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1

Introduction

1.1 Introduction to Asymptotics
Before venturing into our examination of Mellin-Barnes integrals, we present an
overview of some of the basic definitions and ideas found in asymptotic analysis.
The treatment provided here is not intended to be comprehensive, and several
high quality references exist which can provide a more complete treatment than is
given here: in particular, we recommend the tracts by Olver (1974), Bleistein &
Handelsman (1975) andWong (1989) as particularly good treatments of asymptotic
analysis, each with their own strengths.†

1.1.1 Order Relations

Let us begin our survey by defining theLandau symbolsO ando and the notion
of asymptotic equality.

Let f andg be two functions defined in a neighbourhood ofx0. We say that
f (x) = O(g(x)) asx → x0 if there is a constantM for which

|f (x)| ≤ M |g(x)|
for x sufficiently close tox0. The constantM depends only on how close tox0 we
wish the bound to hold. The notationO(g) is read as ‘big-oh ofg’, and the constant
M, which is often not explicitly calculated, is termed theimplied constant.

In a similar fashion, we definef (x) = o(g(x)) asx → x0 to mean that

|f (x)/g(x)| → 0

† Olver provides a good balance between techniques used in both integrals and differential equa-
tions; Bleistein & Handelsman present a relatively unified treatment of integrals through the use of
Mellin convolutions; and Wong develops the theory and application of (Schwartz) distributions in the
setting of developing expansions of integrals.
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asx → x0, subject to the proviso thatg(x) be nonzero in a neighbourhood ofx0.
The expressiono(g) is read as ‘little-oh ofg’, and from the preceding definition,
it is immediate thatf = o(g) implies thatf = O(g) (merely take the implied
constant to be any (arbitrarily small) positive number).

The last primitive asymptotic notion required is that of asymptotic equality.
We write

f (x) ∼ g(x)

asx → x0 to mean that

lim
x→x0

f (x)

g(x)
= 1,

provided, of course, thatg is nonzero sufficiently close tox0. The tilde here is read
‘is asymptotically equal to’. An equivalent formulation of asymptotic equality is
readily available: forx → x0,

f (x) ∼ g(x) iff f (x) = g(x){1+ o(1)}.
Example 1. The function logx satisfies the order relation logx = O(x − 1) as
x →∞, since the ratio(logx)/(x−1) is bounded for all largex. In fact, it is also
true that logx = o(x − 1) for largex, and forx → 1, logx ∼ x − 1.

Example 2. Stirling’s formula is a well-known asymptotic equality. For largen,
we have

n! ∼ (2π)
1
2 e−nnn+

1
2 .

This result follows from the asymptotic expansion of the gamma function, a result
carefully developed in §2.1.

Example 3. The celebrated Prime Number Theorem is an asymptotic equality. If
we denote byπ(x) the number of primes less than or equal tox, then for large
positivex we have the well-known result

π(x) ∼ x

logx
.

With the aid of Gauss’ logarithmic integral,†

li(x) =
∫ x

2

dt

log t

we also have the somewhat more accurate form

π(x) ∼ li(x) (x →∞).

† We note here that li(x) is also used to denote the same integral, but taken over the interval
(0, x), with x > 1. With this larger interval, the integral is a Cauchy principal value integral.
The notation in this example appears to be in use by some number theorists, and is also sometimes
written Li(x).
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That both forms hold can be seen from a simple integration by parts:

li(x) = x

logx
− 2

log 2
+

∫ x

2

dt

(log t)2
.

An application of l’Hôpital’s rule reveals that the resulting integral on the right-
hand side iso(x/ logx), from which thex/ logx form of the Prime Number
Theorem follows.

A number of useful relationships exist for manipulating the Landau symbols.
The following selections are all easily obtained from the above definitions, and are
not established here:

(a)O(O(f )) = O(f ) (e)O(f )+O(f ) = O(f )

(b) o(o(f )) = o(f ) (f) o(f )+ o(f ) = o(f )

(c)O(fg) = O(f ) ·O(g) (g) o(f )+O(f ) = O(f )

(d)O(f ) · o(g) = o(fg) (h)O(o(f )) = o(O(f )) = o(f ).

