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1

I ntroduction

1.1 Introduction to Asymptotics

Before venturing into our examination of Mellin-Barnes integrals, we present an
overview of some of the basic definitions and ideas found in asymptotic analysis.
The treatment provided here is not intended to be comprehensive, and several
high quality references exist which can provide a more complete treatment than is
given here: in particular, we recommend the tracts by Olver (1974), Bleistein &
Handelsman (1975) and Wong (1989) as particularly good treatments of asymptotic
analysis, each with their own strengths.t

1.1.1 Order Relations

Let us begin our survey by defining thandau symbol® ando and the notion
of asymptotic equality.

Let f andg be two functions defined in a neighbourhoodxgf We say that
f(x) = O(g(x)) asx — xq if there is a constan¥ for which

lf )] =M [g(x)]

for x sufficiently close tocg. The constan¥ depends only on how close tg we
wish the bound to hold. The notati@(g) is read as ‘big-oh of’, and the constant
M, which is often not explicitly calculated, is termed fihgplied constant.

In a similar fashion, we defing(x) = o(g(x)) asx — xo to mean that

If(x)/g(x) — 0

T Olver provides a good balance between techniques used in both integrals and differential equa-
tions; Bleistein & Handelsman present a relatively unified treatment of integrals through the use of
Mellin convolutions; and Wong develops the theory and application of (Schwartz) distributions in the
setting of developing expansions of integrals.
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asx — X, Subject to the proviso thgt(x) be nonzero in a neighbourhood .
The expression(g) is read as 'little-oh og’, and from the preceding definition,
it is immediate thatf = o(g) implies thatf = O(g) (merely take the implied
constant to be any (arbitrarily small) positive number).

The last primitive asymptotic notion required is that of asymptotic equality.
We write

fx) ~glx)
asx — xp to mean that
im £ _ 1,
X—Xg g(x)

provided, of course, thatis nonzero sufficiently close tg. The tilde here is read
‘is asymptotically equal to’. An equivalent formulation of asymptotic equality is
readily available: fox — xo,

fx)~gkx) iff  f(x)=g@{l+oD}.

Example 1. The function loge satisfies the order relation lag= O(x — 1) as
x — 00, since the ratiglogx)/(x — 1) is bounded for all large. In fact, it is also
true that logc = o(x — 1) for largex, and forx — 1, logx ~ x — 1.

Example 2. Stirling’s formula is a well-known asymptotic equality. For large
we have

nl ~ (2m)ze """z,

This result follows from the asymptotic expansion of the gamma function, a result
carefully developed in §2.1.

Example 3. The celebrated Prime Number Theorem is an asymptotic equality. If
we denote byr(x) the number of primes less than or equaktahen for large
positivex we have the well-known result

T(x) ~

logx”
With the aid of Gauss' logarithmic integral, T

. *odt
||(x)=/ o7
2 logs

we also have the somewhat more accurate form

a(x) ~lix) (x— 00).

T We note here that (i) is also used to denote the same integral, but taken over the interval
(0, x), with x > 1. With this larger interval, the integral is a Cauchy principal value integral.
The notation in this example appears to be in use by some number theorists, and is also sometimes
written Li(x).
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That both forms hold can be seen from a simple integration by parts:

i) = x 2 +/"‘ dt
* ~logx log2 " J, (log1)?’

An application of I'H6pital’s rule reveals that the resulting integral on the right-
hand side iso(x/logx), from which thex/logx form of the Prime Number
Theorem follows.

A number of useful relationships exist for manipulating the Landau symbols.
The following selections are all easily obtained from the above definitions, and are
not established here:

@ o) =00 (&) 0(NH)+0(f)=0(f)

(b) o(o(f)) = o(f) () o(f) + o(f) = o(f)

(©) 0(fe) = 0(f)-0(8) (9)o(f)+ O(f)=0(f)

(d) O(f)-o(g) =o(fg)  (h) O((f)) =0o(O(f)) = o(f).

It is easy to deduce linearity of Landau symbols using these properties, and it is
a simple matter to establish asymptotic equality as an equivalence relation. In the
transition to calculus, however, some difficulties surface.

A moment’s consideration reveals that differentiation is, in general, often badly
behaved in the sense thatfif = O(g), then it does not necessarily follow that
= 0(g’), as the exampl¢ (x) = x + sine* aptly illustrates: for large, real,
we havef = O(x), but the derivative off is not bounded (i.e., na? (1)).

The situation for integration is a good deal better. It is possible to formulate
many results concerning integrals of order estimates, but we content ourselves
with just two.

(1.1.1)

Example 4. For functionsf andg of a real variablex satisfyingf = O(g) as
x — xp on the real line, we have

/ f(t)dt:O(/ |g(t)|dt> (x = xg).

