a cell complex

depends only on its homotopy type, so the fact that the house with two rooms has the

homotopy type of a point implies that its Euler characteristic must be 1, no matter

how it is represented as a cell complex.

Example 0.3. The sphere Sn has the structure of a cell complex with just two cells, e0

and en , the n cell being attached by the constant map Sn−1→e0 . This is equivalent

to regarding Sn as the quotient space Dn/∂Dn .

Example 0.4. Real projective n space RPn is defined to be the space of all lines

through the origin in Rn+1 . Each such line is determined by a nonzero vector in Rn+1 ,

unique up to scalar multiplication, and RPn is topologized as the quotient space of

R
n+1 − {0} under the equivalence relation v ∼ λv for scalars λ ≠ 0. We can restrict

to vectors of length 1, so RPn is also the quotient space Sn/(v ∼ −v) , the sphere

with antipodal points identified. This is equivalent to saying that RPn is the quotient

space of a hemisphere Dn with antipodal points of ∂Dn identified. Since ∂Dn with

antipodal points identified is just RPn−1 , we see that RPn is obtained from RPn−1 by

attaching an n cell, with the quotient projection Sn−1→RPn−1 as the attaching map.

It follows by induction on n that RPn has a cell complex structure e0 ∪ e1 ∪ ··· ∪ en

with one cell ei in each dimension i ≤ n .

Example 0.5. Since RPn is obtained from RPn−1 by attaching an n cell, the infinite

union RP∞ =
⋃
nRPn becomes a cell complex with one cell in each dimension. We

can view RP∞ as the space of lines through the origin in R∞ =
⋃
nR

n .

Example 0.6. Complex projective n space CPn is the space of complex lines through

the origin in C
n+1 , that is, 1 dimensional vector subspaces of Cn+1 . As in the case

of RPn , each line is determined by a nonzero vector in C
n+1 , unique up to scalar

multiplication, and CPn is topologized as the quotient space of Cn+1−{0} under the
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Cell Complexes Chapter 0 7

equivalence relation v ∼ λv for λ ≠ 0. Equivalently, this is the quotient of the unit

sphere S2n+1 ⊂ Cn+1 with v ∼ λv for |λ| = 1. It is also possible to obtain CPn as a

quotient space of the disk D2n under the identifications v ∼ λv for v ∈ ∂D2n , in the

following way. The vectors in S2n+1 ⊂ Cn+1 with last coordinate real and nonnegative

are precisely the vectors of the form (w,
√

1− |w|2 ) ∈ C
n×C with |w| ≤ 1. Such

vectors form the graph of the function w�
√

1− |w|2 . This is a disk D2n
+ bounded

by the sphere S2n−1 ⊂ S2n+1 consisting of vectors (w,0) ∈ Cn×C with |w| = 1. Each

vector in S2n+1 is equivalent under the identifications v ∼ λv to a vector in D2n
+ , and

the latter vector is unique if its last coordinate is nonzero. If the last coordinate is

zero, we have just the identifications v ∼ λv for v ∈ S2n−1 .

From this description of CPn as the quotient of D2n
+ under the identifications

v ∼ λv for v ∈ S2n−1 it follows that CPn is obtained from CPn−1 by attaching a

cell e2n via the quotient map S2n−1→CPn−1 . So by induction on n we obtain a cell

structure CPn = e0∪e2∪···∪e2n with cells only in even dimensions. Similarly, CP∞

has a cell structure with one cell in each even dimension.

After these examples we return now to general theory. Each cell enα in a cell

complex X has a characteristic map Φα :Dnα→X which extends the attaching map

ϕα and is a homeomorphism from the interior of Dnα onto enα . Namely, we can takeΦα to be the composition Dnα↩ Xn−1
∐
αD

n
α→Xn↩ X where the middle map is

the quotient map defining Xn . For example, in the canonical cell structure on Sn

described in Example 0.3, a characteristic map for the n cell is the quotient map

Dn→Sn collapsing ∂Dn to a point. For RPn a characteristic map for the cell ei is

the quotient map Di→RPi ⊂ RPn identifying antipodal points of ∂Di , and similarly

for CPn .

A subcomplex of a cell complex X is a closed subspace A ⊂ X that is a union

of cells of X . Since A is closed, the characteristic map of each cell in A has image

contained in A , and in particular the image of the attaching map of each cell in A is

contained in A , so A is a cell complex in its own right. A pair (X,A) consisting of a

cell complex X and a subcomplex A will be called a CW pair.

For example, each skeleton Xn of a cell complex X is a subcomplex. Particular

cases of this are the subcomplexes RPk ⊂ RPn and CPk ⊂ CPn for k ≤ n . These are

in fact the only subcomplexes of RPn and CPn .