(1.1.1)

It is easy to deduce linearity of Landau symbols using these properties, and it is
a simple matter to establish asymptotic equality as an equivalence relation. In the
transition to calculus, however, some difficulties surface.

A moment’s consideration reveals that differentiation is, in general, often badly
behaved in the sense that iff = O(g), then it does not necessarily follow that
f ′ = O(g′), as the examplef (x) = x + sinex aptly illustrates: for large, realx,
we havef = O(x), but the derivative off is not bounded (i.e., notO(1)).

The situation for integration is a good deal better. It is possible to formulate
many results concerning integrals of order estimates, but we content ourselves
with just two.

Example 4. For functionsf andg of a real variablex satisfyingf = O(g) as
x → x0 on the real line, we have∫ x

x0

f (t) dt = O

(∫ x

x0

|g(t)| dt
)

(x → x0).

A proof can be fashioned along the following lines: forf (t) = O(g(t)), letM be
the implied constant so that|f (t)| ≤ M |g(t)| for t sufficiently close tox0, say
|t − x0| ≤ η. (For x0 = ∞, a suitable interval would bet ≥ N for some large
positiveN .) Then

−M |g(t)| ≤ f (t) ≤ M |g(t)| (|t − x0| ≤ η),

whence the result follows upon integration.

Example 5. If f is an integrable function of a real variablex, andf (x) ∼ xν ,
Re(ν) < −1 asx →∞, then∫ ∞

x

f (t) dt ∼ − xν+1

ν + 1
(x →∞).
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A proof of this claim follows fromf (x) = xν{1+ ψ(x)} whereψ(x) = o(1) as
x →∞, for then ∫ ∞

x

f (t) dt = − xν+1

ν + 1
+

∫ ∞

x

tνψ(t) dt.

But ψ(t) = o(1) implies that forε > 0 arbitrarily small, there is anx0 > 0
for which |ψ(t)| < ε whenevert > x0. Thus, the remaining integral may be
bounded as ∣∣∣∣

∫ ∞

x

tνψ(t) dt

∣∣∣∣ < ε

∫ ∞

x

|tν | dt (x > x0).

Accordingly, we find∫ ∞

x

f (t) dt = − xν+1

ν + 1
+ o

(
xν+1

ν + 1

)
= − xν+1

ν + 1
{1+ o(1)},

from which the asymptotic equality is immediate. �

It is in the complex plane that we find differentiation of order estimates becomes
better behaved. This is due, in part, to the fact that the Cauchy integral theorem
allows us to represent holomorphic functions as integrals which, as we have noted,
are better behaved in the setting of Landau symbols. A standard result in this
direction is the following:

Lemma 1.1.Let f be holomorphic in a region containing the closed annular
sectorS = {z : α ≤ arg(z − z0) ≤ β, |z − z0| ≥ R ≥ 0}, and suppose
f (z) = O(zν) (resp.f (z) = o(zν)) as z → ∞ in the sector, for fixed realν.
Thenf (n)(z) = O(zν−n) (resp.f (n) = o(zν−n)) asz→∞ in any closed annular
sector properly interior toS with common vertexz0.

The proof of this result follows from the Cauchy integral formula forf (n), and
is available in Olver (1974, p. 9).

1.1.2 Asymptotic Expansions

Let a sequence of continuous functions{φn}, n = 0,1,2, . . . , be defined on some
domain, and letx0 be a (possibly infinite) limit point of this domain. The sequence
{φn} is termed anasymptotic scaleif it happens thatφn+1(x) = o(φn(x)) as
x → x0, for everyn. If f is some continuous function on the common domain of
the asymptotic scale, then by an (infinite)asymptotic expansionof f with respect
to the asymptotic scale{φn} is meant the formal series

∑∞
n=0 anφn(x), provided the

coefficientsan, independent ofx, are chosen so that for any nonnegative integerN ,

f (x) =
N∑
n=0

anφn(x)+O(φN+1(x)) (x → x0). (1.1.2)
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In this case we write

f (x) ∼
∞∑
n=0

anφn(x) (x → x0).

Such a formal series is uniquely determined in view of the fact that the coefficients
an can be computed from

aN = lim
x→x0

1

φN(x)

{
f (x)−

N−1∑
n=0

anφn(x)

}
(N = 0,1,2, . . . ).

