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Chapter 1

The Transfer Laws of the Air-Sea Interface

1.1 Introduction

Hurricane Edouard had just passed by Cape Cod when I wrote these lines, after giving
us a good scare, and keeping meteorologists of local TV stations out of bed all night.
Approaching on a track along the East Coast, Edouard remained a category 3 hurricane,
with 180 km/h winds, from the tropics to latitude 38◦N. This is where it left the warm
waters of the Gulf Stream behind, quickly to lose its punch over the much cooler Mid
Atlantic Bight, and to be degraded to category 1, with 130 km/h winds, still enough
to uproot a few trees on the Cape.

Edouard’s fury came from water vapor, as it ascends the “eye-walls” (Figure 1.1)
that surround a hurricane’s core, condensing and releasing its latent heat of evaporation.
The heat makes the moist air buoyant, turning the eyewalls into a giant chimney with
an incredibly strong draft. The draft sucks in sea-level air, causing it to spiral toward
the core in destructive winds and to drive waters against nearby coasts in storm surges.
The fast air flow over warm water also ensures intense heat and vapor transfer to
the air, sustaining the hurricane’s strength. Over colder water, where not enough water
evaporates, the hurricane dies: The lifeblood of a hurricane is intense sea to air transfer
of heat and water vapor. On the other hand, as hurricane winds whip the waters along,
they transfer some of their momentum downward. The loss of momentum acts as a
brake on the hurricane circulation, keeping the winds from completely getting out of
hand.

A hurricane also mimics on a small-scale the global atmospheric circulation, which
is similarly “fueled” by latent heat released from condensing water vapor. This happens
in “hot towers,” concentrated updrafts of the InterTropical Convergence Zone (ITCZ),
and also in somewhat less vigorous updrafts within extratropical storms. Many of the

1
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2 The Transfer Laws of the Air-Sea Interface

Figure 1.1 Mean structure of a mature hurricane (“Helene,” 26 Sept. 1958) in cross section,
supposing axial symmetry. The left-hand half shows the boundaries of the eye-wall (solid lines,
bending outward with height) and illustrates the cloud structure. The broken lines are contours
of constant “equivalent potential temperature,” the absolute temperature in degrees Kelvin that
the air would have with all of the latent heat in its vapor content released, and the pressure
brought down to sea level pressure. In the right-hand half section, thin full lines are contours of
constant wind speed in m s−1(the thick lines repeat the eye wall boundaries), the broken lines are
angular momentum contours, the dotted lines contours of temperature in◦C. The maximum
wind speed is in excess of 180 km/h. Note the stratiform cloud (dashed lines in the left half)
extending to 13 km height, to the top of the troposphere, where the temperature is−55◦C,
= 218 K. Satellites see this “cloud-top” temperature. From Palm´en and Newton (1969).

latter draw their vapor supply from the warm Gulf Stream and its Pacific counterpart,
the Kuroshio, ocean currents transporting massive amounts of heat from warm to cold
regions. Hot towers make their presence known to travelers crossing the equator, and
wake them from their slumber when updrafts toss around their jetliner, as high as
10 or 12 km above sea level. Heat release in the updrafts, and compensating cooling
and subsidence, are part of a thermodynamic cycle that energizes various atmospheric
circulation systems, including the easterly winds of the tropics and subtropics, and the
westerlies of mid-latitudes. The winds in turn sustain sea to air heat and vapor transfer,
supplying the fuel, moist air, for the updrafts. The associated air to sea transfer of
momentum from the winds is again the control on the strength of the atmospheric
circulation.

Important to the operation of hurricanes and to large-scale atmospheric and ocean
circulation systems is therefore in what amount, and by what mechanisms, momentum,
heat and vapor pass from one medium to the other. The rates of transfer, per unit time
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and unit surface area, depend on a variety of conditions and processes; relationships
between the rates and the variables influencing them are the “transfer laws” of the air-
sea interface that we seek in this chapter. As all laws of physics, these too are distilled
from observation, and, as most such laws, they are more or less accurate approxi-
mations. Their establishment requires painstaking work, hampered by difficulties of
observation at sea. After nearly a century of research by many scientists from a variety
of nations, there are still many uncertainties affecting the transfer laws.

1.2 Flux and Resistance

Transfers of momentum, heat and mass, are allirreversibleprocesses. A number of
texts deal with irreversible molecular processes of transfer, viscosity, heat conduction
or diffusion, but their common thermodynamic characteristics have only engaged the
interests of scientists relatively recently. De Groot’s seminal synthesis (1963) bears the
title “Thermodynamics of Irreversible Processes,” while a later development (De Groot
and Mazur 1984) is called “Non-equilibrium thermodynamics.” These monographs
develop the subject for molecular transfer processes, and show that their laws have the
general form:

Flux= Force/Resistance (1.1)

where the “Force” has the character of a potential gradient, the “Resistance” of inverse
conductivity.

Irreversible processes change the entropy of the system in which they occur. En-
tropy changes because it flows in and out of the system, and also because internal
irreversible processes generate it. The rate of entropy generation, the internal entropy
“source” term in the entropy balance, is always positive, according to the Second Law
of thermodynamics. “To relate the entropy source explicitly to the various irreversible
processes that occur in the system” is the main preoccupation of nonequilibrium ther-
modynamics (De Groot and Mazur, 1984). When only one Force is acting, the entropy
production rate is proportional to the product of Flux and Force. Absorbing the propor-
tionality factor in the Force, entropy production can be made equal to the Flux-Force
product. With several Fluxes and their conjugate Forces present, a similar standard-
ization of the Forces yields the entropy production rate as the sum of the Flux-Force
products, a result known as “Onsager’s theorem.”