A proof can be fashioned along the following lines: §6@) = O(g(¢)), let M be
the implied constant so thaf (¢)| < M |g(¢)| for ¢ sufficiently close taxg, say
|t — xo| < n. (Forxo = oo, a suitable interval would be > N for some large
positive N.) Then

—Mg@®)| = f(1) =M|g®)] (|t —xo| =),

whence the result follows upon integration.

Exampleb. If f is an integrable function of a real variable and f(x) ~ x",
Re(v) < —1 asx — oo, then

o) v+1
f F6)dt ~ —j+ . (=00,
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A proof of this claim follows fromf (x) = x"{1 + ¥ (x)} wherey (x) = o(1) as
x — oo, for then

oo v+1 00
/ f(t)dz:—j+l+/ t" (1) dt.

But ¢ (r) = o(1) implies that fore > 0 arbitrarily small, there is ang > 0
for which |y (r)|] < € wheneverr > xo. Thus, the remaining integral may be

bounded as
/ t'y (1) dt

Accordingly, we find
00 xv+l xv+1 xv+l
/x f@)dt = p—— +0<U+ 1) = +1{1+0(1)},
from which the asymptotic equality is immediate. O

o0
<e/ [t"|dt  (x > xg).

Itis inthe complex plane that we find differentiation of order estimates becomes
better behaved. This is due, in part, to the fact that the Cauchy integral theorem
allows us to represent holomorphic functions as integrals which, as we have noted,
are better behaved in the setting of Landau symbols. A standard result in this
direction is the following:

Lemma 1.1.Let f be holomorphic in a region containing the closed annular
sectorS = {z : @ < argz —z0) < B, |z — 20/ = R > 0}, and suppose
f(@) = 0(z") (resp. f(z) = o(z")) asz — o in the sector, for fixed reab.
Thenf™(z) = O(z"™) (resp.f™ = o(z"™")) asz — oo in any closed annular
sector properly interior taS with common vertexo.

The proof of this result follows from the Cauchy integral formula fét, and
is available in Olver (1974, p. 9).

1.1.2 Asymptotic Expansions

Let a sequence of continuous functideg}, n =0, 1, 2, ..., be defined on some
domain, and lety be a (possibly infinite) limit point of this domain. The sequence
{¢,} is termed anasymptotic scaléf it happens thatp,,1(x) = o(¢,(x)) as

x — xp, for everyn. If f is some continuous function on the common domain of
the asymptotic scale, then by an (infinitsymptotic expansioof f with respect

to the asymptotic scal@, } is meant the formal seri€s . , a,¢, (x), provided the
coefficientss,,, independent of, are chosen so that for any nonnegative intéger

N
) =) anpu(x) + 0(@n+1(x))  (x = x0). (1.1.2)

n=0
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In this case we write
o.¢]
F&)~ Y anpa(x)  (x = xo).
n=0

Such aformal series is uniquely determined in view of the fact that the coefficients
a, can be computed from

1 =
ay = xlmo ™ {f(x) - §an¢n(x)} (N=0,1,2...).
The formal series so obtained is also referred to as an asymptotic expansion of
Poincaré typeor an asymptotic expansion in the sense of Poincaré or, more simply,

a Poincaré expansion. Examples of asymptotic scales and asymptotic expansions
built with them are easy to come by. The most commonplace is the asymptotic
power series: ansymptotic power serias a formal series

o0

D an(x — x0)",

n=0
where the appropriate asymptotic scale is the sequéace- xp)'"}, n =
0,1,2,..., and they, are constants for whickx — xo)"+* = o((x — x0)™)

asx — xg. Any convergent Taylor series expansion of an analytic funcfion
serves as an example of an asymptotic power series yyilpoint in the domain
of analyticity of f, v, = n for any nonnegative integer, and the coefficients in
the expansion are the familiar Taylor coefficieats= f™ (xo)/n!.

Asymptotic expansions, however, need not be convergent, as the next two
examples illustrate.

Example 1. WaTsoN’s LEMMA. A well-known result of Laplace transform theory

is that the Laplace transform of a piecewise continuous function on the interval
[0, +00) iso(1) as the transform variable grows without bound. By imposing more
structure on the small parameter behaviour of the function being transformed, a
good deal more can be said about the growth at infinity of the transform.

Lemma 1.2.Let g(zr) be an integrable function of the variable > 0 with
asymptotic expansion

gty ~ Zant("“‘_“)/“ (t — 04)
n=0
for some constants > 0, u > 0. Then, provided the integral converges for
all sufficiently largex, the Laplace transform of, L[g; x], has the asymptotic
behaviour

* ind n—+Aa a,
E[g;X]E/O e th(f)dtNZ;)F<T>W (x — 00).
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Proof. To see this, let us put, for positive integgrand: > 0,

N-1
gn() =g() — Z Clnt(n'”‘_")//"
n=0

so that the Laplace transform has a finite expansion with remainder given by

N-1

n—+Aa a, R

,C[g;X] = Z F<T>W +/ e th(l) dt. (113)
n=0 0

Sincegy (1) = O (W= W/1) there are constani§y andzy for which
lgn ()] < Ky t W=/ (0 <t < 1y).