The formal series so obtained is also referred to as an asymptotic expansion of
Poincaré type, or an asymptotic expansion in the sense of Poincaré or, more simply,
a Poincaré expansion. Examples of asymptotic scales and asymptotic expansions
built with them are easy to come by. The most commonplace is the asymptotic
power series: anasymptotic power seriesis a formal series

∞∑
n=0

an(x − x0)
νn ,

where the appropriate asymptotic scale is the sequence{(x − x0)
νn}, n =

0,1,2, . . . , and theνn are constants for which(x − x0)
νn+1 = o

(
(x − x0)

νn
)

asx → x0. Any convergent Taylor series expansion of an analytic functionf

serves as an example of an asymptotic power series, withx0 a point in the domain
of analyticity off , νn = n for any nonnegative integern, and the coefficients in
the expansion are the familiar Taylor coefficientsan = f (n)(x0)/n!.

Asymptotic expansions, however, need not be convergent, as the next two
examples illustrate.

Example 1. Watson’s lemma. A well-known result of Laplace transform theory
is that the Laplace transform of a piecewise continuous function on the interval
[0,+∞) iso(1) as the transform variable grows without bound. By imposing more
structure on the small parameter behaviour of the function being transformed, a
good deal more can be said about the growth at infinity of the transform.

Lemma 1.2.Let g(t) be an integrable function of the variablet > 0 with
asymptotic expansion

g(t) ∼
∞∑
n=0

ant
(n+λ−µ)/µ (t → 0+)

for some constantsλ > 0, µ > 0. Then, provided the integral converges for
all sufficiently largex, the Laplace transform ofg, L[g; x], has the asymptotic
behaviour

L[g; x] ≡
∫ ∞

0
e−xtg(t) dt ∼

∞∑
n=0

�

(
n+ λ

µ

)
an

x(n+λ)/µ
(x →∞).
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Proof . To see this, let us put, for positive integerN andt > 0,

gN(t) = g(t)−
N−1∑
n=0

ant
(n+λ−µ)/µ

so that the Laplace transform has a finite expansion with remainder given by

L[g; x] =
N−1∑
n=0

�

(
n+ λ

µ

)
an

x(n+λ)/µ
+

∫ ∞

0
e−xtgN(t) dt. (1.1.3)

SincegN(t) = O(t(N+λ−µ)/µ), there are constantsKN andtN for which

|gN(t)| ≤ KN t
(N+λ−µ)/µ (0 < t ≤ tN ).

Use of this in the remainder term in our finite expansion (1.1.3) allows us to write∣∣∣∣
∫ tN

0
e−xtgN(t) dt

∣∣∣∣ ≤ KN

∫ tN

0
e−xt t (N+λ−µ)/µdt

< �

(
N + λ

µ

)
KN

x(N+λ)/µ
. (1.1.4)

By hypothesis,L[g; x] exists for all sufficiently largex, so the Laplace transform
of gN must also exist for all sufficiently largex, by virtue of (1.1.3). LetX be such
thatL[gN ; x] exists for allx ≥ X, and put

GN(t) =
∫ t

tN

e−XvgN(v) dv.

The functionGN so defined is a bounded continuous function on[tN ,∞), whence
the bound

LN = sup
[tN ,∞)

|GN(t)|

exists. Then forx > X, we have∫ ∞

tN

e−xtgN(t) dt =
∫ ∞

tN

e−(x−X)t e−XtgN(t) dt

= (x −X)

∫ ∞

tN

e−(x−X)tGN(t) dt

after one integration by parts. After applying the uniform boundLN to the integral
that remains, we arrive at∣∣∣∣

∫ ∞

tN

e−xtgN(t) dt
∣∣∣∣ ≤ (x −X)LN

∫ ∞

tN

e−(x−X)t dt = LNe
−(x−X)tN (1.1.5)

for x > X.



1.1. Introduction to Asymptotics 7

Together, (1.1.4) and (1.1.5) yield∣∣∣∣
∫ ∞

0
e−xtgN(t) dt

∣∣∣∣ < �

(
N + λ

µ

)
KN

x(N+λ)/µ
+ LNe

−(x−X)tN

which, sinceLNe−(x−X)tN is o(x−ν) for any positiveν, establishes the asymptotic
expansion forL[g; x].