The transfer laws of the air-sea interface are also relationships between Fluxes and
Forces in the sense of nonequilibrium thermodynamics. They are, however, the result
of an interaction between turbulent flows in air and water, and wind waves on the sea
surface, and are more complex than linear relationships between a Flux and a Force
with a constant Resistance. They are empirical laws of physics depending on material
properties, properties of the turbulent flows in air and water, and of wind waves. Their
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usual form is an implicit Flux-Force relationship:

func

(
Flux,Force,

n∑
i=1

Xi

)
= 0 (1.2)

where theXi aren variables having measurable influence on the transfer law.
An important requirement of a physical law is that it must be independent of units

of measurement. This dictates the use of a consistent system of units, and leads to
Buckingham’s theorem, according to which all physical laws are expressible as rela-
tionships between nondimensional combinations of variables, in appropriate products
and quotients. Therefore, yet another way to state the transfer law of Equation 1.2 is:

func

(
m∑

i=1

Ni

)
= 0 (1.3)

whereNi are nondimensional combinations of the variables, including the Flux and
the Force. Their number,m, is less than then + 2 of Equation 1.2, usually by the
number of measurement units in the dimensional relationship 1.2. Such formulations
of the transfer laws are most useful if either the Flux or the Force appears in only one
of the Ni ; that variable can then be treated as the dependent one, the others deemed
independent.

De Groot and Mazur (1984) discuss Flux-Force relationships valid locally, between
heat flux and temperature gradient, and analogous quantities in other irreversible pro-
cesses, while the most useful formulation of the air-sea transfer laws is between a
propertydifferenceacross a layer of air above the interface, and the flux across the
interface, in what we might call a “bulk” relationship. To illustrate the difference be-
tween local and bulk relationships, and also to give a taste of the classical results of
nonequilibrium thermodynamics, next we discuss viscous momentum transfer in a
simple situation.

1.2.1 Momentum Transfer in Laminar Flow

Suppose that air and water are two semi-infinite viscous fluids in contact at thez= 0
plane, with the upper fluid impulsively accelerated to a velocityu = U = const.at
time t = 0. In the absence of other forces, and as long as the flow remains laminar and
unidirectional, shear stress between layers accelerates the lower fluid while retarding
the upper one. The shear stressτ , force per unit area, equals viscosity times velocity
gradient (see e.g., Schlichting 1960):

τ = ρν ∂u

∂z
(1.4)

whereρ is density andν is kinematic viscosity. A layer of fluid between two levelsδz
apart experiences a net force equal to the difference in shear, which then accelerates
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the fluid:

∂(ρu)

∂t
= ∂τ

∂z
(1.5)

where the left-hand side is mass times acceleration or rate of change of horizontal
momentumρu. A legitimate interpretation of this relationship is that the shear stress
is equivalent to vertical flux of horizontal momentum, the difference of which across
the layer increases the local momentum.

In this light, the previous relationship, Equation 1.4, is now seen as one between a
Flux (of momentum) and a Force, the gradient of the velocity∂u/∂z, a local law, valid
at any levelz. The dynamics is contained in Equation 1.5. Multiplying that equation
by u, we arrive at the energy balance:

∂(ρu2/2)

∂t
= u

∂τ

∂z
(1.6)

which, after rearrangement and substitution from Equation 1.4, transforms into:

∂(ρu2/2)

∂t
= ∂

∂z

(
ν
∂

∂z
(ρu2/2)

)
− ρν

(
∂u

∂z

)2

. (1.7)

The first term on the right is the divergence of viscosity times the gradient of ki-
netic energy, legitimately interpreted as energy flux. The divergence of this quantity
signifies vertical energy transfer from one location to another, leaving the total energy
unchanged. The second term, however, is always negative, and signifies loss of me-
chanical energy, its transformation into heat through viscosity. The heat added to the air
or water increases its entropy at the rate of heat generation divided by absolute temper-
ature. This then is the entropy source term, locally, level by level, equal to the product
of the Force∂u/∂zand (by Equation 1.5) the Fluxτ , conforming to Onsager’s theorem.

The fluid properties, viscosity and density, are constant in either medium, but change
at the interface: They will bear indicesa, w, for air above, water below. Writing down
Equations 1.4 and 1.5 separately for air and water, and eliminatingτ , we have two
second order differential equations foru to solve. The boundary conditions are as
follows: Far above the interface the velocity is the undisturbedU , far below it is zero.
At the interface, the velocity and the shear stress are continuous. The solution follows
the standard approach to such problems, see e.g., Carslaw and Jaeger (1959). The
results are:

ua = u0erfc

(
z

2
√
νat

)
+Uerf

(
z

2
√
νat

)
(1.8)

uw = u0erfc

( −z

2
√
νwt

)
whereu0 is the common interface velocity. The boundary condition of continuous
interface stress yields a relationship foru0:

u0

U
=
(

1+ ρw
√
νw

ρa
√
νa

)−1

. (1.9)
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The solution represented by Equations 1.8 and 1.9 reveals the velocity distributions
to be error functions and complementary error functions of the distance from the
interface, portraying air-side and water-side boundary layers of thickness 2

√
νt , which

grow with the square root of time. The water-side velocities are much slower than
the air-side ones: The typical value ofu0/U is 1/200. This can be anticipated from
Equation 1.5, which shows accelerations to be inversely proportional to density. The
density of water is about 800 times greater than the density of air, balanced somewhat
in Equation 1.9 by the kinematic viscosity of the air being some 16 times greater than
that of water.

From the solution we find the value of the interface stress, alias momentum flux
from air to water:

τi = U

R
(1.10)

with

R= 1

ρa

√
π t

νa
+ 1

ρw

√
π t

νw
.

The result is clearly of the form of Equation 1.1, constituting a bulk relationship
between the interface momentum flux and the undisturbed velocity difference between
air and water, which plays the role of the conjugate Force. The ResistanceR consists
of two additive components, identifiable as air-side and water-side resistance, respec-
tively. Each component is proportional to the boundary layer thickness on that side,
and inversely proportional to dynamic viscosityρν. With the values of material prop-
erties substituted, the air-side resistance turns out to be some 200 times greater than
water-side resistance, so that the latter is for all practical purposes negligible.