Use of this in the remainder term in our finite expansion (1.1.3) allows us to write

'/ ’ e Mgn(t)dt
0

N
< ko [ e
0

N+ A Ky

By hypothesisL[g; x] exists for all sufficiently large, so the Laplace transform
of gy must also exist for all sufficiently large by virtue of (1.1.3). LeX be such
thatL[gy; x] exists for allx > X, and put

t

Gulr) = / X gy (v) dv.
In

The functionG y so defined is a bounded continuous functiorm@n co), whence

the bound

Ly = sup [Gy()|

[tn,00)

exists. Then foxr > X, we have

(o] o0
/ e Mgn(@t)dt = / e~ X=Xt o (1) dt
Iy

N

o0
=(x—-X) / e CIG () di
N

after one integration by parts. After applying the uniform boiRdto the integral
that remains, we arrive at

o0
/ e gn(t)dt
N

o0
<(x—X)Ly / e gt = Lye "% (1.1.5)

IN

forx > X.
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Together, (1.1.4) and (1.1.5) yield
o N+ K
V e Mgn(t)dt| < r(—>—N + Lye @~ %m
0 158

TN/
which, sinceL ye~*~% is o(x ") for any positivev, establishes the asymptotic
expansion foll[g; x]. O

As a simple illustration of the use of Watson'’s lemma, consider the Laplace
transform of (1 + t)%. From the binomial theorem, we have the convergent
expansion as — 0

o 1.3.5...(2n -3
(1+t)%=1+%t—%t2+2(—)"_1 Z"n(' "=

Since(141) is of algebraic growth, its Laplace transform clearly existsfor O,
and Watson’s lemma produces the asymptotic expansion

Z( - ,1:3:5...2n1 -3

1
[(1 + 1)2 x] ~ + ann+1

asx — oo. The resulting asymptotic series is divergent, since the ratio of the
(n+1)th tonth terms in absolute value {&r — 1) /(2x) which, for fixedx, tends to

oo with n. The reason for this divergence is a simple consequence of our applying
the binomial expansion fafl + t)% (valid in 0 < ¢t < 1) in the Laplace integral
beyond its interval of convergence.

Example 2. The confluent hypergeometric functiot’f1; 1; z) (which equals the
exponential integrad® E1(z)) has the integral representation

t+2z

for z not a negative number or zero. In fact, it is relatively easy to show that this
integral representation converges uniformly in the closed annular s€cioe
{z:|z]l = €, |argz| < & — &} for every positivec and every positivé < 7. Such
a demonstration can proceed along the following lines.

Putf = argz for z € S. 5 and observe that for any nonnegativer + z|?> =
12+ |22 + 2|z|t cosd > 12 + |z|? — 2|z|r coss > |z|? sin?s. Thus, the integrand
of (1.1.6) admits the simple bound

o0 —t
UL l;z):/ o di (1.1.6)
0

et +zI7t < e7'|z| cosed
whence we have, upon integrating the bound,

|U(L; 1; 2)| < |z|~* cosed

T An alternative notation for this function i8(1; 1; z).
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for z € S¢ 5. The uniform convergence of the integral follows, from which we see
thatU (1; 1; z) is holomorphic in the plane cut along the negative real axis.

Through repeated integration by parts, differentiating in each case the factor
(t + z)~* appearing at each step, we arrive at

ULiLa) =) () k=Dl + Ri(2), (1.1.7)
k=1
where the remainder term, (z) is

o0 e—l‘

R,(2) = (—)"n!f (1.1.8)

——dt.
0 (t + Z)n+l
Evidently, each term produced in the series in (1.1.7) is a term from the asymptotic
scalg(z 7/}, j = 1,2, ..., sothatifwe can showthatforanyR,(z) = O(z"Y),
we will have established the asymptotic expansion

Ulilig) ~ Y () k=D, (1.1.9)
k=1
for z > oo inthe sectotargz| <7 — 8 < 7.
To this end, we observe that the bound used in establishing the uniform con-
vergence of the integral (1.1.6), namelys+ z| < 1/|z| siné, can be brought to
bear on (1.1.8) to yield

n!
Rn N = ——-
R @l = rgingym

The expansion (1.1.9) is therefore an asymptotic expansion in the sense of Poincaré
It is, however, quite clearly a divergent series, as ratios of consecutive terms in
the asymptotic series diverge to as (n!/|z|"*1)/((n — D)!/|z|") = n/|z], as

n — oo, irrespective of the value of. Nevertheless, the divergent character of
this asymptotic series does not detract from its computational utility. a