As a simple illustration of the use of Watson’s lemma, consider the Laplace
transform of (1 + t)

1
2 . From the binomial theorem, we have the convergent

expansion ast → 0

(1+ t)
1
2 = 1+ 1

2 t − 1
8t

2 +
∞∑
n=3

(−)n−1 1 · 3 · 5 · · · (2n− 3)

2nn! tn.

Since(1+t) 1
2 is of algebraic growth, its Laplace transform clearly exists forx > 0,

and Watson’s lemma produces the asymptotic expansion

L[(1+ t)
1
2 ; x] ∼ 1

x
+ 1

2x2
− 1

4x3
+

∞∑
n=3

(−)n−1 1 · 3 · 5 · · · (2n− 3)

2nxn+1

asx → ∞. The resulting asymptotic series is divergent, since the ratio of the
(n+1)th tonth terms in absolute value is(2n−1)/(2x)which, for fixedx, tends to
∞ with n. The reason for this divergence is a simple consequence of our applying
the binomial expansion for(1+ t)

1
2 (valid in 0 ≤ t ≤ 1) in the Laplace integral

beyond its interval of convergence.

Example 2. The confluent hypergeometric function†U(1;1; z) (which equals the
exponential integralezE1(z)) has the integral representation

U(1;1; z) =
∫ ∞

0

e−t dt
t + z

(1.1.6)

for z not a negative number or zero. In fact, it is relatively easy to show that this
integral representation converges uniformly in the closed annular sectorSε,δ =
{z : |z| ≥ ε, |argz| ≤ π − δ} for every positiveε and every positiveδ < π . Such
a demonstration can proceed along the following lines.

Putθ = argz for z ∈ Sε,δ and observe that for any nonnegativet , |t + z|2 =
t2 + |z|2 + 2|z|t cosθ ≥ t2 + |z|2 − 2|z|t cosδ ≥ |z|2 sin2 δ. Thus, the integrand
of (1.1.6) admits the simple bound

e−t |t + z|−1 ≤ e−t |z|−1 cosecδ

whence we have, upon integrating the bound,

|U(1;1; z)| ≤ |z|−1 cosecδ

† An alternative notation for this function is<(1;1; z).
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for z ∈ Sε,δ. The uniform convergence of the integral follows, from which we see
thatU(1;1; z) is holomorphic in thez plane cut along the negative real axis.

Through repeated integration by parts, differentiating in each case the factor
(t + z)−k appearing at each step, we arrive at

U(1;1; z) =
n∑

k=1

(−)k−1(k − 1)!z−k + Rn(z), (1.1.7)

where the remainder termRn(z) is

Rn(z) = (−)nn!
∫ ∞

0

e−t

(t + z)n+1
dt. (1.1.8)

Evidently, each term produced in the series in (1.1.7) is a term from the asymptotic
scale{z−j }, j = 1,2, . . . , so that if we can show that for anyn,Rn(z) = O(z−n−1),
we will have established the asymptotic expansion

U(1;1; z) ∼
∞∑
k=1

(−)k−1(k − 1)!z−k, (1.1.9)

for z→∞ in the sector|argz| ≤ π − δ < π .
To this end, we observe that the bound used in establishing the uniform con-

vergence of the integral (1.1.6), namely 1/|t + z| ≤ 1/|z| sinδ, can be brought to
bear on (1.1.8) to yield

|Rn(z)| ≤ n!
(|z| sinδ)n+1

.

