
CHAPTER 1

Introduction

In this chapter we briefly discuss the goals of cryptography (Section 1.1). In particular,
we discuss the basic problems of secure encryption, digital signatures, and fault-tolerant
protocols. These problems lead to the notions of pseudorandom generators and zero-
knowledge proofs, which are discussed as well.

Our approach to cryptography is based on computational complexity. Hence, this
introductory chapter also contains a section presenting the computational models used
throughout the book (Section 1.3). Likewise, this chapter contains a section presenting
some elementary background from probability theory that is used extensively in the
book (Section 1.2).

Finally, we motivate the rigorous approach employed throughout this book and
discuss some of its aspects (Section 1.4).

Teaching Tip. Parts of Section 1.4 may be more suitable for the last lecture (i.e., as
part of the concluding remarks) than for the first one (i.e., as part of the introductory
remarks). This refers specifically to Sections 1.4.2 and 1.4.3.

1.1. Cryptography: Main Topics

Historically, the term “cryptography” has been associated with the problem of design-
ing and analyzing encryption schemes (i.e., schemes that provide secret communica-
tion over insecure communication media). However, since the 1970s, problems such
as constructing unforgeable digital signatures and designing fault-tolerant protocols
have also been considered as falling within the domain of cryptography. In fact, cryptog-
raphy can be viewed as concerned with the design of any system that needs to withstand
malicious attempts to abuse it. Furthermore, cryptography as redefined here makes es-
sential use of some tools that need to be treated in a book on the subject. Notable
examples include one-way functions, pseudorandom generators, and zero-knowledge
proofs. In this section we briefly discuss these terms.

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

INTRODUCTION

We start by mentioning that much of the content of this book relies on the assump-
tion that one-way functions exist. The definition of one-way functions captures the sort
of computational difficulty that is inherent to our entire approach to cryptography, an
approach that attempts to capitalize on the computational limitations of any real-life
adversary. Thus, if nothing is difficult, then this approach fails. However, if, as is widely
believed, not only do hard problems exist but also instances of them can be efficiently
generated, then these hard problems can be “put to work.” Thus, “algorithmically bad
news” (by which hard computational problems exist) implies good news for cryptogra-
phy. Chapter 2 is devoted to the definition and manipulation of computational difficulty
in the form of one-way functions.

1.1.1. Encryption Schemes

The problem of providing secret communication over insecure media is the most tra-
ditional and basic problem of cryptography. The setting consists of two parties com-
municating over a channel that possibly may be tapped by an adversary, called the
wire-tapper. The parties wish to exchange information with each other, but keep the
wire-tapper as ignorant as possible regarding the content of this information. Loosely
speaking, an encryption scheme is a protocol allowing these parties to communicate se-
cretly with each other. Typically, the encryption scheme consists of a pair of algorithms.
One algorithm, called encryption, is applied by the sender (i.e., the party sending a mes-
sage), while the other algorithm, called decryption, is applied by the receiver. Hence,
in order to send a message, the sender first applies the encryption algorithm to the
message and sends the result, called the ciphertext, over the channel. Upon receiving a
ciphertext, the other party (i.e., the receiver) applies the decryption algorithm to it and
retrieves the original message (called the plaintext).

In order for this scheme to provide secret communication, the communicating parties
(at least the receiver) must know something that is not known to the wire-tapper. (Other-
wise, the wire-tapper could decrypt the ciphertext exactly as done by the receiver.) This
extra knowledge may take the form of the decryption algorithm itself or some parameters
and/or auxiliary inputs used by the decryption algorithm. We call this extra knowledge
the decryption key. Note that, without loss of generality, we can assume that the decryp-
tion algorithm is known to the wire-tapper and that the decryption algorithm needs two
inputs: a ciphertext and a decryption key. We stress that the existence of a secret key, not
known to the wire-tapper, is merely a necessary condition for secret communication.