In Tablest 1.1 and 1.2, we have gathered together computed and approxi-
mate values ot/ (1; 1; z), with approximate values derived from the finite series
approximation

Su(2) =Y () Mk =D,
k=1
obtained by truncating the asymptotic expansion (1.1.9) afterms. It is appar-
ent from the tables that the calibre of even modest approximatiob¥1p1; z)
becomes quite good ongg is of the order of 100, and is good to two or more
significant digits for values ofz| as small as 10. This naturally leads one to

T InTables 1.1 and 1.2 we have adopted the convention of writingin lieu of the more cumbersome
x x 107,



Table 1.1.Computed and approximate values of
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U(1; 1; z) for real values ot

b4 UL 2) S5(2) S10(z)

10 | 0.915633—1) | 0.91640G—1) | 0.915456—1)
50 | 0.19615%-1) | 0.196151—1) | 0.19615%—1)
100 | 0.990194—2) | 0.990194—2) | 0.990194-2)

Table 1.2.Computed and approximate values of
U(1; 1; z) for imaginary values of

z UL 1 2)

10i 0.948854—-2) — 0.98191Q@—-1)i
50i 0.399048—3) — 0.199841—1)i
100 0.999401—4) — 0.99980Q—2)i

z S5(2)

10i 0.94000q—2) — 0.98240Q—1)i
50 0.39904@—3) — 0.199841—1)i
1006 0.99940@—4) — 0.99980Q—2)i

z S10(2)

10i 0.950589—2) — 0.982083—-1)i
50 0.39904§—3) — 0.199841—-1)i
1006 0.99940%—4) — 0.99980Q—2)i

wonder how the best approximation can be obtained, in view of the utility of
these finite approximations and the divergence of the full asymptotic expansion:
how can we select so that the approximation furnished I8y (z) is the best
possible?

The strategy we detail here, callegtimal truncation is easily stated: for a
fixed z, the successive terms in the asymptotic expansion will reach a minimum
in absolute value, after which the terms must necessarily increase without bound
given the divergent character of the full expansion; see Fig. 1.1. It is readily
shown that the terms i, (z) attain their smallest absolute value when- |z|
(except wherjz| is an integer, in which case there are two equally small terms
corresponding té = |z] — 1 andk = |z|). If the full series is truncated just before
this minimum modulus term is reached, then the finite series that results is the
optimally truncated series, and will yield the best approximation to the original
function, in the present casg(1; 1, z).

To see that this is so, observe 16r1; 1; ) that forz > 0 the remainder in the
approximation aften terms of the asymptotic series,

e 'dt

R,(2)=Ul L 2) = Su(2) = (—) ”!/O  + 2+
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log, olay] .

0 5 10 15 20 25

Fig.1.1. Magnitude ofthe ternag = (—)*~I" (k)z* in the expansios, (z) against ordinal
numberk whenz = 10.

is of the sign opposite to that in the last tern$jiiz) and further, is of the same sign
as the first term left in the full asymptotic series after excisip@). In absolute
value, we also have

n! [ e'dr n!
ROI= i [ e <
so the remainder term is numerically smaller in absolute value than the modulus of
the first neglected term. Since the selig&) is an alternating series, it follows that
S, (z) is alternately bigger thati (1; 1; z) and less thaw/ (1; 1; z) asn increases.
The sumsS,, (z) will therefore be closest in value 16(1; 1; z) precisely when we
truncate the full expansion just before the numerically smallest term (in absolute
value) in the full expansion. From the preceding inequality, it is easy to note that
the remainder term will then be bounded by this minimal term.
To see the order of the remainder term at optimal truncation, we substitute
(> 1) inthe above bound fak, (z), and employ Stirling’s formula to approximate
the factorial, to find

n! L e nti 2r\2 _
R@) < -3 = (27)? e = <?> e =,

This shows that at optimal truncation the remainder ternifct; 1; z) is of order
z"2e~% asz — +oo and consequently that evaluation of the function by this
scheme will result in an error thatéxponentially smalin z; these results can be
extended to deal with complex valueszof see Olver (1974, p. 523) for a more
detailed treatment. We remark that this principle is found to apply to a wide range
of asymptotic series yielding in each case an error term at optimal truncation that
is typically exponentially small in the asymptotic variable.