There are natural inclusions S0 ⊂ S1 ⊂ ··· ⊂ Sn , but these subspheres are not

subcomplexes of Sn in its usual cell structure with just two cells. However, we can give

Sn a different cell structure in which each of the subspheres Sk is a subcomplex, by

regarding each Sk as being obtained inductively from the equatorial Sk−1 by attaching

two k cells, the components of Sk−Sk−1 . The infinite-dimensional sphere S∞ =
⋃
n S

n

then becomes a cell complex as well. Note that the two-to-one quotient map S∞→RP∞

that identifies antipodal points of S∞ identifies the two n cells of S∞ to the single

n cell of RP∞ .
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8 Chapter 0 Some Underlying Geometric Notions

In the examples of cell complexes given so far, the closure of each cell is a sub-

complex, and more generally the closure of any collection of cells is a subcomplex.

Most naturally arising cell structures have this property, but it need not hold in gen-

eral. For example, if we start with S1 with its minimal cell structure and attach to this

a 2 cell by a map S1→S1 whose image is a nontrivial subarc of S1 , then the closure

of the 2 cell is not a subcomplex since it contains only a part of the 1 cell.

Operations on Spaces

Cell complexes have a very nice mixture of rigidity and flexibility, with enough

rigidity to allow many arguments to proceed in a combinatorial cell-by-cell fashion

and enough flexibility to allow many natural constructions to be performed on them.

Here are some of those constructions.

Products. If X and Y are cell complexes, then X×Y has the structure of a cell

complex with cells the products emα ×e
n
β where emα ranges over the cells of X and

enβ ranges over the cells of Y . For example, the cell structure on the torus S1×S1

described at the beginning of this section is obtained in this way from the standard

cell structure on S1 . For completely general CW complexes X and Y there is one

small complication: The topology on X×Y as a cell complex is sometimes finer than

the product topology, with more open sets than the product topology has, though the

two topologies coincide if either X or Y has only finitely many cells, or if both X

and Y have countably many cells. This is explained in the Appendix. In practice this

subtle issue of point-set topology rarely causes problems, however.

Quotients. If (X,A) is a CW pair consisting of a cell complex X and a subcomplex A ,

then the quotient space X/A inherits a natural cell complex structure from X . The

cells of X/A are the cells of X−A plus one new 0 cell, the image of A in X/A . For a

cell enα of X−A attached by ϕα :Sn−1→Xn−1 , the attaching map for the correspond-

ing cell in X/A is the composition Sn−1→Xn−1→Xn−1/An−1 .

For example, if we give Sn−1 any cell structure and build Dn from Sn−1 by attach-

ing an n cell, then the quotient Dn/Sn−1 is Sn with its usual cell structure. As another

example, take X to be a closed orientable surface with the cell structure described at

the beginning of this section, with a single 2 cell, and let A be the complement of this

2 cell, the 1 skeleton of X . Then X/A has a cell structure consisting of a 0 cell with

a 2 cell attached, and there is only one way to attach a cell to a 0 cell, by the constant

map, so X/A is S2 .

Suspension. For a space X , the suspension SX is the quotient of

X×I obtained by collapsing X×{0} to one point and X×{1} to an-

other point. The motivating example is X = Sn , when SX = Sn+1

with the two ‘suspension points’ at the north and south poles of

Sn+1 , the points (0, ··· ,0,±1) . One can regard SX as a double cone
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Operations on Spaces Chapter 0 9

on X , the union of two copies of the cone CX = (X×I)/(X×{0}) . If X is a CW com-

plex, so are SX and CX as quotients of X×I with its product cell structure, I being

given the standard cell structure of two 0 cells joined by a 1 cell.

Suspension becomes increasingly important the farther one goes into algebraic

topology, though why this should be so is certainly not evident in advance. One

especially useful property of suspension is that not only spaces but also maps can be

suspended. Namely, a map f :X→Y suspends to Sf :SX→SY , the quotient map of

f×11 :X×I→Y×I .

Join. The cone CX is the union of all line segments joining points of X to an external

vertex, and similarly the suspension SX is the union of all line segments joining

points of X to two external vertices. More generally, given X and a second space Y ,

one can define the space of all line segments joining points in X to points in Y . This

is the join X∗Y , the quotient space of X×Y×I under the identifications (x,y1,0) ∼

(x,y2,0) and (x1, y,1) ∼ (x2, y,1) . Thus we are collapsing the subspace X×Y×{0}

to X and X×Y×{1} to Y . For example, if

X and Y are both closed intervals, then we

are collapsing two opposite faces of a cube

onto line segments so that the cube becomes

a tetrahedron. In the general case, X ∗ Y

contains copies of X and Y at its two ends,

and every other point (x,y, t) in X ∗Y is on a unique line segment joining the point

x ∈ X ⊂ X ∗ Y to the point y ∈ Y ⊂ X ∗ Y , the segment obtained by fixing x and y

and letting the coordinate t in (x,y, t) vary.