Evaluating the “security” of an encryption scheme is a very tricky business. A
preliminary task is to understand what “security” is (i.e., to properly define what is
meant by this intuitive term). Two approaches to defining security are known. The first
(“classic”) approach is information-theoretic. It is concerned with the “information”
about the plaintext that is “present” in the ciphertext. Loosely speaking, if the ciphertext
contains information about the plaintext, then the encryption scheme is considered
insecure. It has been shown that such a high (i.e., “perfect”) level of security can be
achieved only if the key in use is at least as long as the total length of the messages sent
via the encryption scheme. The fact that the key has to be longer than the information
exchanged using it is indeed a drastic limitation on the applicability of such encryption

2

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

1.1. CRYPTOGRAPHY: MAIN TOPICS

schemes. This is especially true when huge amounts of information need to be secretly
communicated.

The second (“modern”) approach, as followed in this book, is based on computational
complexity. This approach is based on the fact that it does not matter whether or not
the ciphertext contains information about the plaintext, but rather whether or not this
information can be efficiently extracted. In other words, instead of asking whether or not
it is possible for the wire-tapper to extract specific information, we ask whether or not it
is feasible for the wire-tapper to extract this information. It turns out that the new (i.e.,
“computational-complexity”) approach offers security even if the key is much shorter
than the total length of the messages sent via the encryption scheme. For example, one
can use “pseudorandom generators” (discussed later) that expand short keys into much
longer “pseudo-keys,” so that the latter are as secure as “real keys” of comparable length.

In addition, the computational-complexity approach allows the introduction of con-
cepts and primitives that cannot exist under the information-theoretic approach. A
typical example is the concept of public-key encryption schemes. Note that in the pre-
ceding discussion we concentrated on the decryption algorithm and its key. It can be
shown that the encryption algorithm must get, in addition to the message, an auxiliary
input that depends on the decryption key. This auxiliary input is called the encryp-
tion key. Traditional encryption schemes, and in particular all the encryption schemes
used over the millennia preceding the 1980s, operate with an encryption key equal
to the decryption key. Hence, the wire-tapper in these schemes must be ignorant of
the encryption key, and consequently the key-distribution problem arises (i.e., how
two parties wishing to communicate over an insecure channel can agree on a secret
encryption/decryption key).1 The computational-complexity approach allows the in-
troduction of encryption schemes in which the encryption key can be known to the
wire-tapper without compromising the security of the scheme. Clearly, the decryption
key in such schemes is different from the encryption key, and furthermore it is infeasi-
ble to compute the decryption key from the encryption key. Such encryption schemes,
called public-key schemes, have the advantage of trivially resolving the key-distribution
problem, because the encryption key can be publicized.

In Chapter 5, which will appear in the second volume of this work and will be devoted
to encryption schemes, we shall discuss private-key and public-key encryption schemes.
Much attention is devoted to defining the security of encryption schemes. Finally, con-
structions of secure encryption schemes based on various intractability assumptions are
presented. Some of the constructions presented are based on pseudorandom generators,
which are discussed in Chapter 3. Other constructions use specific one-way functions
such as the RSA function and/or the operation of squaring modulo a composite number.

1.1.2. Pseudorandom Generators

It turns out that pseudorandom generators play a central role in the construction of
encryption schemes (and related schemes). In particular, pseudorandom generators

1The traditional solution is to exchange the key through an alternative channel that is secure, alas “more
expensive to use,” for example, by a convoy.

3

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

INTRODUCTION

yield simple constructions of private-key encryption schemes, and this observation is
often used in practice (usually implicitly).

Although the term “pseudorandom generators” is commonly used in practice, both in
the context of cryptography and in the much wider context of probabilistic procedures,
it is seldom associated with a precise meaning. We believe that using a term without
clearly stating what it means is dangerous in general and particularly so in a tricky
business such as cryptography. Hence, a precise treatment of pseudorandom generators
is central to cryptography.

Loosely speaking, a pseudorandom generator is a deterministic algorithm that ex-
pands short random seeds into much longer bit sequences that appear to be “random”
(although they are not). In other words, although the output of a pseudorandom generator
is not really random, it is infeasible to tell the difference. It turns out that pseudoran-
domness and computational difficulty are linked in an even more fundamental manner,
as pseudorandom generators can be constructed based on various intractability assump-
tions. Furthermore, the main result in this area asserts that pseudorandom generators
exist if and only if one-way functions exist.