The expansion (1.1.9) is therefore an asymptotic expansion in the sense of Poincaré.
It is, however, quite clearly a divergent series, as ratios of consecutive terms in
the asymptotic series diverge to∞ as (n!/|z|n+1)/((n − 1)!/|z|n) = n/|z|, as
n → ∞, irrespective of the value ofz. Nevertheless, the divergent character of
this asymptotic series does not detract from its computational utility. �

In Tables† 1.1 and 1.2, we have gathered together computed and approxi-
mate values ofU(1;1; z), with approximate values derived from the finite series
approximation

Sn(z) =
n∑

k=1

(−)k−1(k − 1)!z−k,

obtained by truncating the asymptotic expansion (1.1.9) aftern terms. It is appar-
ent from the tables that the calibre of even modest approximations toU(1;1; z)
becomes quite good once|z| is of the order of 100, and is good to two or more
significant digits for values of|z| as small as 10. This naturally leads one to

† In Tables 1.1 and 1.2 we have adopted the convention of writingx(y) in lieu of the more cumbersome
x × 10y .
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Table 1.1.Computed and approximate values of
U(1;1; z) for real values ofz

z U(1;1; z) S5(z) S10(z)

10 0.915633(−1) 0.916400(−1) 0.915456(−1)
50 0.196151(−1) 0.196151(−1) 0.196151(−1)
100 0.990194(−2) 0.990194(−2) 0.990194(−2)

Table 1.2.Computed and approximate values of
U(1;1; z) for imaginary values ofz

z U(1;1; z)
10i 0.948854(−2)− 0.981910(−1)i
50i 0.399048(−3)− 0.199841(−1)i
100i 0.999401(−4)− 0.999800(−2)i

z S5(z)

10i 0.940000(−2)− 0.982400(−1)i
50i 0.399040(−3)− 0.199841(−1)i
100i 0.999400(−4)− 0.999800(−2)i

z S10(z)

10i 0.950589(−2)− 0.982083(−1)i
50i 0.399048(−3)− 0.199841(−1)i
100i 0.999401(−4)− 0.999800(−2)i

wonder how the best approximation can be obtained, in view of the utility of
these finite approximations and the divergence of the full asymptotic expansion:
how can we selectn so that the approximation furnished bySn(z) is the best
possible?

The strategy we detail here, calledoptimal truncation, is easily stated: for a
fixed z, the successive terms in the asymptotic expansion will reach a minimum
in absolute value, after which the terms must necessarily increase without bound
given the divergent character of the full expansion; see Fig. 1.1. It is readily
shown that the terms inSn(z) attain their smallest absolute value whenk ∼ |z|
(except when|z| is an integer, in which case there are two equally small terms
corresponding tok = |z|−1 andk = |z|). If the full series is truncated just before
this minimum modulus term is reached, then the finite series that results is the
optimally truncated series, and will yield the best approximation to the original
function, in the present case,U(1;1; z).

To see that this is so, observe forU(1;1; z) that forz > 0 the remainder in the
approximation aftern terms of the asymptotic series,

Rn(z) = U(1;1; z)− Sn(z) = (−)nn!
∫ ∞

0

e−t dt
(t + z)n+1

,
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Fig. 1.1. Magnitude of the termsak = (−)k−1�(k)z−k in the expansionSn(z)against ordinal
numberk whenz = 10.

is of the sign opposite to that in the last term inSn(z) and further, is of the same sign
as the first term left in the full asymptotic series after excisingSn(z). In absolute
value, we also have

|Rn(z)| = n!
zn+1

∫ ∞

0

e−t dt
(1+ t/z)n+1

<
n!
zn+1

,

so the remainder term is numerically smaller in absolute value than the modulus of
the first neglected term. Since the seriesSn(z) is an alternating series, it follows that
Sn(z) is alternately bigger thanU(1;1; z) and less thanU(1;1; z) asn increases.
The sumSn(z) will therefore be closest in value toU(1;1; z) precisely when we
truncate the full expansion just before the numerically smallest term (in absolute
value) in the full expansion. From the preceding inequality, it is easy to note that
the remainder term will then be bounded by this minimal term.

To see the order of the remainder term at optimal truncation, we substituten ∼ z

(� 1) in the above bound forRn(z), and employ Stirling’s formula to approximate
the factorial, to find

|Rn(z)| < n!
zn+1

� (2π)
1
2
e−nnn+ 1

2

zn+1
�

(
2π

z

) 1
2

e−z.

This shows that at optimal truncation the remainder term forU(1;1; z) is of order
z− 1

2 e−z as z → +∞ and consequently that evaluation of the function by this
scheme will result in an error that isexponentially smallin z; these results can be
extended to deal with complex values ofz – see Olver (1974, p. 523) for a more
detailed treatment. We remark that this principle is found to apply to a wide range
of asymptotic series yielding in each case an error term at optimal truncation that
is typically exponentially small in the asymptotic variable.

