
Introduction

The purpose of this book is to collect, in one volume, all the ingredients nec-
essary for the understanding of spectral methods for time-dependent problems,
and, in particular, hyperbolic partial differential equations. It is intended as
a graduate-level text, covering not only the basic concepts in spectral meth-
ods, but some of the modern developments as well. There are already several
excellent books on spectral methods by authors who are well-known and active
researchers in this field. This book is distinguished by the exclusive treatment
of time-dependent problems, and so the derivation of spectral methods is influ-
enced primarily by the research on finite-difference schemes, and less so by the
finite-element methodology. Furthermore, this book is unique in its focus on
the stability analysis of spectral methods, both for the semi-discrete and fully
discrete cases. In the book we address advanced topics such as spectral meth-
ods for discontinuous problems and spectral methods on arbitrary grids, which
are necessary for the implementation of pseudo-spectral methods on complex
multi-dimensional domains.

In Chapter 1, we demonstrate the benefits of high order methods using phase
error analysis. Typical finite difference methods use a local stencil to compute
the derivative at a given point; higher order methods are then obtained by using a
wider stencil, i.e., more points. The Fourier spectral method is obtained by using
all the points in the domain. In Chapter 2, we discuss the trigonometric poly-
nomial approximations to smooth functions, and the associated approximation
theory for both the continuous and the discrete case. In Chapter 3, we present
Fourier spectral methods, using both the Galerkin and collocation approaches,
and discuss their stability for both hyperbolic and parabolic equations. We also
present ways of stabilizing these methods, through super viscosity or filtering.

Chapter 4 features a discussion of families of orthogonal polynomials which
are eigensolutions of a Sturm–Liouville problem. We focus on the Legendre and
Chebyshev polynomials, which are suitable for representing functions on finite
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2 Introduction

domains. In this chapter, we present the properties of Jacobi polynomials, and
their associated recursion relations. Many useful formulas can be found in this
chapter. In Chapter 5, we discuss the continuous and discrete polynomial expan-
sions based on Jacobi polynomials; in particular, the Legendre and Chebyshev
polynomials. We present the Gauss-type quadrature formulas, and the different
points on which each is accurate. Finally, we discuss the connections between
Lagrange interpolation and electrostatics. Chapter 6 presents the approximation
theory for polynomial expansions of smooth functions using the ultraspheri-
cal polynomials. Both the continuous and discrete expansions are discussed.
This discussion sets the stage for Chapter 7, in which we introduce polynomial
spectral methods, useful for problems with non-periodic boundary conditions.
We present the Galerkin, tau, and collocation approaches and give examples
of the formulation of Chebyshev and Legendre spectral methods for a variety
of problems. We also introduce the penalty method approach for dealing with
boundary conditions. In Chapter 8 we analyze the stability properties of the
methods discussed in Chapter 7.

In the final chapters, we introduce some more advanced topics. In Chapter 9
we discuss the spectral approximations of non-smooth problems. We address
the Gibbs phenomenon and its effect on the convergence rate of these approxi-
mations, and present methods which can, partially or completely, overcome the
Gibbs phenomenon. We present a variety of filters, both for Fourier and poly-
nomial methods, and an approximation theory for filters. Finally, we discuss
the resolution of the Gibbs phenomenon using spectral reprojection methods.
In Chapter 10, we turn to the issues of time discretization and fully discrete
stability. We discuss the eigenvalue spectrum of each of the spectral spatial
discretizations, which provides a necessary, but not sufficient, condition for
stability. We proceed to the fully discrete analysis of the stability of the forward
Euler time discretization for the Legendre collocation method. We then present
some of the standard time integration methods, especially the Runge–Kutta
methods. At the end of the chapter, we introduce the class of strong stability
preserving methods and present some of the optimal schemes. In Chapter 11, we
turn to the computational issues which arise when using spectral methods, such
as the use of the fast Fourier transform for interpolation and differentiation, the
efficient computation of the Gauss quadrature points and weights, and the effect
of round-off errors on spectral methods. Finally, we address the use of map-
pings for treatment of non-standard intervals and for improving accuracy in the
computation of higher order derivatives. In Chapter 12, we talk about the imple-
mentation of spectral methods on general grids. We discuss how the penalty
method formulation enables the use of spectral methods on general grids in one
dimension, and in complex domains in multiple dimensions, and illustrate this
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Introduction 3

using both the Galerkin and collocation approaches. We also show how penalty
methods allow us to easily generalize to complicated boundary conditions and
on triangular meshes. The discontinuous Galerkin method is an alternative way
of deriving these schemes, and penalty methods can thus be used to construct
methods based on multiple spectral elements.