Chapter 3, devoted to pseudorandom generators, starts with a treatment of the con-
cept of computational indistinguishability. Pseudorandom generators are defined next
and are constructed using special types of one-way functions (defined in Chapter 2).
Pseudorandom functions are defined and constructed as well. The latter offer a host of
additional applications.

1.1.3. Digital Signatures

A notion that did not exist in the pre-computerized world is that of a “digital signature.”
The need to discuss digital signatures arose with the introduction of computer commu-
nication in the business environment in which parties need to commit themselves to
proposals and/or declarations they make. Discussions of “unforgeable signatures” also
took place in previous centuries, but the objects of discussion were handwritten signa-
tures, not digital ones, and the discussion was not perceived as related to cryptography.

Relations between encryption and signature methods became possible with the
“digitalization” of both and the introduction of the computational-complexity approach
to security. Loosely speaking, a scheme for unforgeable signatures requires

• that each user be able to efficiently generate his or her own signature on documents of
his or her choice,

• that each user be able to efficiently verify whether or not a given string is a signature of
another (specific) user on a specific document, and

• that no one be able to efficiently produce the signatures of other users to documents that
those users did not sign.

We stress that the formulation of unforgeable digital signatures also provides a clear
statement of the essential ingredients of handwritten signatures. Indeed, the ingre-
dients are each person’s ability to sign for himself or herself, a universally agreed
verification procedure, and the belief (or assertion) that it is infeasible (or at least

4

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

1.1. CRYPTOGRAPHY: MAIN TOPICS

difficult) to forge signatures in a manner that could pass the verification procedure. It
is difficult to state to what extent handwritten signatures meet these requirements. In
contrast, our discussion of digital signatures will supply precise statements concern-
ing the extent to which digital signatures meet the foregoing requirements. Further-
more, schemes for unforgeable digital signatures can be constructed using the same
computational assumptions as used in the construction of (private-key) encryption
schemes.

In Chapter 6, which will appear in the second volume of this work and will be
devoted to signature schemes, much attention will be focused on defining the security
(i.e., unforgeability) of these schemes. Next, constructions of unforgeable signature
schemes based on various intractability assumptions will be presented. In addition, we
shall treat the related problem of message authentication.

Message Authentication

Message authentication is a task related to the setting considered for encryption schemes
(i.e., communication over an insecure channel). This time, we consider the case of an
active adversary who is monitoring the channel and may alter the messages sent on
it. The parties communicating through this insecure channel wish to authenticate the
messages they send so that the intended recipient can tell an original message (sent by
the sender) from a modified one (i.e., modified by the adversary). Loosely speaking, a
scheme for message authentication requires

• that each of the communicating parties be able to efficiently generate an authentication
tag for any message of his or her choice,

• that each of the communicating parties be able to efficiently verify whether or not a given
string is an authentication tag for a given message, and

• that no external adversary (i.e., a party other than the communicating parties) be able
to efficiently produce authentication tags to messages not sent by the communicating
parties.

In some sense, “message authentication” is similar to a digital signature. The difference
between the two is that in the setting of message authentication it is not required that
third parties (who may be dishonest) be able to verify the validity of authentication
tags produced by the designated users, whereas in the setting of signature schemes it is
required that such third parties be able to verify the validity of signatures produced by
other users. Hence, digital signatures provide a solution to the message-authentication
problem. On the other hand, a message-authentication scheme does not necessarily
constitute a digital-signature scheme.

Signatures Widen the Scope of Cryptography

Considering the problem of digital signatures as belonging to cryptography widens
the scope of this area from the specific secret-communication problem to a variety
of problems concerned with limiting the “gain” that can be achieved by “dishonest”
behavior of parties (who are either internal or external to the system). Specifically:

5

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

INTRODUCTION

• In the secret-communication problem (solved by use of encryption schemes), one wishes
to reduce, as much as possible, the information that a potential wire-tapper can extract
from the communication between two designated users. In this case, the designated
system consists of the two communicating parties, and the wire-tapper is considered as
an external (“dishonest”) party.