We observe that not all asymptotic series present the regular behaviour of the
coefficients depicted in Fig. 1.1. In certain compound expansions, with coefficients
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containing gamma functions in the numerator, it is possible to find situations
where some of the arguments of the gamma functions approach a nonpositive
integer value. This gives rise to a series of ‘peaks’ superimposed on the basic
structure of Fig. 1.1. A specific example is provided by the compound expansion

M+ ), (1.1.10)
wherel, = Y2° 4" (r = 1, 2) and, for positive parametets;, m, and,

a0 ()" r 1+ pk pf™= mp(1+ pk) o~k
k k! mi myp

with a similar expression foa,ﬁz) with m; and m, interchanged. Expansions

of this type arise in the treatment of certain Laplace-type integrals discussed
in Chapter 7. If the parameters,, m, and u are chosen such that the argu-
ments of the second gamma functionaiﬁ) anda,ﬁz) are not close to zero or a
negative integer, then the variation of the modulus of the coefficients with ordinal
numberk will be similar to that shown in Fig. 1.1. If, however, the parameter
values are chosen so that these arguments become close to a nonpositive inte-
gert for subsets of values, then we find that the variation of the coefficients
becomes irregular with a sequence of peaks of variable height. Such a situation
for the coefficients;z,(cl) is shown in Fig. 1.2 for two sets of parameter values. The
truncation of such series has been investigated in Liakhovetski & Paris (1998),
where it is found that even if the seriégis truncated at a peak (provided that

the corresponding peak associated with the coefficiﬁﬁ)tsr;s included) increas-

ingly accurate asymptotic approximations are obtained by steadily increasing the
truncation indices in the serigg and I, until they correspond roughly to the
global minimum of each curve. An inspection of Fig. 1.2, however, would indi-
cate that these optimal points are not as easily distinguished as in the case of
Fig.1.1.

The notion of optimal truncation will surface in a significant way in the subject
matter of the Stokes phenomenon and hyperasymptotics, and so we defer further
discussion of it until Chapter 6, where a detailed analysis of remainder terms
is undertaken. We do mention, however, that apart from optimally truncating an
asymptotic series, one can sometimes obtain dramatic improvements in the numeri-
cal utility of an asymptotic expansion if one is able to extract exponentially small
(measured against the scale being used) terms prior to developing an asymptotic
expansion. This particular situation can be seen in the following example.

T If the parameter values are such that the second gamma-function argument equals a nonpositive
integer for a subset of values, then the expansion (1.1.10) becomes nugatory. In the derivation
of (1.1.10) by a Mellin-Barnes approach this would result in a sequence of double poles and the
formation of logarithmic terms.
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Fig. 1.2. Magnitude of the coefficients” against ordinal numbérfor = 3,m; = 1.5
when @) m; = 1.2,z = 3.0 and ¢) m, = 1.049,z = 3.6. For clarity the points have been
joined.

Example 3. Let us consider the finite Fourier integral
1
J) = / M3 g
-1

with A large and positive. Introduce the change of variable- %x3 + x and
observe that over the interval of integration, the change of variable is one-to-one,

fixes the origin and maps&1 to :I:% respectively, resulting in
4/3
JO) = / e x'(u)du,
—4/3

wherex (u) is the function inverse to the — u change of variable. An explicit
formula forx (1) is available to us from the classical theory of equations, resulting
from the trigonometric solution to the cubic equation, and takes the form

x =2sinhg,  where 3 = arcsint(3u),
or
x=3u+u+ 1)1/3 — Gu+Ju?+ 1)_1/3.

It is a straightforward matter to deduce thét (—u) = (—)*x® (u), where
x™ () as usual indicates theh derivative of the inverse function.
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By repeatedly applying integration by parts, the latter representatiah(for
can be seen to yield a finite asymptotic expansion with remainder,

N
i n —4i n (_)n—l
= Y () o (- L
n=1
+ )" /4/3 e x N () du (1.1.11)
EMN J_as3 ) o

In view of the Riemann-Lebesgue lemma, the remainder term is seen (ta 1¥),
so the finite expansion (1.1.11) leads, after exploiiff(—3) = (—)"1x® (%),
to the largex expansiont
— ()" — ()"
T ~2sin(3x) Y ﬁx(z’”“(g) —2cos(31) > ;—an(z’”(%) :
n=0 n=1

If we evaluate the first few derivative$? (‘é‘) and employ optimal truncation for
modest values of, sayr = 4, 5, 6, 7, we obtain the approximate values shown in
the fourth column of Table 1.3. The columns labelddand N, show respectively,
for each value ofs, the number of terms of the sine and cosine series in the
expansion of/ (1) retained after optimally truncating each series. As comparison
with the last column of Table 1.3 reveals, the asymptotic approximations obtained
for these modest values ofare of poor calibre.

