Magnetic fields influence many natural and man-made flows. They are routinely used in industry to heat, pump, stir and levitate liquid metals. There is the terrestrial magnetic field which is maintained by fluid motion in the earth’s core, the solar magnetic field which generates sunspots and solar flares, and the galactic field which influences the formation of stars. This is an introductory text on magnetohydrodynamics (MHD) – the study of the interaction of magnetic fields and conducting fluids.

This book is intended to serve as an introductory text for advanced undergraduate and postgraduate students in physics, applied mathematics and engineering. The material in the text is heavily weighted towards incompressible flows and to terrestrial (as distinct from astrophysical) applications. The final sections of the text also contain an outline of the latest advances in the metallurgical applications of MHD and so are relevant to professional researchers in applied mathematics, engineering and metallurgy.

Dr. P.A. Davidson is a Reader in Fluid Mechanics at the University of Cambridge, where his current research is in fluid mechanics in process metallurgy, turbulence and stability theory. He is the author of over 50 publications, and was awarded the Institute of Materials prize in 1996 for the best paper on non-ferrous metallurgy.
An Introduction to Magnetohydrodynamics
Cambridge Texts in Applied Mathematics

Complex Variables: Introduction and Applications
M.J. Ablowitz and A. S. Fokas

The Space-Time Ray Method
V.M. Babich, I. Molotkov and V.S. Buldyrev

Scaling, Self-Similarity and Intermediate Asymptotics
G.I. Barenblatt

Rarefied Gas Dynamics
Carlo Cercignani

High Speed Flow
C.J. Chapman

Introduction to Numerical Linear Algebra and Optimisation
Philippe G. Ciarlet

Applied Analysis of the Navier–Stokes Equations
C.R. Doering and J.D. Gibbon

Nonlinear Systems
P.G. Drazin

Solitons
P.G. Drazin and R.S. Johnson

Mathematical Models in the Applied Sciences
A. Fowler

Stability, Instability and Chaos
Paul Glendinning

Perturbation Methods
E.J. Hinch

Symmetry Methods for Differential Equations
Peter E. Hydon

A First Course in the Numerical Analysis of Differential Equations
A. Iserles

A Modern Introduction to the Mathematical Theory of Water Waves
R.S. Johnson

The Thermomechanics of Plasticity and Fracture
Gerard A. Maugin

Viscous Flow
H. Ockendon and J.R. Ockendon
Thinking About Ordinary Differential Equations
R. O'Malley

The Kinematics of Mixing
J.M. Ottino

Integral Equations
David Porter and David S.G. Stirling

Boundary Integral and Singularity Methods for Linearized Viscous Flow
C. Pozrikidis

Maximum and Minimum Principles
M.J. Sewell
An Introduction to Magnetohydrodynamics

P. A. DAVIDSON
University of Cambridge
For my family
Contents

Preface page xvii

Part A: The Fundamentals of MHD 1

Introduction: The Aims of Part A 1

1 A Qualitative Overview of MHD 3

1.1 What is MHD? 3
1.2 A Brief History of MHD 6
1.3 From Electrodynamics to MHD: A Simple Experiment 8
 1.3.1 Some important parameters in electrodynamics and MHD 8
 1.3.2 A brief reminder of the laws of electrodynamics 9
 1.3.3 A familiar high-school experiment 11
 1.3.4 A summary of the key results for MHD 18
1.4 Some Simple Applications of MHD 18

2 The Governing Equations of Electrodynamics 27

2.1 The Electric Field and the Lorentz Force 27
2.2 Ohm’s Law and the Volumetric Lorentz Force 29
2.3 Ampère’s Law 31
2.4 Faraday’s Law in Differential Form 32
2.5 The Reduced Form of Maxwell’s Equations for MHD 34
2.6 A Transport Equation for B 37
2.7 On the Remarkable Nature of Faraday and of Faraday’s Law 37
 2.7.1 An historical footnote 37
 2.7.2 An important kinematic equation 40
Contents

