Imaging Dopamine

Since its discovery 50 years ago, brain dopamine has been implicated in the control of movement and cognition, and has emerged as a key factor in diverse brain diseases such as Parkinson’s disease, schizophrenia, and drug addiction. This book is an illustrated biography of the dopamine molecule, beginning with an account of its synthesis in brain, and then describing its storage, release and signalling mechanisms, and its ultimate metabolic breakdown. Using color illustrations of positron emission tomography (PET) scans, each chapter presents a specific stage in the biochemical pathway for dopamine. Writing for researchers and graduate students, Paul Cumming presents an overview of all that has been learned about dopamine through molecular imaging, a technology which allows the measurement of formerly invisible processes in the living brain. He reviews current technical controversies in the interpretation of dopamine imaging and presents key results illuminating the roles of brain dopamine in illness and health.

Paul Cumming is Professor in the Department of Nuclear Medicine at Ludwig-Maximilian University in Munich, Germany. He currently serves on the editorial boards of the journals Synapse, Journal of Cerebral Blood Flow and Metabolism, and NeuroImage.
Imaging Dopamine

Paul Cumming
Ludwig-Maximilian University, Munich, Germany
“But as if a magic lantern threw the nerves in patterns on a screen.”

T. S. Eliot
To the remembrance of
Professor George Leslie Cumming (1930–1994)
Contents

Foreword xiii
Acknowledgments xv

Introduction 1

1. The life history of dopamine 5
 1.1. A brief overview of the dopamine pathway 5
 1.2. A brief account of the blood–brain barrier 10
 1.3. Neurochemical anatomy of the nigrostriatal pathway 11
 1.4. Physiology of dopamine neurons 15
 1.5. The post-synaptic effects of dopamine 16
 1.6. A brief introduction to molecular imaging 17

2. Enzymology of tyrosine hydroxylase 19
 2.1. Molecular biology and enzymology 19
 2.2. Disorders of tyrosine hydroxylase 20
 2.3. Regulation of activity 22
 2.4. Autoreceptor modulation of activity 24
 2.5. Phosphorylation of tyrosine hydroxylase 25
 2.6. Transcriptional regulation 27

