Surveying Instruments of Greece and Rome

The Greeks and, especially, the Romans are famous for the heroic engineering of their aqueducts, tunnels and roads. They also measured the circumference of the earth and the heights of mountains with fair precision. This book presents new translations (from Greek, Latin, Arabic, Hebrew and Syriac) of all the ancient texts concerning surveying instruments, including major sources hitherto untapped. It explores the history of surveying instruments, notably the Greek dioptra and the Roman libra, and with the help of tests with reconstructions explains how they were used in practice. This is a subject which has never been tackled before in anything like this depth. The Greeks emerge as the pioneers of instrumental surveying and, though their equipment and methods were simple by modern standards, they and the Romans can be credited with a level of technical sophistication which must count as one of the greatest achievements of the ancient world.

M. J. T. Lewis is Senior Lecturer in Industrial Archaeology at the University of Hull. His publications include Temples in Roman Britain (1966), Early Wooden Railways (1970) and Millstone and Hammer: the Origins of Water Power (1997), and many articles in such journals as History of Technology, Technology and Culture and Papers of the British School at Rome.
This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeface Monotype Bembo 10/13 System QuarkXPress™ [sE]

A catalogue record for this book is available from the British Library

ISBN 0 521 79297 5 hardback
To Hywel
CONTENTS

List of figures x
List of tables xiii
Preface xv
Explanatory notes xvii

Introduction 1

PART I: INSTRUMENTS AND METHODS

1 The basic elements 13
A. Precursors of the Greeks 13
B. Measuring distances 19
C. Orientation and right angles 22
D. Measuring heights 23
E. Levelling 27

2 Background to the dioptra 36
A. The sighting tube
B. Astronomical instruments 38
C. The Hipparchan dioptra 41
D. The measuring rod 42
E. Gamaliel’s tube 46
F. Philo’s level and staff 48

3 The dioptra 51
A. The treatises 53
B. The sources of the treatises 62
C. The minor sources 66
D. The plane astrolabe 67
E. The standard dioptra 71
F. Hero’s dioptra 82
G. Levelling 89
H. Other surveys 97

vii
CONTENTS

1. Chronological conclusions 101
2. Testing a reconstructed dioptra 105

3. The libra
 A. The evidence 109
 B. Testing a reconstructed libra 116

4. The groma
 A. Grids 120
 B. The groma and its use 124

5. The hodometer 134

6. Measurement of the earth 143
7. Mountain heights 157
8. Canals and aqueducts
 A. Early canal schemes 167
 B. Aqueduct surveying 170
 C. The Nîmes aqueduct and others 181
 D. The challenges of surveying 191

9. Tunnels
 A. Categories 197
 B. Alignment 200
 C. Level 204
 D. Meeting 206
 E. Instruments 213

10. Roman roads
 A. Basic principles 217
 B. Interpolation and extrapolation 218
 C. Successive approximation 220
 D. Dead reckoning 224
 E. Geometrical construction 232
 F. Examples 233

11. Epilogue 246
CONTENTS

PART III: THE SOURCES

The treatises
Hero of Alexandria: Dioptra 259
Julius Africanus: Cesti i 15 286
Anonymous Byzantinus: Geodesy 289
Al-Karaji: The Search for Hidden Waters xxiii 298

Other sources
The basic elements (Chapter 1) 303
Background to the dioptra (Chapter 2) 305
The dioptra (Chapter 3) 308
The libra (Chapter 4) 318
The groma (Chapter 5) 323
The hodometer (Chapter 6) 329
Measurement of the earth (Chapter 7) 332
Mountain heights (Chapter 8) 335
Canals and aqueducts (Chapter 9) 340
Tunnels (Chapter 10) 345
Roman roads (Chapter 11) 347

Appendix: Uncertain devices
A. The U-tube level 349
B. The dioptra on a coin 350
C. Dodecahedrons 350
D. The ‘cross-staff’ 351
E. Sagui’s instruments 352

Bibliography 355
Index 369
Index of ancient authors cited 378
FIGURES

1.1 The *merkhet* in use
1.2 Similar triangles
1.3 Thales’ demonstration of the distance of a ship
1.4 Height triangles of Vitruvius Rufus and the *Mappae Clavicula*
1.5 Egyptian A-frame level for horizontals and plumb-line for verticals
1.6 The chorobates
2.1 Hipparchan dioptra
3.1 Dioptra reconstruction in vertical mode
3.2 Dioptra reconstruction in horizontal mode
3.3 Types of sight
3.4 Foresight and object seen through out-of-focus slit backsight
3.5 The *karkhesion* for catapult and for assault bridge
3.6 Hero’s dioptra: Schöne’s reconstruction
3.7 Hero’s dioptra: Drachmann’s reconstruction
3.8 Hero’s water level: Mynas Codex drawing and Drachmann’s reconstruction
3.9 Hero’s water level: Schöne’s reconstruction
3.10 Sketches of Hero’s dioptra, after Mynas Codex
3.11 Diagram apparently explaining how water finds its own level in a U-tube, after Mynas Codex
3.12 Methods of levelling
3.13 Hero’s staff: Schöne’s reconstruction
3.14 Back and fore sights with dioptra inaccurately set
3.15 Measuring the height of a wall
4.1 Egyptian balance, c.1400 BC
4.2 Libra reconstruction with shield
4.3 Libra reconstruction without shield
4.4 Detail of suspension
4.5 Detail of sight