We observe that not all asymptotic series present the regular behaviour of the
coefficients depicted in Fig.1.1. In certain compound expansions, with coefficients
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containing gamma functions in the numerator, it is possible to find situations
where some of the arguments of the gamma functions approach a nonpositive
integer value. This gives rise to a series of ‘peaks’ superimposed on the basic
structure of Fig.1.1. A specific example is provided by the compound expansion

z−2/µ(I1+ I2), (1.1.10)

whereIr =∑∞
k=0 a

(r)
k (r = 1,2) and, for positive parametersm1,m2 andµ,

a
(1)
k = (−)k

k! �

(
1+ µk

m1

)
�

(
m1−m2(1+ µk)

m1µ

)
z−(1+µk)/m1

with a similar expression fora(2)k with m1 andm2 interchanged. Expansions
of this type arise in the treatment of certain Laplace-type integrals discussed
in Chapter 7. If the parametersm1, m2 andµ are chosen such that the argu-
ments of the second gamma function ina(1)k anda(2)k are not close to zero or a
negative integer, then the variation of the modulus of the coefficients with ordinal
numberk will be similar to that shown in Fig. 1.1. If, however, the parameter
values are chosen so that these arguments become close to a nonpositive inte-
ger† for subsets ofk values, then we find that the variation of the coefficients
becomes irregular with a sequence of peaks of variable height. Such a situation
for the coefficientsa(1)k is shown in Fig.1.2 for two sets of parameter values. The
truncation of such series has been investigated in Liakhovetski & Paris (1998),
where it is found that even if the seriesI1 is truncated at a peak (provided that
the corresponding peak associated with the coefficientsa

(2)
k is included) increas-

ingly accurate asymptotic approximations are obtained by steadily increasing the
truncation indices in the seriesI1 and I2 until they correspond roughly to the
global minimum of each curve. An inspection of Fig.1.2, however, would indi-
cate that these optimal points are not as easily distinguished as in the case of
Fig.1.1.

The notion of optimal truncation will surface in a significant way in the subject
matter of the Stokes phenomenon and hyperasymptotics, and so we defer further
discussion of it until Chapter 6, where a detailed analysis of remainder terms
is undertaken. We do mention, however, that apart from optimally truncating an
asymptotic series, one can sometimes obtain dramatic improvements in the numeri-
cal utility of an asymptotic expansion if one is able to extract exponentially small
(measured against the scale being used) terms prior to developing an asymptotic
expansion. This particular situation can be seen in the following example.

† If the parameter values are such that the second gamma-function argument equals a nonpositive
integer for a subset ofk values, then the expansion (1.1.10) becomes nugatory. In the derivation
of (1.1.10) by a Mellin-Barnes approach this would result in a sequence of double poles and the
formation of logarithmic terms.



12 1. Introduction

0 10 20 30 40 50 60
-5

-4

-3

-2

-1

0

0 10 20 30 40 50 60

-4

-3

-2

-1

0

(a)

(b)

k

k

|a   |

|a   |
k

k
(1)

(1)

log

log
10

10

Fig. 1.2. Magnitude of the coefficientsa(1)k against ordinal numberk for µ = 3,m1 = 1.5
when (a) m2 = 1.2, z = 3.0 and (b) m2 = 1.049,z = 3.6. For clarity the points have been
joined.

Example 3. Let us consider the finite Fourier integral

J (λ) =
∫ 1

−1
eiλ(x

3/3+x)dx

with λ large and positive. Introduce the change of variableu = 1
3x

3 + x and
observe that over the interval of integration, the change of variable is one-to-one,
fixes the origin and maps±1 to± 4

3 respectively, resulting in

J (λ) =
∫ 4/3

−4/3
eiλux ′(u)du,

wherex(u) is the function inverse to thex �→ u change of variable. An explicit
formula forx(u) is available to us from the classical theory of equations, resulting
from the trigonometric solution to the cubic equation, and takes the form

x = 2 sinhθ, where 3θ = arcsinh
(

3
2u

)
,

or

x = (
3
2u+

√
9
4u

2 + 1
)1/3− (

3
2u+

√
9
4u

2 + 1
)−1/3

.