Chapters 1, 2, 3, 5, 6, 7, 8 of the book comprise a complete first course
in spectral methods, covering the motivation, derivation, approximation the-
ory and stability analysis of both Fourier and polynomial spectral methods.
Chapters 1, 2, and 3 can be used to introduce Fourier methods within a course
on numerical solution of partial differential equations. Chapters 9, 10, 11, and
12 address advanced topics and are thus suitable for an advanced course in
spectral methods. However, depending on the focus of the course, many other
combinations are possible.

A good resource for use with this book is PseudoPack. PseudoPack Rio
and PseudoPack 2000 are software libraries in Fortran 77 and Fortran 90
(respectively) for numerical differentiation by pseudospectral methods, cre-
ated by Wai Sun Don and Bruno Costa. More information can be found
at http://www.labma.ufrj.br/bcosta/pseudopack/main.html and http://www.
labma.ufrj.br/bcosta/pseudopack2000/main.html.

As the oldest author of this book, I (David Gottlieb) would like to take a
paragraph or so to tell you my personal story of involvement in spectral meth-
ods. This is a personal narrative, and therefore may not be an accurate history
of spectral methods. In 1973 I was an instructor at MIT, where I met Steve
Orszag, who presented me with the problem of stability of polynomial methods
for hyperbolic equations. Working on this, I became aware of the pioneering
work of Orszag and his co-authors and of Kreiss and his co-authors on Fourier
spectral methods. The work on polynomial spectral methods led to the book
Numerical Analysis of Spectral Methods: Theory and Applications by Steve
Orszag and myself, published by SIAM in 1977. At this stage, spectral meth-
ods enjoyed popularity among the practitioners, particularly in the meteorol-
ogy and turbulence community. However, there were few theoretical results on
these methods. The situation changed after the summer course I gave in 1979 in
France. P. A. Raviart was a participant in this course, and his interest in spectral
methods was sparked. When he returned to Paris he introduced his postdoc-
toral researchers, Claudio Canuto and Alfio Quarteroni, and his students, Yvon
Maday and Christine Bernardi, to these methods. The work of this European
group led to an explosion of spectral methods, both in theory and applications.
After this point, the field became too extensive to further review it. Nowadays,
I particularly enjoy the experience of receiving a paper on spectral methods
which I do not understand. This is an indication of the maturity of the field.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-79211-0 - Spectral Methods for Time-Dependent Problems
Jan S. Hesthaven, Sigal Gottlieb and David Gottlieb
Excerpt
More information

http://www.cambridge.org/0521792118
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

The following excellent books can be used to deepen one’s understanding
of many aspects of spectral methods. For a treatment of spectral methods for
incompressible flows, the interested reader is referred to the classical book by
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods:
Fundamentals in single domains (2006), the more recent Spectral Methods for
Incompressible Viscous Flow (2002) by R. Peyret and the modern text High-
Order Methods in Incompressible Fluid Flows (2002) by M. Deville, P. F.
Fischer, and E. Mund (2002). The book Spectral/hp Methods in Computational
Fluid Dynamics, by G. E. Karniadakis and S. J. Sherwin (2005), deals with
many important practical aspects of spectral methods computations for large
scale fluid dynamics application. A comprehensive discussion of approxima-
tion theory may be found in Approximations Spectrales De Problemes Aux
Limites Elliptiques (1992) by C. Bernardi and Y. Maday and in Polynomial
Approximation of Differential Equations (1992) by D. Funaro. Many interest-
ing results can be found in the book by B. -Y. Guo, Spectral Methods and
their Applications (1998). For those wishing to implement spectral methods in
Matlab, a good supplement to this book is Spectral Methods in Matlab (2000), by
L. N. Trefethen.

For the treatment of spectral methods as a limit of high order finite differ-
ence methods, see A Practical Guide to Pseudospectral Methods (1996) by
B. Fornberg. For a discussion of spectral methods to solve boundary value and
eigenvalue problems, as well as Hermite, Laguerre, rational Chebyshev, sinc,
and spherical harmonic functions, see Chebyshev and Fourier Spectral Methods
(2000) by J. P. Boyd.

