Index

An italic number cites a figure or a table.

ABB Industries, 178
accounting, and information systems of Geneva Steel, 46–7. See also cost; financial systems
Accugraph Corp., 83
Acme Steel, 39
ActiveEra, 198, 199. See also J.D. Edwards
activity-based costing (ABC), 178
“add-ons,” to ERP systems, 33–4
aggressive implementation schedule, 161
Algoma Steel, 58
alliance partners, 30–1
AM (fixed asset management) module, 31
AMR Research, 57, 98, 126, 200
Andersen Consulting, 30, 99, 219
Andronico, Arrigo, 144–5
artifacts. See models, artifacts, and processes (MAPs)
“as is” modeling: design and reengineering policy, 117–19; and evaluation, 115; and organizational processes, 21; and requirements analysis, 106
Automated Packaging Systems (APS), 223
“available to promise” (ATP), 96, 164
BAAN Co., 28, 127, 128, 174
balanced scorecard, and evaluation, 181
Ballmer, Steve, 134
bandwidths, of networks, 15
“benchmarking,” and reengineering, 74
Benchmarking Partners, 172, 186
best of breed, 32
best practices: diffusion of, 5; integration of, 7; and reengineering, 22
big-bang implementation, 151–2, 152–4, 155–6, 166, 167–70
big-r reengineering, 119–20, 121, 126–8, 223
blue-ribbon team (BRT), 113, 114
Boeing Co., 28, 126, 127, 128
Boggs, Scott M., 131, 133, 134, 135–6, 139
BOPSE (BAAN, Oracle, Peoplesoft, SAP, and J.D. Edwards), 28
Borda rule, 148
bottlenecks, and stabilization period, 175
Bris Technology, 70
Brother Industries, 186
Brown, Michael, 165
Browning-Ferris Industries, 92
budgets, and stabilization period, 181. See also cost; financial systems
build-to-forecast (BTF) and build-to-order (BTO), and electronic commerce, 202–3
Burton Snowboards, 64
business case rationales: and business process rationales, 93–5; choice of method, 89; and competitive rationales, 95–6; design and evaluation of success, 96; monetary versus nonmonetary goals, 97; and net present value approach, 96–7; and strategic rationales, 95; and technology rationales, 90–3. See also choice rationale
business process rationales, 93–5
business process reengineering (BPR), 79–80, 83–4
business risks, 213–14, 219–21
Cambridge Partners, 198
Cameron, Bobby, 158, 166
Cannon, Joseph, 38, 40, 42, 43, 44, 45–6, 47–8, 91, 93–4
225
Cap Gemini Group, 73

case studies: Browning-Ferris, 92; Chesapeake Display and Packaging, 113–15; Geneva Steel, 38–48, 91, 93–4; issues addressed by, 11; Litton Data Systems, 90–1; Microsoft, 92; Owens Corning, 94; Quantum, 68–71, 95–6

Chan, Diana, 69

channels, and web server–based portals, 66

Chesapeake Display & Packaging (CDP), 11, 113–15

choice rationale, and evaluation, 180. See also business case rationales

Cisco Systems: and data warehouse, 64; design and implementation, 218; and electronic commerce, 195, 197, 198–200, 203; and nonmonetary-based goals, 97; and stabilization period, 173; and strategic rationales, 95; and system failure, 92

Citrix server, 208–9, 211, 212

clean slate reengineering, 75, 78–80, 80–3, 84

client servers: and enterprise computing, 13–14; and enterprise products, 5; and networks, 15–16; and risk, 215–16

CO (controlling) module, 31

Colgate Palmolive Co., 149, 202

communication: and electronic commerce, 196–7; facilitation of intra-organizational and inter-organizational, 8–9; and networks, 16