• In the message-authentication problem, one aims at prohibiting any (external) wire-
tapper from modifying the communication between two (designated) users.

• In the signature problem, one aims at providing all users of a system a way of making
self-binding statements and of ensuring that one user cannot make statements that would
bind another user. In this case, the designated system consists of the set of all users, and
a potential forger is considered as an internal yet dishonest user.

Hence, in the wide sense, cryptography is concerned with any problem in which one
wishes to limit the effects of dishonest users. A general treatment of such problems is
captured by the treatment of “fault-tolerant” (or cryptographic) protocols.

1.1.4. Fault-Tolerant Protocols and Zero-Knowledge Proofs

A discussion of signature schemes naturally leads to a discussion of cryptographic pro-
tocols, because it is a natural concern to ask under what circumstances one party should
provide its signature to another party. In particular, problems like mutual simultaneous
commitment (e.g., contract signing) arise naturally. Another type of problem, motivated
by the use of computer communication in the business environment, consists of “secure
implementation” of protocols (e.g., implementing secret and incorruptible voting).

Simultaneity Problems

A typical example of a simultaneity problem is that of simultaneous exchange of secrets,
of which contract signing is a special case. The setting for a simultaneous exchange
of secrets consists of two parties, each holding a “secret.” The goal is to execute a
protocol such that if both parties follow it correctly, then at termination each will hold
its counterpart’s secret, and in any case (even if one party cheats) the first party will
hold the second party’s secret if and only if the second party holds the first party’s
secret. Perfectly simultaneous exchange of secrets can be achieved only if we assume
the existence of third parties that are trusted to some extent. In fact, simultaneous
exchange of secrets can easily be achieved using the active participation of a trusted
third party: Each party sends its secret to the trusted third party (using a secure channel).
The third party, on receiving both secrets, sends the first party’s secret to the second
party and the second party’s secret to the first party. There are two problems with this
solution:

1. The solution requires the active participation of an “external” party in all cases (i.e., also
in case both parties are honest). We note that other solutions requiring milder forms of
participation of external parties do exist.

2. The solution requires the existence of a totally trusted third entity. In some applications,
such an entity does not exist. Nevertheless, in the sequel we shall discuss the problem

6

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

1.1. CRYPTOGRAPHY: MAIN TOPICS

of implementing a trusted third party by a set of users with an honest majority (even if
the identity of the honest users is not known).

Secure Implementation of Functionalities and Trusted Parties

A different type of protocol problem is concerned with the secure implementation of
functionalities. To be more specific, we discuss the problem of evaluating a func-
tion of local inputs each of which is held by a different user. An illustrative and
motivating example is voting, in which the function is majority, and the local input
held by user A is a single bit representing the vote of user A (e.g., “pro” or “con”).
Loosely speaking, a protocol for securely evaluating a specific function must satisfy the
following:

• Privacy: No party can “gain information” on the input of other parties, beyond what is
deduced from the value of the function.

• Robustness: No party can “influence” the value of the function, beyond the influence
exerted by selecting its own input.

It is sometimes required that these conditions hold with respect to “small” (e.g., minor-
ity) coalitions of parties (instead of single parties).

Clearly, if one of the users is known to be totally trustworthy, then there exists a
simple solution to the problem of secure evaluation of any function. Each user simply
sends its input to the trusted party (using a secure channel), who, upon receiving all
inputs, computes the function, sends the outcome to all users, and erases all interme-
diate computations (including the inputs received) from its memory. Certainly, it is
unrealistic to assume that a party can be trusted to such an extent (e.g., that it will
voluntarily erase what it has “learned”). Nevertheless, the problem of implementing
secure function evaluation reduces to the problem of implementing a trusted party.
It turns out that a trusted party can be implemented by a set of users with an hon-
est majority (even if the identity of the honest users is not known). This is indeed a
major result in this field, and much of Chapter 7, which will appear in the second
volume of this work, will be devoted to formulating and proving it (as well as variants
of it).