© Cambridge University Press
www.cambridge.org
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Schulten’s reconstruction of the groma</td>
<td>127</td>
</tr>
<tr>
<td>5.2</td>
<td>The Pompeii groma as reconstructed by Della Corte</td>
<td>128</td>
</tr>
<tr>
<td>5.3</td>
<td>Gromas on tombstones from Ivrea and Pompeii</td>
<td>129</td>
</tr>
<tr>
<td>5.4</td>
<td>Reconstruction of supposed groma from Pflünz</td>
<td>130</td>
</tr>
<tr>
<td>5.5</td>
<td>Supposed groma from the Fayum</td>
<td>131</td>
</tr>
<tr>
<td>5.6</td>
<td>Supposed groma and stand as control marks on denarius</td>
<td>132</td>
</tr>
<tr>
<td>6.1</td>
<td>Reconstruction of Vitruvius' hodometer</td>
<td>135</td>
</tr>
<tr>
<td>8.1</td>
<td>Transects of Olympus</td>
<td>164</td>
</tr>
<tr>
<td>9.1</td>
<td>Nile–Red Sea canal</td>
<td>168</td>
</tr>
<tr>
<td>9.2</td>
<td>Map of Nîmes aqueduct</td>
<td>182</td>
</tr>
<tr>
<td>9.3</td>
<td>Nîmes aqueduct, simplified gradient profile</td>
<td>184</td>
</tr>
<tr>
<td>9.4</td>
<td>Nîmes aqueduct, map of valleys section</td>
<td>186</td>
</tr>
<tr>
<td>9.5</td>
<td>Map of Poitiers aqueduct</td>
<td>190</td>
</tr>
<tr>
<td>9.6</td>
<td>Poitiers, Fleury aqueduct gradient profile</td>
<td>192</td>
</tr>
<tr>
<td>10.1</td>
<td>Samos tunnels, plan</td>
<td>201</td>
</tr>
<tr>
<td>10.2</td>
<td>Sections of Samos tunnel, Lake Albano and Nemi emissaries</td>
<td>203</td>
</tr>
<tr>
<td>10.3</td>
<td>Samos tunnel, strategies for meeting</td>
<td>208</td>
</tr>
<tr>
<td>10.4</td>
<td>Briord tunnel, plan</td>
<td>209</td>
</tr>
<tr>
<td>10.5</td>
<td>Bologna tunnel, lateral mismatch of headings</td>
<td>210</td>
</tr>
<tr>
<td>10.6</td>
<td>La Perrotte tunnel, Sernhac, plan and section of south end</td>
<td>211</td>
</tr>
<tr>
<td>10.7</td>
<td>Al-Karaji’s procedure for recording deviations</td>
<td>212</td>
</tr>
<tr>
<td>10.8</td>
<td>Chagnon tunnel, Gier aqueduct, geometry of setting out</td>
<td>213</td>
</tr>
<tr>
<td>10.9</td>
<td>Al-Karaji’s sighting tube for qanats</td>
<td>214</td>
</tr>
<tr>
<td>11.1</td>
<td>Simple alignment by interpolation and extrapolation</td>
<td>219</td>
</tr>
<tr>
<td>11.2</td>
<td>Successive approximation</td>
<td>223</td>
</tr>
<tr>
<td>11.3</td>
<td>Surveying alignments by traverse and offset</td>
<td>225</td>
</tr>
<tr>
<td>11.4</td>
<td>Surveying alignments by angle</td>
<td>230</td>
</tr>
<tr>
<td>11.5</td>
<td>Surveying alignment by offset</td>
<td>231</td>
</tr>
<tr>
<td>11.6</td>
<td>Surveying alignment by geometrical construction</td>
<td>233</td>
</tr>
<tr>
<td>11.7</td>
<td>The Portway</td>
<td>235</td>
</tr>
<tr>
<td>11.8</td>
<td>Ermine Street</td>
<td>235</td>
</tr>
<tr>
<td>11.9</td>
<td>Waling Street</td>
<td>235</td>
</tr>
<tr>
<td>11.10</td>
<td>Stane Street</td>
<td>239</td>
</tr>
<tr>
<td>11.11</td>
<td>Stane Street aligned by geometrical construction</td>
<td>239</td>
</tr>
<tr>
<td>11.12</td>
<td>The outermost German limes</td>
<td>244</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Surveyor’s staff and water level with floating sights</td>
<td>247</td>
</tr>
<tr>
<td>12.2</td>
<td>Finding the height and distance of an island</td>
<td>248</td>
</tr>
<tr>
<td>12.3</td>
<td>The plumb-line mizan and variant</td>
<td>252</td>
</tr>
<tr>
<td>App.1</td>
<td>Control marks on denarius</td>
<td>350</td>
</tr>
<tr>
<td>App.2</td>
<td>Roman cross-staff (?) from Koblenz and a nineteenth-century example</td>
<td>352</td>
</tr>
<tr>
<td>App.3</td>
<td>Carving at Little Metropolis, Athens, and Sgau’s surveying table</td>
<td>353</td>
</tr>
<tr>
<td>App.4</td>
<td>Sgau’s mine inclinometer</td>
<td>354</td>
</tr>
</tbody>
</table>
TABLES