It is a straightforward matter to deduce thatx(k)(−u) = (−)k−1x(k)(u), where
x(n)(u) as usual indicates thenth derivative of the inverse function.
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By repeatedly applying integration by parts, the latter representation forJ (λ)

can be seen to yield a finite asymptotic expansion with remainder,

J (λ) =
N∑
n=1

{
e4iλ/3x(n)

(
4
3

)− e−4iλ/3x(n)
(− 4

3

)} (−)n−1

(iλ)n

+ (−)N
(iλ)N

∫ 4/3

−4/3
eiλux(N+1)(u) du. (1.1.11)

In view of the Riemann-Lebesgue lemma, the remainder term is seen to beo(λ−N),
so the finite expansion (1.1.11) leads, after exploitingx(k)(− 4

3) = (−)k−1x(k)( 4
3),

to the large-λ expansion†

J (λ) ∼ 2 sin
(

4
3λ

) ∞∑
n=0

(−)n
λ2n+1

x(2n+1)
(

4
3

)− 2 cos
(

4
3λ

) ∞∑
n=1

(−)n
λ2n

x(2n)
(

4
3

)
.

If we evaluate the first few derivativesx(n)( 4
3)and employ optimal truncation for

modest values ofλ, sayλ = 4,5,6,7, we obtain the approximate values shown in
the fourth column of Table 1.3. The columns labelledNs andNc show respectively,
for each value ofλ, the number of terms of the sine and cosine series in the
expansion ofJ (λ) retained after optimally truncating each series. As comparison
with the last column of Table 1.3 reveals, the asymptotic approximations obtained
for these modest values ofλ are of poor calibre.

However, an improvement in the numerical utility of the expansion can be
obtained by rewriting the integral representation ofJ (λ) in the following manner.
Because of the exponential decay in the integrand, we can, by Cauchy’s theorem,
write

J (λ) =
{
−

∫ ∞eπi/6

1
+

∫ ∞e5πi/6

−1
+

∫ ∞eπi/6

∞e5πi/6

}
eiλ(x

3/3+x)dx. (1.1.12)

The third integral in this sum can be expressed in terms of the Airy function

Ai(z) = 1

2πi

∫ ∞eπi/3

∞e−πi/3
exp

(
1
3t

3− zt
)
dt,

namely,

2πλ−1/3 Ai(λ2/3) =
∫ ∞eπi/6

∞e5πi/6
eiλ(x

3/3+x)dx

upon making the substitutionx = itλ−1/3. From this, and integration by parts
applied to each of the remaining integrals in (1.1.12), we arrive at the same expan-
sion and approximation forJ (λ) that we found earlier, only now the expansion

† This expansion does not fit the form of a Poincaré-type expansion as we have defined it previously,
but rather is an example (after separating sine and cosine terms) of a compound asymptotic expansion,
discussed in the next section.
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Table 1.3.Comparison of optimally truncated asymptotic approximation,
asymptotic approximation and exponentially decaying correction and

computed values of the Fourier integralJ (λ)

Optimally truncated Optimally truncated
λ Ns Nc series series with Airy term J (λ)

4 2 2 −0.213739 −0.153525 −0.154260
5 3 2 0.055788 0.083551 0.083545
6 6 5 0.164661 0.177709 0.177703
7 6 5 0.022816 0.029031 0.029034

includes the term involving the Airy function:

J (λ) ∼ 2π

λ1/3
Ai(λ2/3)+ 2 sin

(
4
3λ

) ∞∑
n=0

(−)n
λ2n+1

x(2n+1)
(

4
3

)

− 2 cos
(

4
3λ

) ∞∑
n=1

(−)n
λ2n

x(2n)
(

4
3

)
.