The momentum transfer law must be reducible to a nondimensional form, containing
fewer variables. One such form is:

CD = 2√
π

Re−1(1+ [ρa/ρw
√
νa/νw])−1 (1.11)

with CD = τi /ρaU2 a drag coefficient or nondimensional interface momentum flux,
and Re= 2U

√
νat/νa a Reynolds number based on air-side boundary layer thickness.

Counting the density ratio and the viscosity ratio as two separate parameters, the
nondimensional version of the transfer law contains four variables, versus seven in
the dimensional formulation. The reduction by three corresponds to the three units of
measurement – mass, time and length – quantifying the dimensional variables.

In Equation 1.11, the density-viscosity ratio term is small compared to unity, so that
a sufficiently accurate form of the transfer law is the much simpler:CD = 2√

π
Re−1.

A lesson to be learned here is that not all variables playing a role in momentum
transfer necessarily have a significant impact on the interface transfer law: Nobody
could argue that the density or viscosity of water is irrelevant to momentum flux, yet
neither significantly affects it in this example.

Does the bulk relationship, Equation 1.10, conform to Onsager’s theorem? The total
energy dissipation is the integral of the local valueρν(du/dz)2. Using the approximate
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formula taking into account air-side resistance only, neglectingu0, and integrating on
the air side from zero to infinity, we find the total dissipation to beU2/(

√
2R), or

momentum FluxU/R timesU/(
√

2). The latter is then the conjugate Force in the bulk
version of the viscous transfer law.

The laminar flow example treated here is an overidealization of conditions near
the sea surface, but its overriding weakness is that hydrodynamic instability causes
laminar shear flow to break down into the chaotic motions of turbulence in a very short
time. In turbulent flow, different and more complex laws govern momentum transfer.
The one important feature of the laminar momentum transfer law that carries over into
turbulent flow is that the air-side Resistance still dominates. Perhaps paradoxically,
this is because, whichever way momentum gets across the interface, the light air still
has a hard time moving the much heavier water around.

1.3 Turbulent Flow Over the Sea

1.3.1 Turbulence, Eddies and Their Statistics

Turbulence consists of a continuous succession of chaotic movements by parcels of
fluid, analogous perhaps to molecular agitation, but occurring on a much larger than
molecular scale. Moving parcels of fluid displace other fluid that eventually has to
fill in the space vacated. This is known as continuity. Irregular and ephemeral closed
flow structures arise in this manner, loosely called eddies. The details of eddy motion
are complex, yet “stochastic” average properties of the flow (averages over many
“realizations” in statistical theory, time-mean properties in practice) obey ascertainable
laws, not unlike laws that quantify the macroscopic effects of molecular agitation.

The chaotic motions of turbulence are three-dimensional, so that at a fixed point
there are velocity fluctuations along all three coordinate axes,u′, v′, w′, even if the
mean velocity has the same “alongwind” direction,u > 0, v = 0, w = 0 (primes
distinguish fluctuations from mean quantities carrying overbars). The mean square ve-
locity fluctuations are then nonzero and their square roots provide measures
of eddy velocity, a velocity “scale,” such asum =

√
u′2. They also define the im-

portant Turbulent Kinetic Energy, TKE per unit mass in J kg−1:

Et = 1

2
(u′2+ v′2+ w′2) (1.12)

Eddies also stir up the fluid, and if some fluid property is unevenly distributed,
they try to equalize it. Thus, when mean flow momentumρu varies in the vertical,
fluctuating vertical eddy motions of velocityw′ bring faster fluid from the momentum-
rich region, which locally appears as excess velocity, positiveu′. Averaged, the ef-
fects of these eddy motions add up to eddy transport of momentum,ρu′w′, also
known as Reynolds flux of momentum or Reynolds stress, after Osborne Reynolds
who first formulated equations of motion for a turbulent fluid with Reynolds stresses
included.
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8 The Transfer Laws of the Air-Sea Interface

Figure 1.2 Typical
correlation function of a
turbulent velocity
component,w′(x)w′(x + r ),
against distancer in the
perpendicular direction.
Adapted from Townsend
(1956).

Another important turbulence property is characteristic eddy size. This can again
be assigned only from statistical properties of the flow, traditionally from a two-point
correlation function, such asw′(x)w′(x + r ), the mean product of the vertical velocity
component at two along-wind locations a distancer apart. See Townsend (1956) for
a fuller discussion. Figure 1.2 shows the typical shape of such a correlation function,
with a negative correlation loop required by continuity, on the principle of “what goes
up must come down.” The distance where the correlation function drops to zero is a
measure of eddy size, or a “length-scale” of turbulence, say`.

Correlation functions contain more information. According to a well-known theo-
rem of statistics, a two-point velocity correlation function is the Fourier transform of
an energy spectrum that assigns portions of kinetic energy to wavenumbersk (radians
per unit length), and vice versa, the spectrum functionφ(k) is the Fourier transform
of the correlation function. The most useful correlation function in this context is
u′(x)u′(x + r ), between alongwind velocity fluctuations at downwind distances. The
corresponding energy spectrum of turbulence peaks at a wavenumberkp, which is
close to`−1derived from thew′(x)w′(x + r ) correlation. An alternative choice for
eddy length scale is theǹ= k−1

p . A physical interpretation of the spectrum is that
reciprocal wavenumbers are characteristic dimensions of smaller and larger eddies,
the values of the spectrum function a measure of their energy.

Apart from length and velocity scales, an important property of turbulence is the
rate at which it dissipates energy, conventionally denoted byε, in W kg−1. Energy
dissipation is the work of the sharpest instantaneous velocity gradients that occur in
the eddying motion; viscous shear stress times the velocity gradient being the rate
at which mechanical energy is converted into heat. Laboratory observations of many
different types of turbulent shear flow revealed the general “similarity” principle that
the dissipation rate is proportional tou3

m/`, varying from one part of the flow to another
with the velocity and length scales as this product does. The proportionality constant
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changes, however, with the boundary conditions on the shear flow, as well as with the
different possible choices for velocity and length scales of the turbulence.