2.7.3 The full significance of Faraday’s law 42
2.7.4 Faraday’s law in ideal conductors: Alfvén’s theorem 44

3 The Governing Equations of Fluid Mechanics 47
Part 1: Fluid Flow in the Absence of Lorentz Forces 47

3.1 Elementary Concepts 47
3.1.1 Different categories of fluid flow 47
3.1.2 The Navier–Stokes equation 59
3.2 Vorticity, Angular Momentum and the Biot–Savart Law 61
3.3 Advection and Diffusion of Vorticity 64
3.3.1 The vorticity equation 64
3.3.2 Advection and diffusion of vorticity: temperature as a prototype 66
3.3.3 Vortex line stretching 70
3.4 Kelvin’s Theorem, Helmholtz’s Laws and Helicity 71
3.4.1 Kelvin’s Theorem and Helmholtz’s Laws 71
3.4.2 Helicity 74
3.5 The Prandtl–Batchelor Theorem 77
3.6 Boundary Layers, Reynolds Stresses and Turbulence Models 81
3.6.1 Boundary layers 81
3.6.2 Reynolds stresses and turbulence models 83
3.7 Ekman Pumping in Rotating Flows 90

Part 2: Incorporating the Lorentz Force 95

3.8 The Full Equations of MHD and Key Dimensionless Groups 95
3.9 Maxwell Stresses 97

4 Kinematics of MHD: Advection and Diffusion of a Magnetic Field 102
4.1 The Analogy to Vorticity 102
4.2 Diffusion of a Magnetic Field 103
4.3 Advection in Ideal Conductors: Alfvén’s Theorem 104
4.3.1 Alfvén’s theorem 104
4.3.2 An aside: sunspots 106
4.4 Magnetic Helicity 108
4.5 Advection plus Diffusion 109
4.5.1 Field sweeping 109
4.5.2 Flux expulsion 110
Contents

4.5.3 Azimuthal field generation by differential rotation 114
4.5.4 Magnetic reconnection 115

5 Dynamics at Low Magnetic Reynolds Numbers 117

5.1 The Low-R_m Approximation in MHD 118

Part 1: Suppression of Motion 119

5.2 Magnetic Damping 119
 5.2.1 The destruction of mechanical energy via Joule dissipation 120
 5.2.2 The damping of a two-dimensional jet 121
 5.2.3 Damping of a vortex 122

5.3 A Glimpse at MHD Turbulence 128

5.4 Natural Convection in the Presence of a Magnetic Field 132
 5.4.1 Rayleigh–Bénard convection 132
 5.4.2 The governing equations 133
 5.4.3 An energy analysis of the Rayleigh–Bénard instability 134
 5.4.4 Natural convection in other configurations 137

Part 2: Generation of Motion 139

5.5 Rotating Fields and Swirling Motions 139
 5.5.1 Stirring of a long column of metal 139
 5.5.2 Swirling flow induced between two parallel plates 142

5.6 Motion Driven by Current Injection 145
 5.6.1 A model problem 145
 5.6.2 A useful energy equation 146
 5.6.3 Estimates of the induced velocity 148
 5.6.4 A paradox 149

Part 3: Boundary Layers 151

5.7 Hartmann Boundary Layers 151
 5.7.1 The Hartmann Layer 151
 5.7.2 Hartmann flow between two planes 152

5.8 Examples of Hartmann and Related Flows 154
 5.8.1 Flow-meters and MHD generators 154
 5.8.2 Pumps, propulsion and projectiles 155

5.9 Conclusion 157
Contents

6 Dynamics at Moderate to High Magnetic Reynolds’ Number 159

6.1 Alfvén Waves and Magnetostrophic Waves 160
 6.1.1 Alfvén waves 160
 6.1.2 Magnetostrophic waves 163

6.2 Elements of Geo-Dynamo Theory 166
 6.2.1 Why do we need a dynamo theory for the earth? 166
 6.2.2 A large magnetic Reynolds number is needed 171
 6.2.3 An axisymmetric dynamo is not possible 174
 6.2.4 The influence of small-scale turbulence: the \(\alpha \)-effect 177
 6.2.5 Some elementary dynamical considerations 185
 6.2.6 Competing kinematic theories for the geo-dynamo 197