3. The assay of tyrosine hydroxylase 29
 3.1. Accumulation of DOPA after treatment with NSD 1015 29
 3.2. Superfusion of living striatum with [3H]tyrosine 34
 3.3. Intracerebroventricular infusion of [3H]tyrosine 36
 3.4. Intravenous injection of [3H]tyrosine 36
 3.5. Modeling the metabolism of [3H]tyrosine 37
 3.6. Autoradiography in vivo with tyrosine: an introduction to the analysis of PET data 40
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Enzymology of aromatic amino acid decarboxylase</td>
<td>45</td>
</tr>
<tr>
<td>4.1.</td>
<td>Kinetic properties of AAADC in vitro</td>
<td>45</td>
</tr>
<tr>
<td>4.2.</td>
<td>Regulation and transcription of AAADC</td>
<td>48</td>
</tr>
<tr>
<td>4.3.</td>
<td>AAADC activity in living brain</td>
<td>50</td>
</tr>
<tr>
<td>4.4.</td>
<td>In vivo metabolism of AAADC substrates</td>
<td>51</td>
</tr>
<tr>
<td>5.</td>
<td>PET studies of DOPA utilization</td>
<td>54</td>
</tr>
<tr>
<td>5.1.</td>
<td>General aspects of the quantitation of FDOPA utilization</td>
<td>54</td>
</tr>
<tr>
<td>5.2.</td>
<td>Methods for the quantitation of DOPA-PET studies</td>
<td>57</td>
</tr>
<tr>
<td>5.3.</td>
<td>The true activity of AAADC in living brain</td>
<td>67</td>
</tr>
<tr>
<td>5.4.</td>
<td>Other substrates for PET studies of AAADC</td>
<td>68</td>
</tr>
<tr>
<td>5.5.</td>
<td>Pharmacological modulation of AAADC activity</td>
<td>69</td>
</tr>
<tr>
<td>5.6.</td>
<td>Clinical FDOPA-PET studies</td>
<td>71</td>
</tr>
<tr>
<td>5.7.</td>
<td>Personality and cognition</td>
<td>77</td>
</tr>
<tr>
<td>6.</td>
<td>Conjugation and sulfonation of dopamine and its metabolites</td>
<td>80</td>
</tr>
<tr>
<td>6.1.</td>
<td>Biochemistry of COMT</td>
<td>80</td>
</tr>
<tr>
<td>6.2.</td>
<td>Behavioral correlates of COMT activity</td>
<td>82</td>
</tr>
<tr>
<td>6.3.</td>
<td>Arylsulfotransferase</td>
<td>83</td>
</tr>
<tr>
<td>7.</td>
<td>Dopamine synthesis and metabolism rates</td>
<td>85</td>
</tr>
<tr>
<td>7.1.</td>
<td>Steady-state and the epistemology of dopamine metabolism</td>
<td>85</td>
</tr>
<tr>
<td>7.2.</td>
<td>Turnover of dopamine</td>
<td>86</td>
</tr>
<tr>
<td>7.3.</td>
<td>Turnover of the acidic metabolites</td>
<td>89</td>
</tr>
<tr>
<td>7.4.</td>
<td>3-Methoxytyramine</td>
<td>95</td>
</tr>
<tr>
<td>8.</td>
<td>MAO activity in the brain</td>
<td>99</td>
</tr>
<tr>
<td>8.1.</td>
<td>Enzymology</td>
<td>99</td>
</tr>
<tr>
<td>8.2.</td>
<td>Neurochemical anatomy of MAO</td>
<td>101</td>
</tr>
<tr>
<td>8.3.</td>
<td>Effects of MAO inhibition and knockout on dopamine transmission</td>
<td>102</td>
</tr>
<tr>
<td>8.4.</td>
<td>Disorders of MAO and knockouts</td>
<td>103</td>
</tr>
<tr>
<td>8.5.</td>
<td>MAO activity in vivo</td>
<td>104</td>
</tr>
<tr>
<td>8.6.</td>
<td>Clinical PET studies of MAO</td>
<td>109</td>
</tr>
<tr>
<td>9.</td>
<td>Vesicular storage of dopamine</td>
<td>111</td>
</tr>
<tr>
<td>9.1.</td>
<td>Biochemistry of vesicular monoamine transporters</td>
<td>111</td>
</tr>
<tr>
<td>9.2.</td>
<td>Chromaffin granules</td>
<td>112</td>
</tr>
</tbody>
</table>
9.3. Regulating and knocking out VMAT2 114
9.4. Ligands and tracers for VMAT2 115
9.5. Clinical PET studies of VAT2 120

10. Dopamine release: from vesicles to behavior 122
10.1. Methods for measuring dopamine release 122
10.2. Concentration gradients for dopamine across the plasma membrane 127
10.3. The action of psychostimulants 128
10.4. Behavioral correlates of dopamine release 131

11. The plasma membrane dopamine transporter 137
11.1. Molecular biology of DAT and regulation of expression 137
11.2. Functional aspects of DAT, and how to live without it 138
11.3. Ligands for the detection of DAT 141
11.4. Clinical DAT studies 149

12. Dopamine receptors 160
12.1. Pharmacology and biochemistry 160
12.2. Neurochemical anatomy 161
12.3. Dopamine receptor signal transduction 163
12.4. Agonist-induced internalization of dopamine receptors 165

13. Imaging dopamine D1 receptors 167
13.1. General aspects of D1 receptors 167
13.2. PET ligands for D1 receptors 168
13.3. Imaging studies of D1 receptors 171

14. Imaging dopamine D2 receptors 174
14.1. General properties of D2 ligands 174
14.2. Oligomeric associations of dopamine D2 receptors 180
14.3. Effects of denervation on D2 receptors 181
14.4. Competitive binding at D2 receptors in living brain 182
14.5. Clinical studies of dopamine D2 receptors 194

15. Factors influencing D2 binding in living brain 203
15.1. Pharmacological modulation 203
15.2. Clinical studies of psychostimulant-evoked dopamine release 205
15.3. Other pharmacological challenges altering dopamine receptor binding 212
xii Contents