The same similarity principle applies to other properties or effects of turbulence and
constitutes the great simplifying factor in an otherwise almost untreatably complex
phenomenon: once we have information on the variation of the velocity and length
scales of turbulence in space or time, we are often able to quantify other properties
of the flow. This was first recognized by Ludwig Prandtl, who introduced the concept
of a “mixing length” for the eddy length scale, and used it to considerable advantage
in constructing theories for different species of turbulent shear flow subject to simple
boundary conditions, such as the flow in boundary layers, jets and wakes. The em-
pirical finding, that two independent variables characterizing a turbulent shear flow
are sufficient to describe other flow properties, is analogous to the thermodynamic
principle that two state variables are all that is needed to determine different properties
of a pure substance.

Energy dissipation occurs in the sharpest velocity gradients and therefore at the
smallest scales (i.e., at the highest wavenumbers). Kolmogorov (1941) hypothesized
that the spectrum function well beyond the peak of the spectrum toward the dissi-
pative range (in the “inertial subrange”) depends only on the wavenumberk and the
energy dissipationε (instead of separately oǹandum). This implies by dimensional
reasoning:

φ(k) = aε2/3k−2/3 (1.13)

with a a constant, equal to 0.47 according to Lumley and Panofsky (1964). Observa-
tions of the spectrum in the intermediate range thus yield the rate of energy dissipation.
Recalling thatε is proportional tou3

m/`, known` allows the velocity scale to be de-
termined: This is the basis of the so-called “dissipation method” of determining wind
stress (see below).

According to the similarity principle of turbulence, the Reynolds stresses should be
proportional to density times the square of the velocity scale,−ρu′w′ = const.ρu′2,
choosingum for the velocity scale, as suggested above. An alternative legitimate choice
for the velocity scale is therefore the “friction velocity”u∗ =

√
−u′w′, particularly

useful where the Reynolds stress is constant in a region of the flow. This is (nearly)
true of the airflow at low levels over the sea, where the Reynolds stress differs little
from τi , the effective shear force on the interface (that includes any pressure forces
acting on wind waves), alias momentum flux from air to water.

1.3.2 The Air-side Surface Layer

Air flow above the sea is variable, but changes in atmospheric conditions take place
slowly enough to regard the mean wind speed steady at a few tens of meters above the
interface, in what we will call a surface layer. Nor does the mean wind direction vary
noticeably with height in this layer, only the wind speed:u = U (z), v = 0, w = 0. The
mean velocity is thus a function only of the distancez above the mean position of the
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Figure 1.3 The windsea with air flow and eddies over it, and a spar
buoy carrying anemometers recording the wind speed at different levels.

interface (known as the Mean Sea Level, MSL). What makes the problem of observing
any property in the surface layer very difficult, is that, under wind, the interface is a
highly irregular surface that also rapidly changes its shape. The visible structures on
the wind-blown interface are wind waves in common parlance, but to avoid even a
suggestion of regular parallel-crested water waves we will call them collectively the
“windsea.” A U.S. Navy Hydrographic publication (Bigelow and Edmondson, 1947)
distinguishes between “sea” and “swell,” two different wave-like phenomena, “sea”
under storms, “swell” what is left over from a storm, more or less regular parallel-
crested waves propagating away from the region where the storm generated the “sea.”
Windsea is a less confusing name than sea, and is certainly descriptive.

Figure 1.3 illustrates the surface layer above the windsea, indicating the air flow,
eddies possibly tied to individual irregular waves, and a spar buoy with instruments to
observe the mean wind at different levels. Smith (1978) gave details of such a “stable
platform”; it was designed to withstand waves of 18 m height crest to trough, albeit
protruding only 12.5 m above MSL. In moderate winds, waves are only 2 m height or
less, and instruments on platforms similar to Smith’s (e.g., fixed towers or ship masts)
are able to determine the mean wind at several levels.

Such observations have revealed that, some distance above the windsea, the turbu-
lent air flow has the same character as over a solid boundary, in what is known as a
“wall layer.” The mean velocity increases with distance above the sea surface, while
the Reynolds flux of momentum,ρu′w′, that dwarfs viscous stress, is approximately
constant with height from just above the waves to 10 m or more, and equal to the ef-
fective interface stressτi . The latter, the net horizontal force on the interface, includes
pressure forces on the inclined surfaces of wind waves, as well as shear stress. The
effective interface shear stress defines the friction velocity,u∗ = √τi /ρ, which then
serves as the velocity scale of the turbulent flow in the entire surface layer. Above the
waves, where the flow has the character of a wall layer, also described as the constant
stress layer, observations have shown the eddy length scale` to be proportional to the
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distance above the smoothed air-sea interface,z. Other properties of turbulent flow in
this region are then expressible in terms of these two scales.

One effect of the eddies is to smooth out mean velocity variations, acting much
as viscosity. According to the similarity principle, the vertical gradient of the mean
velocity should depend only on the velocity and length scales of the eddies, i.e., by
dimensional reasoning:

z

u∗
dU

dz
= κ−1 = const. (1.14)

where the constantκ has the empirically determined value of about 0.4, and is known
as Kármán’s constant, after one of the great fluid dynamicists of the early twentieth
century. Integration from some reference levelzr now results in:

U (z)

u∗
= U (zr )

u∗
+ κ−1 ln

(
z

zr

)
. (1.15)

The reference level is arbitrary, except that it has to be in the constant stress layer,
where the velocity and length scales of the eddies areu∗ andconst. z. The velocity
at a given levelU (z) must be independent of the choice ofzr , however, implying a
relationship between reference level height and velocity:

U (zr )− u∗κ−1 ln(zr ) = const. (1.16)

For the right-hand side constant not to depend on the unit of length or time, it
must have the dimension of a velocity, and contain a constant times the logarithm of
a length. Writingr for that length,Cu∗ − u∗κ−1 ln(r ) for the right-hand side withC a
dimensionless constant, we arrive at the following form of the velocity distribution:

U (z)

u∗
= κ−1 ln

(
z

r

)
+ C. (1.17)

We anticipate the lengthr and the constantC to depend on the interplay of the
windsea and the air-side turbulence. For the present, they are two empirical parameters
of the velocity distribution over the windsea.