However, an improvement in the numerical utility of the expansion can be
obtained by rewriting the integral representatiory¢f) in the following manner.
Because of the exponential decay in the integrand, we can, by Cauchy’s theorem,
write

wi/6

coe™i/6 o0e5i/6 0€’
: 3
J(A):{—f +/ +/ }e'“x/:”x)dx. (1.1.12)
1 -1 c0e57i/6

The third integral in this sum can be expressed in terms of the Airy function

1 ooe™i/3
Ai(z) = > exp(r® — zt) dt,

ooe—Ti/3
namely,

OOem’/G
270 BAIG) = / M3 g
0e5Ti/6
upon making the substitution = irA~/3. From this, and integration by parts
applied to each of the remaining integrals in (1.1.12), we arrive at the same expan-
sion and approximation faf (A) that we found earlier, only now the expansion

T This expansion does not fit the form of a Poincaré-type expansion as we have defined it previously,
butrather is an example (after separating sine and cosine terms) of a compound asymptotic expansion,
discussed in the next section.
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Table 1.3.Comparison of optimally truncated asymptotic approximation,
asymptotic approximation and exponentially decaying correction and
computed values of the Fourier integra(i)

Optimally truncated| Optimally truncated
A | Ny | N, series series with Airy term J()
4| 2 2 —0.213739 —0.153525 —0.154260
5| 3 2 0.055788 0.083551 0.083545
6| 6 5 0.164661 0.177709 0.177703
71 6 5 0.022816 0.029031 0.029034

includes the term involving the Airy function:

& n
J(h) ~ %Ai (A*3) + 25sin(32) Z %x@"w (%)
n=0
& n
~2005(31) - x ().
n=1

The Airy function of positive argument can be shown to exhibit exponential decay
as the argument increases, so the additional Airy function term in the above expres-
sion iso(17%) for any nonnegative integérand can be eliminated entirely from
the asymptotic expansion in view of the definition of asymptotic expansions of
Poincaré type. If it is instead retained, the resulting approximations for the same
modest values of used in Table 1.3 show dramatic improvement, giving several
significant figures of the computed values/ah) as a comparison of the last two
columns of Table 1.3 reveals. O

Another interesting fact concerning asymptotic power series stems from the
observation that given an arbitrary sequence of complex nuniiagfs ,, there is
a function f (z) holomorphic in a region containing a closed annular sector which
has the formal seri€y -, a,z ™" as its asymptotic expansion.

One such constructiont proceeds by taking the closed annular sector to be
S ={z:|argz|] <6, |z] = R > 0} — other sectors can be used by translating and
rotating this initial choice. Then set

[ee]

f(z) _ Z anezr;(Z)

n=0

where for nonzera,,,

en(z) = 1—exp(—z%r"/|ayl).

t This account is drawn from Olver (1974, § 1.9). Other examples along this line are also to be
found there.
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for numbersp andr chosen to satisfy & ¢ < 7/(20) and O< r < R. Should
ana, vanish, the corresponding is taken to be the zero function, so that the
corresponding term in the sum definirfigs effectively excised.

With these terms so defined, in the sector of interest we hanggz?)| < %n
and
anen(z)

Zl‘l

n
<rMe? <z’ (%) , (1.1.13)
sincell—e~¢| < |¢|when|args| < %n.The series defining therefore converges
uniformly on compact subsets of our sector, and so defines a holomorphic function
there.

That f has the desired asymptotic expansion can be seen from

= an = ay Z¢Vn = anéy (Z)
f(z)—zz—nz—zz—nexp(— a |)+Z—, (1.1.14)
n=0 n

n
n=0 n=N <

where it bears noting that the infinite series here is uniformly convergent. Because
of the exponential decay of each term in the finite sum on the right, the entire sum
iso(z™") foranyn asz — oo in our sector. The remaining series on the right-hand
side is easily bounded using (1.1.13) to give

oo o] n N

S @ Z(i) = |z|¢(i) i _ oy,
=z =\lzl lzl )zl =7
UponreplacingV by N +|¢]+1, we obtain a similar expression to thatin (1.1.14),
for which the right-hand side i© (z=") but for which there are “extra” terms on
the left-hand side. These additional termg, ™ for n > N, are also0 (z~") and
so can be absorbed into the order estimate that results on the right-hand side.

1.1.3 Other Expansions
Expansions other than Poincaré-type also have currency in asymptotic analysis.
Here, we mention but three types.
Tobegin, lef{¢, } be anasymptotic scale as— xo. Aformal series_ f,(x)isa
generalised asymptotic expansiaira functionf (x) with respect to the asymptotic
scale{¢,} if

N
fO) = i) +o@n(x) (x—>x. N=0,12 ...).

n=0

In this event, we write, as we have for Poincaré-type expansions,

fO)~Y ) (x— xo, {da]),

n=0
indicating with the formal series the asymptotic scale used to define the expansion.
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The important difference between Poincaré and generalised asymptotic expan-
sions is that the functiong, appearing in the formal series expansion foneed
not, themselves, form an asymptotic scale.