6.3 A Qualitative Discussion of Solar MHD 199
 6.3.1 The structure of the sun 200
 6.3.2 Is there a solar dynamo? 201
 6.3.3 Sunspots and the solar cycle 201
 6.3.4 The location of the solar dynamo 203
 6.3.5 Solar flares 203

6.4 Energy-Based Stability Theorems for Ideal MHD 206
 6.4.1 The need for stability theorems in ideal MHD: plasma containment 207
 6.4.2 The energy method for magnetostatic equilibria 208
 6.4.3 An alternative method for magnetostatic equilibrium 213
 6.4.4 Proof that the energy method provides both necessary and sufficient conditions for stability 215
 6.4.5 The stability of non-static equilibria 216

6.5 Conclusion 220

7 MHD Turbulence at Low and High Magnetic Reynolds Number 222

7.1 A Survey of Conventional Turbulence 223
 7.1.1 A historical interlude 223
 7.1.2 A note on tensor notation 227
 7.1.3 The structure of turbulent flows: the Kolmogorov picture of turbulence 229
 7.1.4 Velocity correlation functions and the Karman–Howarth equation 235
Contents

7.1.5 Decaying turbulence: Kolmogorov’s law, Loitisyansky’s integral, Landau’s angular momentum and Batchelor’s pressure forces 240
7.1.6 On the difficulties of direct numerical simulations 247
7.2 MHD Turbulence 249
7.2.1 The growth of anisotropy at low and high \(R_m \) 249
7.2.2 Decay laws at low \(R_m \) 252
7.2.3 The spontaneous growth of a magnetic field at high \(R_m \) 256
7.3 Two-Dimensional Turbulence 260
7.3.1 Batchelor’s self-similar spectrum and the inverse energy cascade 260
7.3.2 Coherent vortices 263
7.3.3 The governing equations of two-dimensional turbulence 264
7.3.4 Variational principles for predicting the final state in confined domains 267

Part B: Applications in Engineering and Metallurgy

Introduction: An Overview of Metallurgical Applications 273

8 Magnetic Stirring Using Rotating Fields 285
8.1 Casting, Stirring and Metallurgy 285
8.2 Early Models of Stirring 289
8.3 The Dominance of Ekman Pumping in the Stirring of Confined Liquids 294
8.4 The Stirring of Steel 298

9 Magnetic Damping Using Static Fields 301
9.1 Metallurgical Applications 301
9.2 Conservation of Momentum, Destruction of Energy and the Growth of Anisotropy 304
9.3 Magnetic Damping of Submerged Jets 308
9.4 Magnetic Damping of Vortices 312
9.4.1 General considerations 312
9.4.2 Damping of transverse vortices 314
9.4.3 Damping of parallel vortices 317
9.4.4 Implications for low-\(R_m \) turbulence 323
9.5 Damping of Natural Convection 324
Contents

9.5.1 Natural convection in an aluminium ingot 324
9.5.2 Magnetic damping in an aluminium ingot 329

10 Axisymmetric Flows Driven by the Injection of Current 332

10.1 The VAR Process and a Model Problem 332
10.1.1 The VAR process 332
10.1.2 Integral constraints on the flow 336
10.2 The Work Done by the Lorentz Force 338
10.3 Structure and Scaling of the Flow 340
10.3.1 Differences between confined and unconfined flows 340
10.3.2 Shercliff’s self-similar solution for unconfined flows 342
10.3.3 Confined flows 344
10.4 The Influence of Buoyancy 346
10.5 Stability of the Flow and the Apparent Growth of Swirl 348
10.5.1 An extraordinary experiment 348
10.5.2 There is no spontaneous growth of swirl!! 350
10.6 Flaws in the Traditional Explanation for the Emergence of Swirl 351
10.7 The Rôle of Ekman Pumping in Establishing the Dominance of Swirl 353
10.7.1 A glimpse at the mechanisms 353
10.7.2 A formal analysis 356
10.7.3 Some numerical experiments 358