3.1 Terminology of the dioptra pages 80–1
7.1 Circumference of the earth 156
8.1 Measurements of mountain heights 160–1
9.1 Gradients of Greek aqueducts 173
9.2 Roman aqueducts with the shallowest gradients 175
First, a few definitions. Surveying is the science based on mathematics which involves measuring any part of the earth's surface and any artificial features on it, and plotting the result on a map or plan drawn to a suitable scale. Often, though by no means always, it also involves levelling or some similar process to record relative heights. Setting out is effectively the converse process, namely locating intended boundaries, structures or engineering works on the ground, in the correct position in all three dimensions. The surveyor will often have to carry out both procedures, especially when linear features such as aqueducts or railways are to be built: first to record the existing shape of the terrain and then, in the light of this information, to decide the best route and to mark it on the ground.

Almost without exception, surveying with instruments that rose above the level of low technology began with the Greeks and Romans, and a proper understanding of their achievements entails straddling two very different disciplines. The present-day surveyor who is curious about the origins of his profession may not be deeply informed on ancient history or engineering, while the classical historian may not have a detailed command of the principles of surveying. The resulting challenge, constantly encountered by historians of technology, is to try to put across the background, the material and the arguments at such a level that no reader feels neglected or patronised. I have done my best to strike a happy mean. My credentials, such as they are, for accepting this challenge are an upbringing as a classicist and classical archaeologist and a lifetime spent on the history of technology. I am not a trained surveyor, but through fieldwork I have acquired a working knowledge of surveying techniques. Since the techniques and instruments of ancient surveying were essentially similar to, if simpler than, those that I have experienced, I hope that this is qualification enough.

I am indebted to Denis Hopkin for constructing a dioptra for me, to David Palmer for making a libra, to Dr Guy Stiebel of the Hebrew University, Jerusalem, for help over Talmudic references, and particu-
PREFACE

I am particularly grateful to Dr Youcef Bouandel for translating al-Karaji’s Arabic. I am grateful too to Pauline Hire of Cambridge University Press for suggesting improvements to the layout of this book and for seeing it through the press with such care. But I owe most to my family. The staffman’s job is, at the best of times, tedious. To act as staffman for a surveyor who is struggling with the idiosyncrasies of totally strange instruments is more tedious still. This is what my son Hywel did for me, with exemplary patience, over the many days when I was testing the reconstructed dioptra and libra. His understanding of the principles and his sound common sense, moreover, helped me through many a difficulty. My debt to him is very great. So it is too to my wife, who has also held the staff on occasion and who has commented on my drafts with her usual perception.
EXPLANATORY NOTES

CROSS-REFERENCES

Part III contains translations both of the four major treatises and of extracts from other sources arranged in the same order and under the same headings as the chapters and sections of Parts I and II. References to these translations are in bold type: in the form *Dioptra* 22, *Africanus* 4, *Anonymus* 10, *Al-Karaji* 2 to the treatises, in the form *Source* 33 to the other sources. Thus the cross-reference *Source* 33 in Chapter 3.0 on the astrolabe should guide the reader to the extract in Part III from Severus Sebokht. Occasionally a source deals with more than one instrument, in which case a note at the end of one section in Part III draws attention to relevant material in another section.

TRANSLATION

Few of the sources have hitherto been translated into English. Where they have been, the results vary from the excellent to the downright misleading. All the translations from Greek and Latin used here are therefore my own, done for the purpose of this book. The major treatises are written in a bewildering jumble of tenses and persons, sometimes in the same sentence: *I turn the alidade*, for example, *one will turn the alidade, the alidade was turned*, and *let the alidade be turned*. All these, and comparable phrases, have generally (but not always) been standardised into the imperative, *turn the alidade*. Greek reference letters are retained. Otherwise all Greek, Latin, Hebrew, Syriac and Arabic is translated, except for occasional words which, because of their untranslatable connotations, are simply transliterated. Semitic words are transliterated without diacritical signs (may purists forgive me), except that Arabic H· and T· are differentiated from H and T when used as reference letters.