Example 1. Define the sequence of functiofi, }, for nonnegative integer and
nonzerax, by

Ccosnx

x’l

fn(x) =

Forx — oo, it is apparent that eacfj, (x) = O(x™"), and thatf{¢, (x)} = {x ™"}
is an asymptotic scale. However, the sequefi;éx)} fails to be an asymptotic
scale, as a ratio of consecutive elements in the sequence gives

fur1(x)  cosn + Dx
fn(x) ~ xcosnx

which fails to beo(1) for all x sufficiently large.

Generalised asymptotic expansions are less commonplace than expansions o
Poincaré type, and are not used in our development of asymptotic expansions of
Mellin-Barnes integrals.

A different mechanism for extending Poincaré-type expansions presents itself
naturally in the setting of the method of stationary phase or steepest descent, and
in the domain of expansions of solutions of differential equations. The idea here
is to replace the series expansion of a function, as in (1.1.2), by several different
series, each with different scales.

Put more precisely, by @mpound asymptotic expansioha function f, we
mean a finite sum of Poincaré-type series expansions

FO) ~ A1) Y araprn (x) + A2(x) Y azaoa(x)

n=0 n=0

o0
+o A Y A (x) (= x0),
n=0
where, for 1< m < k, the sequence®,,,} are asymptotic scales, the coefficient
functionsA,, (x) are continuous, and favy, No, ..., Ny > 0, we have

N1
fx) = A1(X){Za1n¢>1n(X) + 0<¢1,N1+1(x)>}
n=0

Ny
+ Az(x>{2azn¢zn<x> + 0<¢2,N2+1(x>)}

n=0
Ni

+-+ Ak(x){zakn¢kn(x) + O(¢k,Nk+l(x))} (x — Xo).

n=0



1.1. Introduction to Asymptotics 17

It is entirely possible that some of the series(x) Y a;,¢;,(x) could, by virtue

of the coefficient functior ; (x), or choice of scald¢;,}, be o(¢,.,) for some

m # j, and so be absorbed into the error terms implied in other series in the
compound expansion. However, in some numerical work, the retention of such
negligible terms, when measured against the other scales in the expansion, can
add to the numerical accuracy of asymptotic approximationg, @specially for
values ofx that are at some distance from This, in turn, extends the utility of

such expansions.

In some circumstances, it may be possible to embed the 4¢galgsin a larger
scale, sayy, }, and so collapse the sum of Poincaré expansions into a single-series
expansion involving this larger scdl#, }. Success in this direction depends in part
on the coefficient functiond ; (x).

Example 2. STEEPEST DESCENT METHOD. An integral of the form

I(}) =/g(Z)eV(Z)dz,
C

is said to be of.aplace typef the functionsf andg are holomorphic in a region
containing the contou€, and the integral converges for sorheln the most

common setting is an infinite contour, and the parametds large in modulus.
Thus, we require that the integra{)) exist for all A sufficiently large in some
sector.

The idea behind the steepest descent method is deceptively simple: deform the
integration contouc into a sum of contours;y, Cy, ..., Cy, So that along each
of the contoursC,, the phasefunction f(z) has a single point, — asaddleor
saddle point— at which f’(z,) vanishes, and asvaries along the contout,,
AL f () — f(z,)] < 0, with this difference tending te-co as|z| — oo along the
contour. If this deformation is possible, the contoays Cs, ..., C; are termed
steepest descent contouasid the integral can be recast as

k
I\ = Zemz“)/ g(2)eH/@=f@l gy
n=1 Co

In the case wher¢” (z,) # O for all saddle points,,, each integral in the sum can
be represented as a Gaussian integral, namely

oo
—f(z z —Alf2
e)\f(zn)/ 2(2)eM® f(@]dz:exf(m)/ 21~ (1) dit
c,

—00

The transformation — ¢ will map one branch of the steepest descent curve from
zn tocointo the positive real axis, and the remainder of the steepest descent curve
will be mapped into the negative readxis. By splitting the integral into integrals

T Saddle points of Fourier-type integrals are often referred to as stationary points.
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taken over negative and positive realxes separately, a further reduction to a sum
of two Laplace transforms can be achieved, to each of which Watson’s lemma can
then be applied.