This text has as its foundation the work of many researchers who make up
the vibrant spectral methods community. A complete bibliography of spectral
methods is a book in and of itself. In our list of references we present only a
partial list of those papers which have direct relevance to the text. This necessary
process of selection meant that many excellent papers and books were excluded.
For this, we apologize.
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From local to global approximation

Spectral methods are global methods, where the computation at any given point
depends not only on information at neighboring points, but on information from
the entire domain. To understand the idea of a global method, we begin by
considering local methods, and present the global Fourier method as a limit of
local finite difference approximations of increasing orders of accuracy. We will
introduce phase error analysis, and using this tool we will show the merits of
high-order methods, and in particular, their limit: the Fourier method. The phase
error analysis leads to the conclusion that high-order methods are beneficial
for problems requiring well resolved fine details of the solution or long time
integrations.

Finite difference methods are obtained by approximating a function u(x) by
a local polynomial interpolant. The derivatives of u(x) are then approximated
by differentiating this local polynomial. In this context, local refers to the use
of nearby grid points to approximate the function or its derivative at a given
point.

For slowly varying functions, the use of local polynomial interpolants based
on a small number of interpolating grid points is very reasonable. Indeed, it
seems to make little sense to include function values far away from the point of
interest in approximating the derivative. However, using low-degree local poly-
nomials to approximate solutions containing very significant spatial or temporal
variation requires a very fine grid in order to accurately resolve the function.
Clearly, the use of fine grids requires significant computational resources in
simulations of interest to science and engineering. In the face of such limita-
tions we seek alternative schemes that will allow coarser grids, and therefore
fewer computational resources. Spectral methods are such methods; they use
all available function values to construct the necessary approximations. Thus,
they are global methods.

5
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6 From local to global approximation

Example 1.1 Consider the wave equation
∂u

∂t
= −2π

∂u

∂x
0 ≤ x ≤ 2π, (1.1)

u(x, 0) = esin(x),

with periodic boundary conditions.
The exact solution to Equation (1.1) is a right-moving wave of the form

u(x, t) = esin(x−2π t),

i.e., the initial condition is propagating with a speed 2π .
In the following, we compare three schemes, each of different order of

accuracy, for the solution of Equation (1.1) using the uniform grid

x j = j�x = 2π j

N + 1
, j ∈ [0, . . . , N ]

(where N is an even integer).

Second-order finite difference scheme A quadratic local polynomial inter-
polant to u(x) in the neighborhood of x j is given by

u(x) = 1

2�x2
(x − x j )(x − x j+1)u j−1 − 1

�x2
(x − x j−1)(x − x j+1)u j

+ 1

2�x2
(x − x j−1)(x − x j )u j+1. (1.2)

Differentiating this formula yields a second-order centered-difference approx-
imation to the derivative du/dx at the grid point x j :

du

dx

∣∣∣∣
x j

= u j+1 − u j−1

2�x
.

High-order finite difference scheme Similarly, differentiating the inter-
polant based on the points {x j−2, x j−1, x j , x j+1, x j+2} yields the fourth-order
centered-difference scheme

du

dx

∣∣∣∣
x j

= 1

12�x
(u j−2 − 8u j−1 + 8u j+1 − u j+2).

Global scheme Using all the available grid points, we obtain a global scheme.
For each point x j we use the interpolating polynomial based on the points
{x j−k, . . . , x j+k} where k = N/2. The periodicity of the problem furnishes us
with the needed information at any grid point. The derivative at the grid points
is calculated using a matrix-vector product

du

dx

∣∣∣∣
x j

=
N∑

i=0

D̃ j i ui ,
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Figure 1.1 The maximum pointwise (L∞) error of the numerical solution of Exam-
ple 1.1, measured at t = π , obtained using second-order, fourth-order and global
spectral schemes as a function of the total number of points, N . Here the Courant–
Friedrichs–Lewy coefficient, CFL = �t/�x .

where the entries of the matrix is D̃ are

D̃ j i =
{

(−1) j+i

2

[
sin

(
( j−i)π

N+1

)]−1
i �= j,

0 i = j.

The formal proof of this will be given in Section 1.1.3. This approach is equiv-
alent to an infinite-order finite difference method as well as a Fourier spectral
method.

To advance Equation (1.1) in time, we use the classical fourth-order Runge–
Kutta method with a sufficiently small time-step, �t , to ensure stability.