Compaq Computer, 196, 197, 202, 203

competitors and competition: behavior of and decision making, 4; and competitive rationale for decision making, 95–6; response to as choice motivation, 147; and risk, 220

compromises, during implementation, 176–7

computing environment, and requirements analysis, 109

Computron Software, 6

configuration engine (CE), 200, 203

Connors, John, 92, 134, 135, 139

consulting and consulting firms: and alliance partners, 30–1; and best practices, 22; changes in nature of, 4; and data warehouse, 71; and requirements analysis, 103, 111; and technology enabled reengineering, 78; and training, 190

Conway, Kevin, 69

Cooper, Steve, 125, 127

cost: and big-bang implementation, 154; and evaluation, 179–80; as percent of revenues, 6; reduction of and business process rationales, 93–4; reduction of and models, artifacts, and processes (MAPs), 144–5, 147; reengineering and data inputs, 50–3; of requirements analysis, 105, 108, 112; of technology enabled reengineering, 77; of training, 188

cost–benefit analysis: and decision making, 98; and implementation methodology, 156, 170–1; and software choice, 21

cost centers, 137

culture. See organization

customer response, and models, artifacts, and processes (MAPs), 143–4

customized reports, 62–3

data access, and data warehouse, 71

database management system (DBMS), 20
databases: and risk, 216; types of, 16–18
data input: benefits and costs of reengineering, 50–3; and ease of use, 57–59; and implementation, 49–50; and legacy systems, 49, 50; and package software, 54–6; process and personnel change and user resistance, 54; and screen sequence, 54–5; and stabilization period, 174–5; and system design, 57
data processing department, and outsourcing, 101
data warehouses: definition of, 17–18; and output capabilities, 63–5; Quantum as case study of, 68–71
day-to-day use, and requirements analysis, 109

D&B Software, 6

decision making: and business case rationales, 89–96; and case study, 100–1; hard versus soft data, 98; and measurement, 98; and monetary versus nonmonetary goals, 97; and net present value approach, 96–7; and organization culture, 99; and role of top management, 99

“deep pockets,” and clean slate reengineering, 81–2

Deere Company, 125
defense industry, 128

Delevati, Hank, 162–3, 166, 168, 169, 170

dell Computer, 197, 203, 204

Deloitte Consulting, 11, 30, 90, 184–5, 196
Index

Delta Project, and Geneva Steel, 43–5

demand modules, 32

democratic governance," 148
demonstrations (demos), of ERP systems, 113–14
design: and business case rationale, 96; and
data input, 57; and implementation, 128–9, 177; Microsoft as case study of, 130–9; and
models, artifacts, and processes (MAPs), 141–9; organizational and software change, 119–27; reengineering policy and software choice, 117–19, 127–8, 129–30; and risk, 218–19, 220–1, 222–3
desktop-based portals, 65–6
dictatorship, and choice of system, 149
difficult-to-integrate acquisitions, 92
digital Equipment Corporation (DEC), 164, 166
disparate systems, and computing environments, 91
documentation, and stabilization period, 175
Dow Corning Corp., 190–1
duration, and evaluation, 179–80
ease of use: and data input, 57–9; and
electronic commerce, 198
EDI (electronic data interchange), 196–7
Edmondson, David, 123–4
electric arc furnaces (EAFs), 41–2
electronic commerce: build-to-forecast (BTF)
and build-to-order (BTO) approaches to demand, 202–3; and case studies, 206–12; development of, 10; 195–8; and merge in transit (MIT), 204–5; and ordering, 198–201; and resellers, 203–4; and vendor-managed inventories, 201–2
encryption, and network security, 15
“EnjoySAP,” 58
enterprise artifacts, 35
enterprise computing, and client servers, 13–15
enterprise resource planning (ERP) systems: analysis of systems and capabilities, 10; background information on, 9–10, 13–22, 27–37; and choice of system, 102–16; and creation of value, 6–9; and data input, 49–59; and decision to implement, 89–101; and electronic commerce, 10, 195–212; and evaluation, 178–84; and implementation, 151–71; and life-cycle issues, 10; and output capabilities, 61–71; reasons for study of, 3–6; and reengineering, 73–84; and risk, 10, 213–24; and stabilization period, 172–8, 184–5; and training, 186–91
ERP, See enterprise resource planning (ERP) systems
evaluation: and business case rationale, 96; and requirements analysis, 109–12, 115–16; and stabilization period, 178–85
expectations, versus reality in stabilization period, 177 explanations, and choice of systems, 111
extensions, and stabilization period, 178
extranets, 15
factors, and requirements analysis, 110–11
“fat” client, 14
Federal Express, 176
FI (financial accounting) module, 31
finance modules, 32
financial cycle closure, 94
financial systems, and implementation, 131–3.
See also accounting; budgets
flat file databases, 16–17
flat organization, 158
flexibility, and requirements analysis, 108
format, of requirements analysis, 105–6
Forrester Research, 158, 166
Fox Meyer Drugs, 216–17, 219, 220
Fujitsu PC Corporation, 198
functionality: and big-bang implementation, 153; and requirements analysis, 109
gap analysis, 106, 107–9
Gemini Consulting, 75, 79, 83
general administration, and evaluation, 183.
See also management
general support materials, and training, 189
Geneva Steel: and bankruptcy, 219; and clean slate reengineering, 78–80; and disparate systems, 91; expectations and cultural issues of change, 11, 38–48; and implementation compromises, 176–7; and personnel reduction, 93–4; and technology enabled reengineering, 75–8
Grow, Robert, 40
Gruner, Loren, 71
Hallman, K. D., 132
Harmon, Gregg, 133, 135, 136, 139