11 MHD Instabilities in Reduction Cells 363

11.1 Interfacial Waves in Aluminium Reduction Cells 363
11.1.1 Early attempts to produce aluminium by electrolysis 363
11.1.2 The instability of modern reduction cells 364
11.2 A Simple Mechanical Analogue for the Instability 368
11.3 Simplifying Assumptions 372
11.4 A Shallow-Water Wave Equation and Key Dimensionless Groups 374
11.4.1 A shallow-water wave equation 374
11.4.2 Key dimensionless groups 378
11.5 Travelling Wave and Standing Wave Instabilities 379
11.5.1 Travelling waves 379
11.5.2 Standing waves in circular domains 380
11.5.3 Standing waves in rectangular domains 381
Contents

11.6 Implications for Reduction Cell Design 385

12 High-Frequency Fields: Magnetic Levitation and Induction Heating 387

12.1 The Skin Effect 388
12.2 Magnetic Pressure, Induction Heating and High-Frequency Stirring 390
12.3 Applications in the Casting of Steel, Aluminium and Super-Alloys 394
 12.3.1 The induction furnace 394
 12.3.2 The cold crucible 397
 12.3.3 Levitation melting 398
 12.3.4 Processes which rely on magnetic repulsion EM valves and EM casters 403

Appendices

1 Vector Identities and Theorems 405
2 Stability Criteria for Ideal MHD Based on the Hamiltonian 407
3 Physical Properties of Liquid Metals 417
4 MHD Turbulence at Low R_m 418

Bibliography 422

Suggested Books on Fluid Mechanics 422
Suggested Books on Electromagnetism 422
Suggested Books on MHD 423
Journal References for Part B and Appendix 2 423

Subject Index 427
Preface

Prefaces are rarely inspiring and, one suspects, seldom read. They generally consist of a dry, factual account of the content of the book, its intended readership and the names of those who assisted in its preparation. There are, of course, exceptions, of which Den Hartog’s preface to a text on mechanics is amongst the Wittiest. Musing whimsically on the futility of prefaces in general, and on the inevitable demise of those who, like Heaviside, use them to settle old scores, Den Hartog’s preface contains barely a single relevant fact. Only in the final paragraph does he touch on more conventional matters with the observation that he has ‘placed no deliberate errors in the book, but he has lived long enough to be quite familiar with his own imperfections’.

We, for our part, shall stay with a more conventional format. This work is more of a text than a monograph. Part A (the larger part of the book) is intended to serve as an introductory text for (advanced) undergraduate and postgraduate students in physics, applied mathematics and engineering. Part B, on the other hand, is more of a research monograph and we hope that it will serve as a useful reference for professional researchers in industry and academia. We have at all times attempted to use the appropriate level of mathematics required to expose the underlying phenomena. Too much mathematics can, in our opinion, obscure the interesting physics and needlessly frighten the student. Conversely, a studious avoidance of mathematics inevitably limits the degree to which the phenomena can be adequately explained.

It is our observation that physics graduates are often well versed in the use of Maxwell’s equations, but have only a passing acquaintance with fluid mechanics. Engineering graduates often have the opposite background. Consequently, we have decided to develop, more or less from first principles, those aspects of electromagnetism and fluid mechanics
Preface

which are most relevant to our subject, and which are often treated inadequately in elementary courses.

The material in the text is heavily weighted towards incompressible flows and to engineering (as distinct from astrophysical) applications. There are two reasons for this. The first is that there already exist several excellent texts on astrophysical, geophysical and plasma MHD, whereas texts oriented towards engineering applications are somewhat thinner on the ground. Second, in recent years we have witnessed a rapid growth in the application of MHD to metallurgical processes. This has spurred a great deal of fruitful research, much of which has yet to find its way into textbooks or monographs. It seems timely to summarise elements of this research. We have not tried to be exhaustive in our coverage of the metallurgical MHD, but we hope to have captured the key advances.

The author is indebted to the late D. Crighton, without whose support this text would never have seen the light of day, to H.K. Moffatt and J.C.R. Hunt for their constant advice over the years, to K. Graham for typing the manuscript, and to C. Davidson for her patience. Above all, the author would like to thank Stephen Davidson who painstakingly read each draft, querying every ambiguity and exposing the many inconsistencies in the original text.