Countless observations support this “logarithmic law” in the atmospheric surface
layer over the sea. Roll (1965) lists fourteen sets of field observations that do so over
various natural water surfaces. In semi-logarithmic representation, at constantu∗, the
velocity distributions,U (ln z) are straight lines, displaced upward or downward accord-
ing to how much velocity change occurs between the interface and the top of the waves.
That displacement depends on just how vigorously the wave-bound eddies stir up the
air: the more stirring, the less velocity change. The stirring is the work of the windsea.

1.3.3 Properties of the Windsea

The waves of the windsea are just as chaotic as turbulence, and under simple conditions
their stochastic average properties also obey simple laws. Surface elevation is the
windsea analog of velocity in turbulence, a random function of time at a fixed location
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or of location at a fixed time, that defines a frequency or wavenumber spectrum.
Chapter 2 discusses windsea properties in detail; here we only catalog the wave-related
variables that might influence air-sea momentum flux, with a view to connecting the
two empirical parameters in Equation 1.17 to properties of the windsea.

Under a steady wind, and in the absence of waves originating from a distant storm
(“swell”), the phase velocityCp =

√
g/kp of a gravity wave (g is the acceleration

of gravity,kp the wavenumber at the peak of the spectrum) defines the “characteristic
wave.” To a casual observer, larger waves appear to progress with phase velocityCp,
and to have a dominant wavelength of 2π/kp, amidst much other complexity.

Everyday observation shows that the height of the characteristic wave grows with
distance from an upwind shore. Far enough from such a shore, the wave field becomes
saturated, and the wave height stops growing. Here the height of the characteristic wave,
H1/3, defined as the average height of the 1/3 highest waves, depends only on friction
velocity u∗ = √τi /ρ andg. Thus,gH1/3/u∗2 = const., with similar relationships for
other wave properties. Notice thatu∗2/g is a waveheight-scale,u∗ a common velocity
scale of the windsea and the surface layer turbulent shear flow.

Closer to an upwind shore, under a steady and horizontally uniform wind, and
again in the absence of swell, waves grow from small to large waveheight with dis-
tance from shore (with “fetch”F), the characteristic wave’s phase velocity increasing,
wavenumber decreasing in the process. Under these idealized conditions (in “local
equilibrium” with the wind), properties of wind waves depend on fetchF as well as
on friction velocityu∗, and gravitational accelerationg. The phase velocity of the
characteristic wave,Cp, or its nondimensional versionCp/u∗ (known as “wave-age”)
serves as a surrogate variable for fetch,F . Nondimensional long-wave properties, such
asgH1/3/u∗2, only depend on one nondimensional parameter, conveniently wave-age.

The properties of the shortest surface structures, not always wave-like, also depend
on surface tensionσ . The kinematic version of this variable,γ = σ/ρ, is convenient
in dimensional argument.

Wind waves facilitate momentum transfer, because horizontal pressure forces may
act on their inclined faces, and contribute toτi , the net force of the air on the water
surface per unit horizontal area. Pressure and shear forces on the interface are also what
cause waves to grow with fetch. When waves decay, they hand over momentum to the
water-side shear flow, adding to the momentum transferred from the air via viscous
shear stress. Even while wind waves grow, they also continuously lose momentum to
the water-side shear flow, to a small extent through viscous and turbulent drag on orbital
motions, but mostly through “breaking,” a complex turbulent overturning motion.

From our point of view in this chapter, wind waves may be thought to open another
pathway of air-sea momentum transfer, on top of viscous shear. Somewhat surpris-
ingly, while the long waves of the spectrum carry most of the horizontal momentum
transport of the wind wave field, they neither gain nor lose momentum very fast,
except on beaches, or perhaps in very strong winds. Short waves of the spectrum,
on the other hand, are steep, efficient at extracting momentum from the air flow,
prone to breaking, and thus short-lived. Circumstantial evidence suggests that they are
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responsible for a considerable fraction of the total air-sea momentum transfer. Viscous
shear stress meanwhile remains active in momentum transfer: It is difficult to imagine
circumstances under which fast air flow in contact with short or long waves would not
exert viscous stress.

Returning to Equation 1.17, this summary of wave effects shows that the parameters
r andC, quantifying wave influence on the velocity distribution in the surface layer,
could depend on the force of gravityg, kinematic surface tensionγ , friction velocity
u∗, and the nondimensional parameter of wave ageCp/u∗. Viscosity and density of air
and water still influence the shear-stress pathway of momentum transfer and should
not be forgotten.

1.4 Flux and Force in Air-Sea Momentum Transfer

The flux of momentum from air to sea, alias effective interface shear stressτi = ρu∗2,
is the Flux we wish to relate to a conjugate Force. In the bulk version of the viscous
momentum transfer law, Equation 1.10, we found the velocityU/

√
2, realized in

the upper portion of the growing air-side boundary layer, to be the conjugate Force.
Something similar should prove a suitable choice again, the wind speed at a level well
above the waves, say atz= h. The standard practical choice ish = 10 m. The Force
U (h) is then supposed to drive the Fluxτi = ρu∗2. Puttingz = h in Equation 1.17
converts it into a complex implicit relationship between Flux and Force:

U (h)

u∗
= κ−1 ln

(
h

r

)
+ C (1.18)

wherer andC also depend onu∗, as well as on other wave parameters, as just discussed.
A nondimensional form of their functional relationship is:

C,
gr

u∗2
= func.