© Cambridge University Press

www.cambridge.org
Index

Hershey Foods Corp., 221
Hewlett-Packard Co., 70
HR (human resources) module, 31
Human Factors International, 57
human resources, and implementation, 139. See also personnel
Hydro Agri, 52–3, 55, 56
IBM Corp., 20
implementation: alternative approaches to, 160–2; and big-bang approach, 151–2, 152–4, 155–6, 156–70; and data input, 49–50, 56; and data warehouse, 68–9; and design, 128–9, 130–9; extent of, 159–60; failures of, 216–17, 220, 222; and organizational characteristics, 156–9; personnel and requirements analysis, 109; and phased approach, 152, 154–5, 156, 166; and proof of capabilities, 114; Quantum as case study of, 70–1, 162–71; and risk, 218–19, 221, 222–3; and small-r reengineering, 121, 122–3; and stabilization period, 176–7; and technology enabled reengineering, 77–8, 79–80; and training, 190–1
IMRglobal Corp. (IMRS), 6
information and information systems: changes in function of, 5–6; elimination of asymmetries in, 8; and implementation, 164; and management of Geneva Steel, 42–3, 45; and training, 189. See also integration
Informix Corp., 20
installation time, and requirements analysis, 108
Integral Results (consulting firm), 70
integration: of firm activities, 7; of information at Geneva Steel, 43, 46; and vendor-managed inventories, 202. See also information and information systems
interchangeability, of system modules, 32–3
Interlink Communications, 201
internal systems, and decision to replace, 133–4
international rollout, and implementation, 139
Internet, and electronic commerce, 198, 199–200. See also World Wide Web
internet protocol (IP), 15
intranets, 15, 63
inventories: and evaluation, 183–4; supplier-managed, 149; vendor-managed and electronic commerce, 201–2
Jackson, Mark, 164, 169, 170–1
J.D. Edwards, Inc.: and Internet-enabling ERP, 11, 206–12; and outsourcing, 101; percentage of ERP market, 30; portals and web access, 198, 199; reasons for selection of as vendor, 115
Kiddoo, Bob, 206, 211–12
Kindlimann AG, 39
knowledge: discovery of and data warehouse, 64; management and best practices databases, 22; and phased implementation, 155
large firms: and clean slate reengineering, 81; and implementation methodology, 157–8. See also multinational corporations
Lawson Software, 174
legacy software: and big-bang implementation, 152, 153; and data acquisition, 53; and database management systems, 20, 216; and data input, 49, 50, 52, 55, 59; definition of, 19; and Geneva Steel, 43; and Microsoft, 132; and phased implementation, 154; and risk, 216, 220
Leventhal School, University of Southern California, 206–12
life cycle: model of, 10; and risk, 213, 217–19; and training, 186, 191
Lindemann, Steve, 136, 137–8
linkage: and risk, 217; and stabilization period, 178
Lotus Data Systems, 90–1, 98, 142, 148
local area network (LAN), 15
Lotus Notes, 63
mainframe computing, 13
maintenance, and requirements analysis, 109
majority vote, and choice of system, 148
management: and information systems, 42–3; role of in decision making, 99. See also general administration
manpower, and chain of functions in R/3 ordering process, 37
manufacturing, and changing nature of jobs, 6
markets, growth of for ERP, 6. See also orders and ordering; vendors
matching process, and evaluation, 115–16
material requirements planning (MRP) system, 164
McKay, Kevin, 123
measures and measurement: and evaluation, 181; and requirements analysis, 110–11
merge in transit (MIT), 204–5