Zero-Knowledge as a Paradigm

A major tool in the construction of cryptographic protocols is the concept of zero-
knowledge proof systems and the fact that zero-knowledge proof systems exist for all
languages in NP (provided that one-way functions exist). Loosely speaking, a zero-
knowledge proof yields nothing but the validity of the assertion. Zero-knowledge proofs
provide a tool for “forcing” parties to follow a given protocol properly.

To illustrate the role of zero-knowledge proofs, consider a setting in which a party,
called Alice, upon receiving an encrypted message from Bob, is to send Carol the
least significant bit of the message. Clearly, if Alice sends only the (least significant)
bit (of the message), then there is no way for Carol to know Alice did not cheat.
Alice could prove that she did not cheat by revealing to Carol the entire message as
well as its decryption key, but that would yield information far beyond what had been

7

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

INTRODUCTION

required. A much better idea is to let Alice augment the bit she sends Carol with a
zero-knowledge proof that this bit is indeed the least significant bit of the message. We
stress that the foregoing statement is of the “NP type” (since the proof specified earlier
can be efficiently verified), and therefore the existence of zero-knowledge proofs for
NP-statements implies that the foregoing statement can be proved without revealing
anything beyond its validity.

The focus of Chapter 4, devoted to zero-knowledge proofs, is on the foregoing result
(i.e., the construction of zero-knowledge proofs for any NP-statement). In addition,
we shall consider numerous variants and aspects of the notion of zero-knowledge proofs
and their effects on the applicability of this notion.

1.2. Some Background from Probability Theory

Probability plays a central role in cryptography. In particular, probability is essential
in order to allow a discussion of information or lack of information (i.e., secrecy). We
assume that the reader is familiar with the basic notions of probability theory. In this
section, we merely present the probabilistic notations that are used throughout this book
and three useful probabilistic inequalities.

1.2.1. Notational Conventions

Throughout this entire book we shall refer to only discrete probability distributions.
Typically, the probability space consists of the set of all strings of a certain length
�, taken with uniform probability distribution. That is, the sample space is the set
of all �-bit-long strings, and each such string is assigned probability measure 2−�.
Traditionally, functions from the sample space to the reals are called random variables.
Abusing standard terminology, we allow ourselves to use the term random variable also
when referring to functions mapping the sample space into the set of binary strings.
We often do not specify the probability space, but rather talk directly about random
variables. For example, we may say that X is a random variable assigned values in
the set of all strings, so that Pr[X = 00] = 1

4 and Pr[X = 111] = 3
4 . (Such a random

variable can be defined over the sample space {0, 1}2, so that X (11) = 00 and X (00) =
X (01) = X (10) = 111.) In most cases the probability space consists of all strings of
a particular length. Typically, these strings represent random choices made by some
randomized process (see next section), and the random variable is the output of the
process.

How to Read Probabilistic Statements. All our probabilistic statements refer to
functions of random variables that are defined beforehand. Typically, we shall write
Pr[f (X) = 1], where X is a random variable defined beforehand (and f is a function).
An important convention is that all occurrences of a given symbol in a probabilistic
statement refer to the same (unique) random variable. Hence, if B(·, ·) is a Boolean
expression depending on two variables and X is a random variable, then Pr[B(X, X)]
denotes the probability that B(x, x) holds when x is chosen with probability Pr[X = x].

8

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

1.2. SOME BACKGROUND FROM PROBABILITY THEORY

Namely,

Pr[B(X, X)] =
∑

x

Pr[X = x] · χ (B(x, x))

where χ is an indicator function, so that χ (B) = 1 if event B holds, and equals zero oth-
erwise. For example, for every random variable X , we have Pr[X = X] = 1. We stress
that if one wishes to discuss the probability that B(x, y) holds when x and y are chosen
independently with the same probability distribution, then one needs to define two inde-
pendent random variables, both with the same probability distribution. Hence, if X and
Y are two independent random variables, then Pr[B(X, Y)] denotes the probability that
B(x, y) holds when the pair (x, y) is chosen with probability Pr[X = x] · Pr[Y = y].
Namely,

Pr[B(X, Y)] =
∑
x,y

Pr[X = x] · Pr[Y = y] · χ (B(x, y))

For example, for every two independent random variables, X and Y , we have
Pr[X = Y] = 1 only if both X and Y are trivial (i.e., assign the entire probability
mass to a single string).