(
Cp

u∗
,
γg

u∗4

)
. (1.19)

If viscosity has a significant effect on interface processes, alsoνa/νw andu∗3/gνw
should be considered. Dividing the nondimensional ForceU (h)/u∗ by the square root
of gh/u∗2 results inU/

√
gh, a more appropriate nondimensional Force, not containing

the conjugate momentum Flux. The similaru∗/
√

gh is a convenient nondimensional
Flux variable. It should also be remembered here that the heighth is a proxy for eddy
size in the surface layer, an important physical factor in momentum transfer, not the
incidental location of a recording instrument.

Equation 1.19, with possibly the viscous variables added, suggests a fairly com-
plex momentum transfer law. The example of the laminar flow transfer law suggests,
however, that some of the possible influences may not be noticeable. A drastic sim-
plification would be if instead of Equation 1.18 we had justU (h)/u∗ = const. A
hypothesis to this effect in fact guided early years of research on momentum transfer,
when the focus was on the wind-speed dependence of the momentum flux. Constant
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u∗/U (h) means constant drag coefficientCD = u∗2/U2. Within the limited wind
speed range explored, and in light of considerable scatter in the observed value of
the drag coefficient, a constant value seemed then a reasonable conclusion. Most data
on momentum transfer are still presented today in the form: drag coefficient versus
(dimensional) wind speed. The latter may be taken to be a proxy for nondimensional
U (h)/

√
gh, with the denominator a constant scale velocity of about 10 m/s, for the

usual reference height ofh = 10 m.

1.4.1 Charnock’s Law

Later work revealed that the drag coefficient increases with wind speed. Almost half
a century ago, Charnock (1955) reported the distribution of wind speed with height
over a reservoir, and expressed the results in the form:

U (z)

u∗
= κ−1 ln

(
gz

u∗2

)
+ C (1.20)

whereC is a constant, not for just one velocity profile but at all observed wind speeds
and directions, and according to Charnock approximately equal to 12.5.

Puttingz = h in Equation 1.20 brings it to the form of Equation 1.18, withr =
u∗2/g, the waveheight scale,C a universal constant. We shall refer to it as Charnock’s
law. Another way to write it is:

U (h)√
gh
= u∗√

gh

[
C − 2κ−1 ln

(
u∗√
gh

)]
. (1.21)

Becauseu∗/
√

gh is always much less than 1.0, its logarithm is negative, so that the
square-bracketed expression is positive, with a value typically around 30, and slowly
decreasing with increasingu∗. Alternative statements of Charnock’s law are:

CD = (C − 2κ−1 ln[u∗/
√

gh])−2

R= (C − 2κ−1 ln[u∗/
√

gh])
/

u∗

with CD the drag coefficient,R the Resistance to momentum transfer. The most con-
venient graphical representation of the law is friction velocity against wind speed,
u∗ = func [U (h)], or the inverse of Equation 1.21, as Amorocho and DeVries (1980)
pointed out some years ago. This minimizes the scatter of observed values.

1.4.2 Sea Surface Roughness

Over a “rough” solid surface, the experiments of Nikuradse (1933), using walls rough-
ened by glued-on sand-grains of mean diameterr , showed the velocity distribution in
the wall layer to be:

U (z)

u∗
= κ−1 ln

(
z

r

)
+ 8.5. (1.22)
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A comparison with Charnock’s law leads to the result that the sea surface behaves
as a solid surface of “sand-grain roughness”r , where:

r = 3.064
u∗2

g
. (1.23)

To take a typical situation, an 8 m s−1 wind calls forth a friction velocity ofu∗ = 0.3
m s−1, and a sand-grain roughness of the sea surface ofr = 3 cm or so. This contrasts
with a characteristic waveheight of some 1.2 m in this wind at long fetch. Sand-grains
0.03 m in diameter closely packed on a smooth surface would mimic short waves in
their effects on the velocity distribution over the sea surface in an 8 m s−1 wind. The
comparison suggests that the sand-grain roughness length according to Equation 1.23
reflects the height of the surface disturbances mainly responsible for the drag of the
air on the sea surface. We should add the caveat that the analogy with solid roughness
is imperfect because wind waves are mobile, solid roughness elements are not, so that
the mechanisms of momentum transfer may differ between them. To the extent that
the analogy holds, it singles out short waves as the primary transferrers of momentum.

Meteorologists have fallen into the habit of reporting data on air-sea momentum
transfer in terms of a “roughness parameter”z0 (a length) that combinesr andC,
defined by the following alternative statement of the logarithmic law:

U (z)

u∗
= κ−1 ln

(
z

z0

)
.

The parameterz0 according to Charnock’s law, with constantC = 12.5, is:

z0 = 0.011
u∗2

g
(1.24)

some 300 times smaller than the sand-grain roughness, with no relationship at all to
any observable structures on a wind-blown sea surface.

One important point about the “roughness” of the sea surface, whichever way it is
quantified, is that it is not an externally imposed parameter of the dimension of length.
It arises from wind action on the water surface and could in principle depend on any or
all of the wave parameters as well as viscosity. To the accuracy, and within the range
of validity, of Charnock’s law, it depends only on the two parametersu∗ andg. To use
a sea-surface roughness length in dimensional analysis as an external variable, side by
side withu∗ andg, is a serious conceptual error (unfortunately not uncommon, e.g.,
Maat et al., 1991).

1.4.3 Energy Dissipation

Does Charnock’s law pass muster in nonequilibrium thermodynamics by conforming
to Onsager’s theorem? WithU (h) the Force,ρu∗2 the Flux, their product equals by
Charnock’s law:

ρu∗2U (h) = ρu∗3
(
κ−1 ln

(
gh

u∗2

)
+ C

)
. (1.25)
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The left-hand side of this equation is the work done by the wind stress on the air layer
underneath the levelh, energy transfer downward. As this is unquestionably dissipated
in some manner by the underlying shear flow in air and water, and by the windsea,
Onsager’s theorem is satisfied by the bulk relationship that we call Charnock’s law.