Microsoft: and database management systems, 20; design and implementation, 130–9, 146, 159, 215, 222; organization and choice of ERP system, 11, 35; and package software, 19; and poor-quality existing systems, 92; and small-r reengineering, 120, 121; and training, 187, 188, 189, 190
mini-mills, and steel industry, 41–2
MM (materials management) module, 32
models, artifacts, and processes (MAPs): characteristics of, 34–6; and design, 141–9; and implementation, 133; and requirements analysis, 102, 105; and risk, 220
modification, implementation and extent of, 159–60
modules: and implementation, 154, 159, 160; and variance in different packages, 31–2
monetary goals, and decision making, 97
Morgridge, John, 95, 98
motivations, and system design, 147
multinational corporations, 3–4
Nash Finch Corp., 128
Nestlé USA, Inc., 77, 125, 142
net present value approach, to decision making, 96–7
networks: and client servers, 15–16; and risk, 216. See also security
Noetix Corporation, 70
obliteration, and reengineering, 22
ODBC (open database connectivity) drivers, 207–8
OneWorld, 30, 206–12. See also J.D. Edwards on-line information, 8
operating systems: and choice of software, 19, 20; and risk, 215
Oracle: application capabilities of, 170; and competitors’ behavior, 4; and data warehouses, 65; and decision-making rationales, 95, 96; and implementation, 68–9; and modules, 32; percentage of ERP market, 6, 20; system failure and adoption of, 92; and vendors, 28–9
orders and ordering: and electronic commerce, 198–201; and relational databases, 18; SAP management process for, 35–7
organization: and decision making, 99; Geneva Steel as case study, 44; implementation method and characteristics of, 156–9; models of, 34, 35; and software change, 119–27, 129; standardization of, 7–8; and technology enabled reengineering, 77
organizational risks, 214, 221–4
output capabilities: and portals, 65–6;
Quantum as case study, 68–71; reports and queries, 61–5
outsourcing, of ERP, 100–1
Owens Corning Corp., 91, 94, 97, 125, 127, 143–4, 146, 149
package software: and data input, 54–5; definition and capabilities of, 19–20; versions of, 20–1
Pareto optimality, 148–9
partners and partnerships: definition and types of, 30–1; requirements of and decision making, 4; and risk, 220
peak resource requirements, 154
Penwest Pharmaceuticals, 125
PeopleSoft, 29, 58
Perrier Co., 222
personnel: and data input, 51, 52–3, 54; and data warehouse, 71; and phased implementation, 155; reduction in and business process rationales, 93–4; and requirements analysis, 103, 109; and risk, 219, 223–4; and small-r reengineering, 122. See also human resources; training phased implementation, 152, 154–5, 156, 166
Pirelli Co., 144–5, 148
planning, and Geneva Steel case study, 47
PM (plant maintenance) module, 32
poor-quality existing systems, 91–2
portals, and output capabilities, 65–6. See also Internet; World Wide Web
Porter, Les, 11, 206–12
post-implementation checklist, 184–5
PP (production planning) module, 32
Price Waterhouse, 30, 79
processes: definition and illustrations of, 35–6; and data input, 53, 54; and implementation, 133; and small-r reengineering, 122; stabilization periods and bottlenecks, 175. See also models, artifacts, and processes (MAPs)
Procter & Gamble Corp., 57, 81–2, 201
production: and chain of functions in R/3
ordering process, 37; and Geneva Steel, 41
productivity: and business process rationales, 94; and data input, 57