A nice way to write points of X ∗ Y is as formal linear combinations t1x + t2y

with 0 ≤ ti ≤ 1 and t1 + t2 = 1, subject to the rules 0x + 1y = y and 1x + 0y = x

that correspond exactly to the identifications defining X ∗ Y . In much the same

way, an iterated join X1 ∗ ··· ∗ Xn can be constructed as the space of formal linear

combinations t1x1 + ··· + tnxn with 0 ≤ ti ≤ 1 and t1 + ··· + tn = 1, with the

convention that terms 0xi can be omitted. A very special case that plays a central

role in algebraic topology is when each Xi is just a point. For example, the join of

two points is a line segment, the join of three points is a triangle, and the join of four

points is a tetrahedron. In general, the join of n points is a convex polyhedron of

dimension n − 1 called a simplex. Concretely, if the n points are the n standard

basis vectors for Rn , then their join is the (n− 1) dimensional simplex

Δn−1 = { (t1, ··· , tn) ∈ R
n || t1 + ··· + tn = 1 and ti ≥ 0 }

Another interesting example is when each Xi is S0 , two points. If we take the two

points of Xi to be the two unit vectors along the ith coordinate axis in Rn , then the

join X1∗···∗Xn is the union of 2n copies of the simplex Δn−1 , and radial projection

from the origin gives a homeomorphism between X1 ∗ ··· ∗Xn and Sn−1 .
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10 Chapter 0 Some Underlying Geometric Notions

If X and Y are CW complexes, then there is a natural CW structure on X ∗ Y

having the subspaces X and Y as subcomplexes, with the remaining cells being the

product cells of X×Y×(0,1) . As usual with products, the CW topology on X∗Y may

be finer than the quotient of the product topology on X×Y×I .

Wedge Sum. This is a rather trivial but still quite useful operation. Given spaces X and

Y with chosen points x0 ∈ X and y0 ∈ Y , then the wedge sum X∨Y is the quotient

of the disjoint union X 	 Y obtained by identifying x0 and y0 to a single point. For

example, S1 ∨ S1 is homeomorphic to the figure ‘8,’ two circles touching at a point.

More generally one could form the wedge sum
∨
αXα of an arbitrary collection of

spaces Xα by starting with the disjoint union
∐
αXα and identifying points xα ∈ Xα

to a single point. In case the spaces Xα are cell complexes and the points xα are

0 cells, then
∨
αXα is a cell complex since it is obtained from the cell complex

∐
αXα

by collapsing a subcomplex to a point.

For any cell complex X , the quotient Xn/Xn−1 is a wedge sum of n spheres
∨
αS

n
α ,

with one sphere for each n cell of X .

Smash Product. Like suspension, this is another construction whose importance be-

comes evident only later. Inside a product space X×Y there are copies of X and Y ,

namely X×{y0} and {x0}×Y for points x0 ∈ X and y0 ∈ Y . These two copies of X

and Y in X×Y intersect only at the point (x0, y0) , so their union can be identified

with the wedge sum X ∨ Y . The smash product X ∧ Y is then defined to be the quo-

tient X×Y/X ∨ Y . One can think of X ∧ Y as a reduced version of X×Y obtained

by collapsing away the parts that are not genuinely a product, the separate factors X

and Y .

The smash product X∧Y is a cell complex if X and Y are cell complexes with x0

and y0 0 cells, assuming that we give X×Y the cell-complex topology rather than the

product topology in cases when these two topologies differ. For example, Sm∧Sn has

a cell structure with just two cells, of dimensions 0 and m+n , hence Sm∧Sn = Sm+n .

In particular, when m = n = 1 we see that collapsing longitude and meridian circles

of a torus to a point produces a 2 sphere.

Two Criteria for Homotopy Equivalence

Earlier in this chapter the main tool we used for constructing homotopy equiva-

lences was the fact that a mapping cylinder deformation retracts onto its ‘target’ end.

By repeated application of this fact one can often produce homotopy equivalences be-

tween rather different-looking spaces. However, this process can be a bit cumbersome

in practice, so it is useful to have other techniques available as well. We will describe

two commonly used methods here. The first involves collapsing certain subspaces to

points, and the second involves varying the way in which the parts of a space are put

together.
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