To examine the details of energy dissipation, we need the Turbulent Kinetic Energy
(TKE) equation, derived from Reynolds’ equations of motion for a turbulent fluid
(see e.g., Businger 1982), in a simplified form, valid for the constant stress layer with
unidirectional flow:

∂Et

∂t
= −u′w′

dU

dz
− ∂(w′p′/ρ + w′E′t )

∂z
− ε (1.26)

whereEt is TKE defined in Equation 1.12, as energy per unit mass. Multiplied by
density, the first term on the right contains the Reynolds stress−ρu′w′ = τi =
ρu∗2 multiplied by the mean velocity gradient, clearly the local Flux-Force product
analogous to what we have seen in viscous momentum transfer. In this equation, the
Flux-Force product plays the role of TKE production rate. The second term on the right
is a divergence, of “pressure work,” the velocity-pressure correlation, plus vertical flux
of Et . The divergence represents transfer of energy from one level to another; integrated
from the interface up to some level, it yields pressure work transferring energy to wind
waves. In the (nearly) constant stress layer above the waves,Et is constant by the
similarity principle, so that its flux, and its time-derivative on the left, both vanish.
The same similarity principle also yields the velocity gradient (see Equation 1.14 on
page 11), and the energy dissipation rateε = ρu∗3/κz, that turns out to equal the TKE
production rate (i.e., the local Flux-Force product). The flux-divergence term is then
also insignificant above the waves. All these relationships are approximate and valid
only from some level above the waves to levels where the Reynolds stress remains
close toτi .

Integrating local energy dissipation from the lowest conceivable level where the
constant stress layer formula holds,z= u∗2/g, to z= h, we find:∫ h

u∗2/g

ρu∗3

κz
dz= ρu∗3

κ
ln

(
gh

u∗2

)
= ρu∗2(U (h)− Cu∗) (1.27)

where the second equality comes from Charnock’s law, showing the integrated dissi-
pation to equal the downward energy transfer at levelh, minus the downward energy
transfer at levelu∗2/g. With C about 12,U (h) some 30u∗, only 60% of the downward
energy transfer is dissipated between the integration limits, the rest handed down to
lower layers. Becauseu∗2/g is typically only 1 cm, most of the remaining dissipation
must take place on the water side. It is indeed already stretching a point to suppose
constant stress layer formulae valid so close to the sea surface, so that the energy
transfer to the water side may be even greater thanCρu∗3.

How does this compare with viscous energy transfer across the interface? If all of
the effective interface stressτi = ρu∗2 were viscous stress, the energy transfer would
equalτi u0, with u0 the velocity at the interface. Typically, the interface velocity is
u∗/3, some 36 times smaller thanCu∗, so that downward energy transfer at the bottom
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of the constant stress layer dwarfs what viscous shear stress alone could conceivably
accomplish. We return to this point in Chapter 3, where Figure 3.8 shows that, within
one waveheight below the interface, energy dissipation is some 30 times greater than
what turbulent shear flow on the water side is responsible for.

1.4.4 Buoyancy and Turbulence

The premises underlying Charnock’s law are that in the constant stress layer over the
sea, properties of turbulent flow depend only on the velocity and length scales,u∗, z,
and that wave influences are expressible through the same velocity scaleu∗ plus the
acceleration of gravity,g. In physical terms, the two chaotic processes arising from
hydrodynamic instability, shear flow turbulence and windsea, between them govern air-
sea momentum transfer, both behaving as, say, a perfect gas, their properties depending
on just two variables.

The simple scaling of the turbulent flow in the constant stress layer no longer holds,
however, when air density varies owing to heating, cooling, or evaporation. Upward
sensible heat transfer or evaporation from the sea surface makes lower layers of air
lighter than layers above, an unstable arrangement that results in chaotic gravitational
convection, a species of turbulence different from the shear flow variety. Downward
heat flux at the sea surface, on the other hand, generates air heavier than above, a
stable arrangement. Whatever the source of density variations, the differential gravity
force on a parcel lighter than its environment, known as buoyancy, tends to speed up
upward eddy motions, while their greater than average density propels heavier parcels
downward. Upward heat flux or evaporation thus intensifies vertical eddy motion,
while downward heat flux does the opposite, retarding vertical motions arising from
shear flow turbulence. Vertical eddy momentum transport, the Reynolds stress−ρu′w′,
then also depends on heat and vapor fluxes at the air-sea interface.

The proximate cause of enhanced or depressed eddy motion in the presence of
heat or vapor flux is the buoyancy or net upward gravitational force per unit mass,
acting on a fluid parcel that is slightly lighter or heavier, as the case may be, than
its average environment. If the density anomaly isρ ′, the buoyancy isb′ = −gρ ′/ρ.
The densitydefect−ρ ′ is in turn proportional to the excess temperatureθ ′ and excess
vapor concentrationχ ′ of an air parcel,−ρ ′/ρ = θ ′/T + 0.61q′, whereT is absolute
temperature andq′ = χ ′/ρ, specific humidity excess,q the standard variable in me-
teorology representing vapor concentration. The factor 0.61 comes from the different
molecular weights of water vapor and air (see e.g., Garratt, 1992).