product line, 157
product lists, 145–6
profit centers, 137
project team and project managers: and evaluation, 184–5; and implementation, 155–6, 155–165
PS (project system) module, 32
purchasing: and chain of functions in R/3 ordering process, 37; and electronic commerce, 200; and financial processes, 133; and implementation, 139
Purina Mills, Inc., 52, 187
QM (quality management) module, 32
Quantum Computer: and clean slate reengineering, 82; and decision-making rationales, 95–6; and implementation, 11, 151–2, 162–71; output capabilities and data warehouse, 68–71; and risk, 220
queries, and output capabilities, 62
Radcliff, Michael, 94, 97
reality, and expectations during stabilization period, 177
real-time information, 8
Red Pepper Software, 143, 145
redundancy, in databases, 17, 51
reengineering: benefits and costs due to data inputs, 50–3; big-r reengineering, 119–20, 121, 126–7, 223; business process reengineering (BPR), 83–4; clean slate reengineering, 75, 78–80, 80–3, 84; and design, 117–19, 129–30; philosophies of, 21–2; small-r reengineering, 119–23, 136–8; technology enabled reengineering, 74–5, 75–8, 80, 82–3, 84; tools and technologies of, 4–5, 73–4
relational databases: and data input, 51; definition of, 17; and queries, 62; and sales orders, 18
reports and reporting: Geneva Steel and SAP, 45; and output capabilities, 61–2, 62–5 request for proposal (RFP), 102
requirements analysis: and choice of ERP system, 102–6; and choice of software, 21; and gap analysis, 107–9 requirements granularity, 104, 108
resellers, and electronic commerce, 203–4
resistance, personnel and data input, 52–3, 54
Richardson, Bruce, 98
risk: and big-bang implementation, 153; business risks, 213–14, 219–21; opportunities for, 10; organizational risks, 214, 221–4; and phased implementation, 154; survey on, 214; and technical risks, 213, 214–19
Roon, Chris, 145
R/3: chain of functions, 36–7; and communications, 16; and database management systems, 20; and data input, 55; and data warehouse, 64; and ease of use, 58; introduction and configuration of, 14–15; and operating systems, 19; organization structures model, 34; and small-r reengineering, 121; versions of, 21.
See also SAP America running in parallel, and implementation, 161–2
sales event, and relational database, 18
SAP America: and alliance partners, 30–1; and data acquisition, 53; Geneva Steel as case study, 44–8; and implementation failures, 216–17, 219; Microsoft as case study, 130–9; and order management process, 35–6; percentage of ERP market, 6; and security approaches, 16; and “Special Delivery” package, 83; and stabilization period, 174; and steel industry, 39; and vendors, 29–30.
See also R/3 schedule, for implementation, 135–6, 161. See also time and timing screen sequence, and data input, 54–5
script-based materials, and training, 189
“scripted” approach, to requirements analysis, 105–6
SD (sales and distribution) module, 32
security: and implementation compromises, 176–7; and networks, 15, 216; and risk, 216; and SAP, 16
Seid, Barry, 90–1, 98
Siemens Power Company, 152, 159–60, 189, 218, 222
Simons, Mitchell, 209–10
single number, and evaluation of packages, 110
small and medium enterprises (SMEs): impact of ERP on, 4; and implementation methodology, 157
small-r reengineering, 119–23, 127–8, 136–8