Now, let’s consider the dependence of the maximum pointwise error (the
L∞-error) on the number of grid points N . In Figure 1.1 we plot the L∞-error
at t = π for an increasing number of grid points. It is clear that the higher the
order of the method used for approximating the spatial derivative, the more
accurate it is. Indeed, the error obtained with N = 2048 using the second-order
finite difference scheme is the same as that computed using the fourth-order
method with N = 128, or the global method with only N = 12. It is also evident
that by lowering �t for the global method one can obtain even more accurate
results, i.e., the error in the global scheme is dominated by time-stepping errors
rather than errors in the spatial discretization.

Figure 1.2 shows a comparison between the local second-order finite differ-
ence scheme and the global method following a long time integration. Again,
we clearly observe that the global scheme is superior in accuracy to the local
scheme, even though the latter scheme employs 20 times as many grid points
and is significantly slower.
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8 From local to global approximation
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Figure 1.2 An illustration of the impact of using a global method for problems
requiring long time integration. On the left we show the solution of Equation (1.1)
computed using a second-order centered-difference scheme. On the right we show
the same problem solved using a global method. The full line represents the com-
puted solution, while the dashed line represents the exact solution.
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1.1 Comparisons of finite difference schemes 9

1.1 Comparisons of finite difference schemes

The previous example illustrates that global methods are superior in perfor-
mance to local methods, not only when very high spatial resolution is required
but also when long time integration is important. In this section, we shall intro-
duce the concept of phase error analysis in an attempt to clarify the observa-
tions made in the previous section. The analysis confirms that high-order and/or
global methods are a better choice when very accurate solutions or long time
integrations on coarse grids are required. It is clear that the computing needs of
the future require both.

1.1.1 Phase error analysis

To analyze the phase error associated with a particular spatial approximation
scheme, let’s consider, once again, the linear wave problem

∂u

∂t
= −c

∂u

∂x
0 ≤ x ≤ 2π, (1.3)

u(x, 0) = eikx ,

with periodic boundary conditions, where i = √−1 and k is the wave number.
The solution to Equation (1.3) is a travelling wave

u(x, t) = eik(x−ct), (1.4)

with phase speed c.
Once again, we use the equidistant grid

x j = j�x = 2π j

N + 1
, j ∈ [0, . . . , N ].

The 2m-order approximation of the derivative of a function f (x) is

d f

dx

∣∣∣∣
x j

=
m∑

n=1

αm
n Dn f (x j ), (1.5)

where

Dn f (x j ) = f (x j + n�x) − f (x j − n�x)

2n�x
= f j+n − f j−n

2n�x
, (1.6)

and the weights, αm
n , are

αm
n = −2(−1)n (m!)2

(m − n)!(m + n)!
. (1.7)
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10 From local to global approximation

In the semi-discrete version of Equation (1.3) we seek a vector v =
(v0(t), . . . , vN (t)) which satisfies

dv j

dt
= −c

m∑
n=1

αm
n Dnv j , (1.8)

v j (0) = eikx j .

We may interpret the grid vector, v, as a vector of grid point values of a
trigonometric polynomial, v(x, t), with v(x j , t) = v j (t), such that

∂v

∂t
= −c

m∑
n=1

αm
n Dnv(x, t), (1.9)

v(x, 0) = eikx .

If v(x, t) satisfies Equation (1.9), the solution to Equation (1.8) is given by
v(x j , t). The solution to Equation (1.9) is

v(x, t) = eik(x−cm (k)t), (1.10)

where cm(k) is the numerical wave speed. The dependence of cm on the wave
number k is known as the dispersion relation.

The phase error em(k), is defined as the leading term in the relative error
between the actual solution u(x, t) and the approximate solution v(x, t):∣∣∣∣u(x, t) − v(x, t)

u(x, t)

∣∣∣∣ = ∣∣1 − eik(c−cm (k))t
∣∣ � |k(c − cm(k))t | = em(k).

As there is no difference in the amplitude of the two solutions, the phase error
is the dominant error, as is clearly seen in Figure 1.2.

In the next section we will compare the phase errors of the schemes in
Example 1.1. In particular, this analysis allows us to identify the most efficient
scheme satisfying the phase accuracy requirement over a specified period of
time.

1.1.2 Finite-order finite difference schemes

Applying phase error analysis to the second-order finite difference scheme
introduced in Example 1.1, i.e.,

∂v(x, t)

∂t
= −c

v(x + �x, t) − v(x − �x, t)

2�x
,

v(x, 0) = eikx ,
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