15.4. Transcranial magnetic stimulation, deep brain stimulation, and sensory stimulation 215
15.5. Personality 217
15.6. Pain and stress 218
15.7. Motivation, craving, and placebo 220

16. The absolute abundance of dopamine receptors in the brain 224
17. Conclusions and perspectives 229

References 234
Index 331

The color plates are between pages 28 and 29, and pages 224 and 225.
Foreword

This book is timely and will prove useful for many researchers interested not only in the specific topic, “Imaging Dopamine,” but also in more general aspects of dopamine. In neurotransmitter research, dopamine has served a spearhead function ever since its discovery in the brain half a century ago. Dopamine has also played a key role in molecular imaging research; the imaging of dopamine receptors started very early in the history of positron emission tomography.

Although this book has its focus on imaging, the full utilization of imaging techniques depends on the background knowledge gained from other methodologies, a theme that has been duly considered by the author. Thus, the various aspects of dopamine, dealing, for example, with its synthesis, storage, release, and metabolism, as well as with the enzymes and transporter proteins involved in these processes, are treated in sufficient detail to provide a well-integrated and reasonably complete picture of the very complex dopamine transmission machinery.

It should go without saying that the growth of knowledge regarding the various aspects of neurotransmission has not taken place without intervals of considerable disagreement and controversy. In the course of the past half century’s intense research, many issues have been resolved, whereas others are still being debated. I am pleased to find that the author has devoted some space to historical aspects, starting out with a scheme of the dopamine nerve terminal published by me in 1966. Indeed, our first experiments made in 1957 and the following years initially led to a considerable controversy, based largely on the belief prevailing at the time that the nerve cells in the brain communicated mainly by electric signaling. Thus, our proposal that the catecholamines dopamine and noradrenaline served important neurotransmitter functions in the brain was at the time hard to accept by most leaders in the field. This was evident at an international meeting in London in 1960. But only five years later, at a subsequent international meeting in Stockholm, the concept of
chemical transmission in the brain had already gained considerable acceptance. This was largely due to the development of histochemical techniques, by means of which Swedish research groups had been able to visualize the neuronal localization of monoamines in the central nervous system, thus providing further evidence of their neurotransmitter function. However, very soon other controversies followed. For example, there arose a debate on whether synaptic vesicles were essential in the physiological release process or were just serving as “garbage cans.”

Since those early days, the field of dopamine research has moved a long way, largely thanks to the advent of an array of powerful techniques. The early pharmacological work proposing the existence of several subtypes of dopamine receptors, “autoreceptors,” and transporter proteins could be confirmed by molecular biology techniques, and their roles further elucidated by, for example, knockout techniques. The ongoing development of molecular imaging will clearly play a key role. It will continue to bridge the gap between animal and human research, and more sophisticated techniques will make it possible to record the processes underlying even the highest integrative functions of the brain. The present book will serve as an important guide for many researchers in this endeavor.

Arvid Carlsson
Acknowledgments

The author thanks those who knowingly or unknowingly made this work possible, including: Ariel Ase, Peter Bartenstein, Isabelle Boileau, Per Borghammer, Evgeny Budygin, Arvid Carlsson, Paul B. S. Clarke, Anne, Steven, and Eva Cumming; Paul Deep, Doris Doudet, Charles Gerfen, Gerhard Gründer, Joel Harrison, Per Hartvig, Eva Honoré, Irene Kon, Yoshitaka Kumakura, Hiroto Kuwabara, Christine Laliberté, Nanna Lind, Wayne R. Martin, Patrick and Edith McGeer, Ole Munk, Søren Dinesen Østergaard, Steen Jacobsen, Svend Borup Jensen, Kasper Pedersen, Luciano Minuzzi, Anette Moustgaard, Pedro Rosa-Neto, Oliver Rouset, Donald Smith, Gwenn Smith, Manoucher Vafaee, Ingo Vernalekan, Steven R. Vincent, Franz X. Vollenweider, Terri Whetstone, Matthäus Willeit, and Dean F. Wong.