software: big-r and small-r reengineering and, 127–8; choice of and requirements analysis, 21; and models, artifacts, and processes (MAPs), 143; and organizational change, 119–27, 129; and requirements analysis, 103–4, 109–12; and technology enabled reengineering, 77, 78; types of, 18–20; versions of, 20–1, 79. See also legacy software; package software “software takers,” 122 Solvik, Peter, 97 “Special Delivery” package, and SAP, 83 stabilization period: and budget, 181; and data conversion, 174–5; description of, 172–3; documentation and training, 175; and evaluation, 178–84; and implementation compromises, 176–7; linkages, upgrades, and extensions, 177–8; and process bottlenecks, 175; and support organization, 173–4 standards, of networks, 15 steel industry, 39, 41–2. See also Geneva Steel strategic advantage, and clean slate reengineering, 82 strategic rationales, for decision making, 95 SunAmerica, 58 sunk costs, and evaluation, 180 “super users,” and training, 190 “supplier managed” inventories, 149 supply modules, 32 support organization, and stabilization period, 173–4 “switch setting,” and package software, 19 Sybase, 20 system failure, 92 systems validation test (SVT), 167–9 technical risks, 213, 214–19 technology enabled (constrained) reengineering, 74–5, 75–8, 80, 82–3, 84 technology rationales, for choice of systems, 90–3 Tektronix Corp., 160–1 temporary interfaces, and big-bang implementations, 152 “thin” client, 14, 109 M Co., 195 three-tier client server computing, 14 tight controls, and organization, 158–9 time and timing: and big-bang implementation, 153; and clean slate reengineering, 82; and evaluation, 178–9; and phased implementation, 155; and requirements analysis, 103; of training, 187. See also schedule “to be” modeling: design and reengineering policy, 117–19; and evaluation, 115; of organizational processes, 21; and requirements analysis, 106; and software change, 120 topics, and web server–based portals, 66 training: and data warehouse, 71; frequently asked questions about, 186–90; and implementation, 138, 169–70, 190–1; and risk, 219, 221, 223–4; and stabilization period, 175. See also personnel Transamerica Corp., 63 transmission control protocol (TCP), 15 trash hauler industry, 123 U.S. Government, and implementation failure, 221, 222 University of Southern California, 206–12 UNIX operating system, 19 upgrades: and requirements analysis, 108–9; and stabilization period, 178 user access, and electronic commerce, 198 user interface: and data input, 57; and requirements analysis, 108 user manuals, and training, 189 Utoff, Stephen, 92 value-added networks (VANs), 196 value creation, and models, artifacts, and processes (MAPs), 144–5 vendors: design and software changes, 127; electronic commerce and management of inventories, 201–2; primary companies, 28–30; and requirements analysis, 105, 113–14; and small-r reengineering, 123. See also markets Vito, Mark, 167 Waine, Aidan, 120, 132, 136, 137, 139 Wal-Mart, 134 WARP (worldwide ask replacement system), 165, 166, 169 waved implementation, 160–1 web forms technology (WFT), 196–7 web server–based portals, 65–6 weights and weighted portfolio: and evaluation, 181; and requirements analysis, 110–11
<table>
<thead>
<tr>
<th>232</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Digital Corp., 4, 96</td>
<td>World Wide Web: and reports, 63; websites as portals, 65</td>
</tr>
<tr>
<td>wide area networks (WANs), 15</td>
<td>Year 2000 (Y2K) issue, 90, 92, 128, 132, 180</td>
</tr>
<tr>
<td>Windows operating system, 20–1, 215. See also Microsoft</td>
<td></td>
</tr>
</tbody>
</table>