For a concrete example, we consider the Pearcey integral

P(x,y) = / expli (1* + x1? + y1)} dt,

o0

where, for the purpose of illustration, we will assujm¢and|y| are both large,
with x < 0 andy > 0. We will also replace by —x and takex > 0. Thus, we
consider

oo
P(—x,y) = Xz / explix?(u* — u? + yx~>?u)} du, (1.1.15)

o0

where we have applied the simple change of variabier 2u. Denoting the phase
function of this integral by

Y(u) = ut —u?+ yx_s/zu,
we have
V') = 4G® = Ju+ Gyx %)
= 4@ — (1 + uz + uz)u? + (uguz + uuz + upuz)u — uuzu3),
where theroots of’' (1) = O are indicated by, u, andus. Because)’ (1) isareal
cubic polynomial, we always have one real zera. i sufficiently large compared

to y, we can ensure that the other two zerog:tGf«) are also real, and that all three
are distinct. Additionally, the elementary theory of equations furnishes us with

Zui =0, Zuiu_j = —%, UiloU3 = —%yx_?’/z,
i<j
from which we deduce that one < 0, and the other two are positive. Let us label
these sothat; < 0 < up < us.

We mention here that the theory of equations also provides a trigonometric form
for the rootsu;, namely,

up = —/2/3-sin(¢ + 3m),
up = /2/3-sing, (1.1.16)
usz = +/2/3- Sin(%n - ).
where the angle is given by
sin(3¢) = y(2x)¥? (1.1.17)

which, under the hypothesis ofi3x)~%2? < 1, can be guaranteed to be real.
The zeros displayed in (1.1.16) undergo a confluence when the anigleds
to %7‘[. The curve this value o$ defines is the so-called caustic in the real
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plane:y = (%x)*"/z. The saddleg; are therefore, successively, the locations of a
local minimum, a local maximum and a local minimunnofu).

For realx andy, we may rotate the contour of integration in (1.1.15) onto the
line from coe®7/8 to coe™/® through an application of Jordan’s lemma. Since
there are three real saddle points fefx, y) satisfying¢ < %37'[, we may further
represenf’ (—x, y) as a sum of three contour integrals,

3
P(-x,y):xézf VO gy, (1.1.18)
j=1"Ti

where the contourE; are the steepest descent cuniés:beginning aboe /8,
ending atoe® /8 and passing througiy < 0; ', beginning atoe® /8, ending
atooe~3"/8 and passing through, > 0; andI's, beginning aboe—3"/8, ending
atooe™/® and passing throughs > u». Along these contours, the phase(u) is
real and decreases teco as we move along thE; away from the saddle points
so that each integral is effectively a Gaussian integral. The general situation is
depicted in Fig. 1.3.

Let us set

di={(-/(1-6ud): (j=123)

In accordance with the steepest descent methodology mentioned previously, we
sety (u) — Y (u;) = (—)-/'+1dj?v2, to find at each saddle point,

duj—up  w—up?|’”
U (U —U; u—uj;
—w—unl1 J J J
b= ”-’){ TTero1 Tel-1
whence reversion yields the expansion, for each
u—uj= Zbk,jvk,
k=1
Im (u)
r
/ A Re )
r

Fig. 1.3. Steepest descent curves through the sadgdlas andus.
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convergent in a neighbourhood of= 0. We observe thai;, ; = 1 for eachj =
1, 2, 3. Substitution into each term in (1.1.18) followed by termwise integration
will furnish

1
2 2 j+1, -4 T 2

/ W gy~ PR8I g
r )Cdj

i

whereS; (x, ¢) denotes the formal asymptotic sum

Tk+3)

T%)(<—>f“i)k(d_,~x>—2k-

Si(x, @) =) 2k + Dbaia
k=0

It then follows that

T V) (=) i /4
P(—x,y) ~ ;Z Si(x, ¢)

=1 d;j

for largex. This is evidently a compound asymptotic expansion with each con-
stituent asymptotic series corresponding to a single saddle point-af, y). We
shall meet the Pearcey integral again in Chapter 8, in a less restricted sefiing.

There also arise situations in which functions depending on parameters other
than the asymptotic one may possess asymptotic expansions which not only depenc
on such auxiliary parameters, but may also undergo discontinuous changes of scale
as these parameters vary. Such a discontinuity in the scale can occur, even if the
function involved is holomorphic in the control parameter. In more specific terms,
let us suppose that a functidn(i; ©) has asymptotic paramet&rand control
parametep. Fora — o, andu < po, say, one might have an asymptotic form

FOip) ~ A1 ) Y an (g, + -+ + Achi 1) D i (1) iy
n=0 n=0

where{qu‘n} (1 < j < k) are asymptotic scales in the variahlavhile for u > o,
a different expansion might hold, say

F(hs ) ~ Bi(ks 1) ) bu (@, + -+ B 1) Y b (i),
n=0 n=0

for different scale$¢fn} (1 < j <r)ini.Forthevalug. = uo, athird expansion
may hold, involving yet another scalg;,} (1 < j <s),

F()\,, [Lo) ~ C]_()L) Z C]_n(bln +-- 4 Ca()\) chnd)sn ()" e )‘0)
n=0 n=0

Distinct forms such as these may apply, everFiis analytic in a neighbour-
hood of o, and the limiting forms of the expansions may not existias> 5,