Typical Random Variables. Throughout this entire book, Un denotes a random vari-
able uniformly distributed over the set of strings of length n. Namely, Pr[Un =α] equals
2−n if α ∈ {0, 1}n , and equals zero otherwise. In addition, we shall occasionally use
random variables (arbitrarily) distributed over {0, 1}n or {0, 1}l(n) for some function l :
N→N. Such random variables are typically denoted by Xn , Yn , Zn , etc. We stress that in
some cases Xn is distributed over {0, 1}n , whereas in others it is distributed over {0, 1}l(n),
for some function l(·), which is typically a polynomial. Another type of random variable,
the output of a randomized algorithm on a fixed input, is discussed in Section 1.3.

1.2.2. Three Inequalities

The following probabilistic inequalities will be very useful in the course of this book.
All inequalities refer to random variables that are assigned real values. The most ba-
sic inequality is the Markov inequality, which asserts that for random variables with
bounded maximum or minimum values, some relation must exist between the devia-
tion of a value from the expectation of the random variable and the probability that the

random variable is assigned this value. Specifically, letting E(X) def= ∑
v Pr[X =v] · v

denote the expectation of the random variable X , we have the following:

Markov Inequality: Let X be a non-negative random variable and v a real
number. Then

Pr[X ≥ v] ≤ E(X)

v

Equivalently, Pr[X ≥ r · E(X)] ≤ 1
r .

9

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

INTRODUCTION

Proof:

E(X) =
∑

x

Pr[X = x] · x

≥
∑
x<v

Pr[X = x] · 0 +
∑
x≥v

Pr[X = x] · v

= Pr[X ≥ v] · v

The claim follows. �

The Markov inequality is typically used in cases in which one knows very little about
the distribution of the random variable; it suffices to know its expectation and at least
one bound on the range of its values. See Exercise 1.

Using Markov’s inequality, one gets a “possibly stronger” bound for the deviation
of a random variable from its expectation. This bound, called Chebyshev’s inequal-
ity, is useful provided one has additional knowledge concerning the random variable
(specifically, a good upper bound on its variance). For a random variable X of finite
expectation, we denote by Var(X) def= E[(X − E(X))2] the variance of X and observe
that Var(X) = E(X 2) − E(X)2.

Chebyshev’s Inequality: Let X be a random variable, and δ > 0. Then

Pr[|X − E(X)| ≥ δ] ≤ Var(X)

δ2

Proof: We define a random variable Y
def= (X − E(X))2 and apply the Markov

inequality. We get

Pr[|X − E(X)| ≥ δ] = Pr[(X − E(X))2 ≥ δ2]

≤ E[(X − E(X))2]

δ2

and the claim follows. �

Chebyshev’s inequality is particularly useful for analysis of the error probability of
approximation via repeated sampling. It suffices to assume that the samples are picked
in a pairwise-independent manner.

Corollary (Pairwise-Independent Sampling): Let X1, X2, . . . , Xn be pairwise-
independent random variables with the same expectation, denotedµ, and the same
variance, denoted σ 2. Then, for every ε > 0,

Pr

[∣∣∣∣
∑n

i=1 Xi

n
− µ

∣∣∣∣ ≥ ε

]
≤ σ 2

ε2n

The Xi ’s are called pairwise-independent if for every i �= j and all a and b, it holds
that Pr[Xi = a ∧ X j = b] equals Pr[Xi = a] · Pr[X j = b].

10

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521791723 - Foundations of Cryptography: Basic Tools
Oded Goldreich
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521791723