Eddy motions transport heat and humidity just as they transport momentum. The
Reynolds fluxes of temperature and humidity arew′θ ′ andw′q′; the corresponding
Reynolds flux of buoyancy is:

w′b′ = g

T
w′θ ′ + 0.61gw′q′. (1.28)

Positive (upward) flux of heat or vapor implies positive buoyancy fluxw′b′.
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From another point of view, the product of upward velocity and positive buoyancy
force represents work done on the air parcel by the force of gravity, tending to increase
its kinetic energy. By the same token, downward buoyancy flux implied by downward
Reynolds flux of heat and vapor means work done against gravity, a sink for the kinetic
energy of moving air parcels. The parcels must then somehow gain energy to sustain
their motions. This interplay of turbulence and buoyancy is portrayed by the turbulent
kinetic energy (TKE) equation, expanded from its form in Equation 1.26 to include
buoyancy work:

∂Et

∂t
= w′b′ − u′w′

dU

dz
− ∂(w′p′/ρ + w′E′t )

∂z
− ε. (1.29)

The first term on the right represents energy gain or loss on account of buoyancy, the
other terms are as discussed above.

As we have seen, in the absence of buoyancy flux, dependence of turbulence prop-
erties on only two scales implies that both the production and the dissipation terms are
proportional tou∗3/z. The buoyancy flux in the constant stress layer depends, how-
ever, on heat and vapor fluxes imposed at the boundary, that is on other independent
variables, and it cannot vary with justu∗ andz. This then implies that some or all other
terms in the TKE balance must vary with the buoyancy flux. The key additional exter-
nal variable affecting the TKE balance is the interface buoyancy fluxB0 = w′b′(0).
The properties of the mean flow as well as of the turbulence then depend onB0 as well
as onu∗ andz. A modified similarity principle for the buoyancy-affected shear flow is
that its properties depend on these three parameters only (Monin and Yaglom, 1971).

One way to take interface buoyancy flux into account is by means of a length scale,
L, introduced into the literature by Obukhov (1946):

1

L
= −κB0

u∗3
(1.30)

which serves as a proxy forB0 in dimensional argument. Apart from the constantκ

and the negative sign, both retained here to conform to historical custom, the Obukhov
length contains only the two interface fluxes, of momentum (represented byu∗) and
buoyancy. NegativeB0 or positiveL signifies energy drain on the turbulence, positive
B0 or negativeL extra energy supply. The meteorological literature refers to these as
stable and unstable conditions, respectively.

Velocity gradients in the shear layer above the waves now depend onB0, represented
by L, as well as onu∗ andz. Dimensional analysis leads to the following expanded
version of Equation 1.14:

dU

dz
= u∗

κz
φ

(
z

L

)
(1.31)

withφ(z/L) an unspecified function. Under “neutral” conditions, when the air is neither
stable nor unstable, i.e., at vanishingB0, hencez/L → 0, φ(z/L) must tend to unity.
Large positiveB0 generates vigorous convection and reduces surface stress-induced
mechanical turbulence to insignificance. At moderately high positiveB0, or z/L of
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Figure 1.4 The empirical stability functionφ(z/L) as recommended by different
authors. Even atz/L close to zero, the uncertainty is seen to be high. From Yaglom
(1977).

order−1, compound mechanical-convective turbulence prevails and Equation 1.31 is
useful. At the other extreme, large negative buoyancy flux overwhelms mechanical
turbulence to the point of completely eliminating it. At moderately high negativeB0

(i.e., positive and suitably smallz/L), Equation 1.31 is again valid. The negative
buoyancy flux in the TKE equation signifies work against gravity, that is, increase of
potential energy as eddies bring lighter fluid down from higher levels. The production
term must balance this loss of TKE, resulting in less vigorous shear flow turbulence,
and sharper mean velocity gradients.

Boundary layer meteorologists have explored buoyancy effects on the atmospheric
surface layer in detail and proposed several different empirical formulae for the func-
tion φ(z/L), separately for stable and unstable conditions. Figure 1.4 after Yaglom
(1977) shows some of these. We may conclude from the differences between the for-
mulae that the corrections are known only within a factor of two, and that only at small
|z/L|. Most widely used are the formulae summarized by Deardorff (1968); they are,
in the stable case,L > 0:

φ

(
z

L

)
= 1+ β z

L
(1.32)

and in the unstable case,L < 0:

φ

(
z

L

)
= 1

(1− αz/L)1/4
(1.33)
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Figure 1.5 Velocity profiles over land in stable, neutral,
and unstable conditions, marked by a parameter (“gradient
Richardson number”), of the same sign as, but inversely
proportional to, the Obukhov lengthL. Arrows mark
typical departures from the logarithmic neutral profile, of
some1U = 5u∗. Over the ocean, typical departures are
generally somewhat less. From Garratt (1992).

withα, β constants. Integration now recovers the logarithmic law plus correction terms
depending onz/L:

U (z)

u∗
= κ−1 ln

(
z

r

)
+ C + κ−1ψ

(
z

L

)
(1.34)

with:

ψ
( z

L

)
= β z

L

in the stable case; while in the unstable case we have:

ψ
( z

L

)
= −

[
ln

(
1+ x2

2

)
+ 2 ln

(
1+ x

2

)
− 2 tan−1(x)+ π/2

]
wherex = (1− αz/L)1/4. In the unstable case, at constantu∗, the more vigorous
turbulence reduces the wind speed at a fixed level, compared to the undisturbed wall
layer, while less vigorous stirring under stable conditions increases it, (Figure 1.5).

Puttingz= h andr = u∗2/g in Equation 1.34 yields a corrected form of Charnock’s
law that connects the ForceU (h) to the three interface fluxes, of momentum, heat and
vapor, the latter two throughB0. Taking the buoyancy-related term in Equation 1.34 to
the left-hand side, we are back at Charnock’s law, but for a “corrected,” or “neutral,”
nondimensional velocity,U (h)/u∗ − κ−1ψ(h/L):

U (h)

u∗
− κ−1ψ

(
h

L

)
= κ−1 ln

(
gh

u∗2

)
+ C (1.35)

with the same constantC as before, and with correction terms as given following
Equation 1.34. This is how observations on momentum flux are usually reported,
corrected for buoyancy flux to a neutral value of the wind speed.