TERMINOLOGY

To avoid potential confusion, although the context normally makes the distinction clear, two sets of terms need explaining. In levelling, *back*
EXPLANATORY NOTES

sight and fore sight, each in two words, denote the sightings taken through the instrument looking backwards and forwards at the staff. Backsight and foresight, each in one word, are terms borrowed from the rifle to denote the actual parts of the instrument (holes or slits) through which sightings are taken.

GRADIENTS

Gradients can be given in different ways:

- The vertical reduced to unity relative to the horizontal, e.g. 1 in 200 or 1:200
- The vertical as a percentage of the horizontal, 0.5%
- The vertical as so much per thousand horizontal 5‰
- Metres per kilometre 5m per km
- Vertical divided by horizontal 0.005

All of the above figures mean exactly the same thing. The form most widely used in engineering circles is 0.5%. But (at least in Britain) the most common form found in histories of engineering is 1 in 200; and I feel that by this system the non-engineer can most easily visualise a given gradient: in this case a rise or fall of one unit of length for every 200 units of distance. I have therefore adopted this form throughout, and engineers will have no difficulty in converting it to their own preferred version.

MEASURES

Ancient measures are a minefield for the unwary. For our purposes the precise value of a particular unit is normally of no great importance; as a rule of thumb it is often sufficient to take the cubit as rather under half a metre and the stade as rather under 200 metres. Exactitude is desirable only when comparing ancient estimates of length and height with known modern equivalents; the problem is that it is often impossible to tell which of several different values was in fact being used. The units encountered in this book are listed below.

Greek

The relationships are constant, regardless of the actual length of each unit:

xviii
The value of Greek measures, however, varied from place to place and from time to time. Four values of feet and stades which were widely used in Hellenistic and Roman times deserve mention here.2

| | Attic–Roman | ‘standard’ | Olympic | Philetan
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 foot</td>
<td>29.6 cm</td>
<td>30.8 cm</td>
<td>32.0 cm</td>
<td>32.9 cm</td>
</tr>
<tr>
<td>1 stade</td>
<td>177.6 m</td>
<td>185 m</td>
<td>192 m</td>
<td>197.3 m</td>
</tr>
<tr>
<td>stades to Roman mile</td>
<td>8.33</td>
<td>8.00</td>
<td>7.71</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Roman

<table>
<thead>
<tr>
<th></th>
<th>16 digits</th>
<th>24 digits</th>
<th>12 inches</th>
<th>1 foot = 12 inches</th>
<th>1 foot = 12 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 foot</td>
<td>16 digits</td>
<td>1 foot</td>
<td>12 inches</td>
<td>1 foot = 12 inches</td>
<td>1 foot = 12 inches</td>
</tr>
<tr>
<td>1 stade</td>
<td>177.6 m</td>
<td>185 m</td>
<td>12 inches</td>
<td>1 foot = 12 inches</td>
<td>1 foot = 12 inches</td>
</tr>
<tr>
<td>stades to Roman mile</td>
<td>8.33</td>
<td>8.00</td>
<td>7.71</td>
<td>7.50</td>
<td></td>
</tr>
</tbody>
</table>

The values are well established: 1 foot = 29.6 cm, 1 mile = 1480 m.

Islamic

<table>
<thead>
<tr>
<th></th>
<th>4 fingers = 1 palm</th>
<th>12 fingers = 1 span</th>
<th>24 fingers = 1 legal cubit</th>
<th>32 fingers = 1 Hasimi cubit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 fingers</td>
<td>= 1 palm</td>
<td>= 1 span</td>
<td>= 1 legal cubit</td>
<td>= 1 Hasimi cubit</td>
</tr>
<tr>
<td>12 fingers</td>
<td>= 1 span</td>
<td></td>
<td>= 1 legal cubit</td>
<td></td>
</tr>
<tr>
<td>24 fingers</td>
<td>= 1 legal cubit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 fingers</td>
<td>= 1 Hasimi cubit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 Hasimi cubits = 1 cord (asf)</td>
<td>= 80 legal cubits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000 legal cubits = 1 mil</td>
<td>= 50 cords</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 mil</td>
<td>= 1 farshal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 But 9/4 span = 1 fathom for measuring cultivated land.

2 Based on Hultsch 1882. There are useful summaries in *KP* v 336–7 and *OCD* 942–3.

The calculations of Lehmann-Haupt 1929, though seemingly authoritative, need to be treated with caution. See also Dicks 1960, 42–6.
The value of Islamic measures was widely variable. The legal cubit was usually 49.875 cm and the Hasimi cubit 66.5 cm.³