The Airy function of positive argument can be shown to exhibit exponential decay
as the argument increases, so the additionalAiry function term in the above expres-
sion iso(λ−k) for any nonnegative integerk and can be eliminated entirely from
the asymptotic expansion in view of the definition of asymptotic expansions of
Poincaré type. If it is instead retained, the resulting approximations for the same
modest values ofλ used in Table 1.3 show dramatic improvement, giving several
significant figures of the computed values ofJ (λ) as a comparison of the last two
columns of Table 1.3 reveals. �

Another interesting fact concerning asymptotic power series stems from the
observation that given an arbitrary sequence of complex numbers{an}∞n=0, there is
a functionf (z) holomorphic in a region containing a closed annular sector which
has the formal series

∑∞
n=0 anz

−n as its asymptotic expansion.
One such construction† proceeds by taking the closed annular sector to be

S = {z : |argz| ≤ θ, |z| ≥ R > 0} – other sectors can be used by translating and
rotating this initial choice. Then set

f (z) =
∞∑
n=0

anen(z)

zn

where for nonzeroan,

en(z) = 1− exp
(−zφrn/|an|),

† This account is drawn from Olver (1974, § I.9). Other examples along this line are also to be
found there.
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for numbersφ andr chosen to satisfy 0< φ < π/(2θ) and 0< r < R. Should
an an vanish, the correspondingen is taken to be the zero function, so that the
corresponding term in the sum definingf is effectively excised.

With these terms so defined, in the sector of interest we have|arg(zφ)| < 1
2π

and ∣∣∣∣anen(z)zn

∣∣∣∣ ≤ rn|z|φ−n ≤ |z|φ
(
r

R

)n

, (1.1.13)

since|1−e−ζ | ≤ |ζ |when|argζ | ≤ 1
2π . The series definingf therefore converges

uniformly on compact subsets of our sector, and so defines a holomorphic function
there.

Thatf has the desired asymptotic expansion can be seen from

f (z)−
N−1∑
n=0

an

zn
= −

N−1∑
n=0

an

zn
exp

(
−z

φrn

|an|
)
+

∞∑
n=N

anen(z)

zn
, (1.1.14)

where it bears noting that the infinite series here is uniformly convergent. Because
of the exponential decay of each term in the finite sum on the right, the entire sum
iso(z−n) for anyn asz→∞ in our sector. The remaining series on the right-hand
side is easily bounded using (1.1.13) to give∣∣∣∣

∞∑
n=N

anen(z)

zn

∣∣∣∣ ≤ |z|φ
∞∑
n=N

(
r

|z|
)n

= |z|φ
(
r

|z|
)N |z|
|z| − r

= O(zφ−N).

Upon replacingN byN+�φ�+1, we obtain a similar expression to that in (1.1.14),
for which the right-hand side isO(z−N) but for which there are “extra” terms on
the left-hand side. These additional terms,anz

−n for n ≥ N , are alsoO(z−N) and
so can be absorbed into the order estimate that results on the right-hand side.

1.1.3 Other Expansions

Expansions other than Poincaré-type also have currency in asymptotic analysis.
Here, we mention but three types.

To begin, let{φn}be an asymptotic scale asx → x0.A formal series
∑
fn(x) is a

generalised asymptotic expansionof a functionf (x)with respect to the asymptotic
scale{φn} if

f (x) =
N∑
n=0

fn(x)+ o(φN(x)) (x → x0, N = 0,1,2, . . . ).

In this event, we write, as we have for Poincaré-type expansions,

f (x) ∼
∞∑
n=0

fn(x) (x → x0, {φn}),

indicating with the formal series the asymptotic scale used to define the expansion.
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The important difference between Poincaré and generalised asymptotic expan-
sions is that the functionsfn appearing in the formal series expansion forf need
not, themselves, form an asymptotic scale.

Example 1. Define the sequence of functions{fn}, for nonnegative integern and
nonzerox, by

fn(x) = cosnx

xn
.

For x →∞, it is apparent that eachfn(x) = O(x−n), and that{φn(x)} = {x−n}
is an asymptotic scale. However, the sequence{fn(x)} fails to be an asymptotic
scale, as a ratio of consecutive elements in the sequence gives

fn+1(x)

fn(x)
= cos(n+ 1)x

x cosnx
,

which fails to beo(1) for all x sufficiently large.
Generalised asymptotic expansions are less commonplace than expansions of

Poincaré type, and are not used in our development of asymptotic expansions of
Mellin-Barnes integrals.

A different mechanism for extending Poincaré-type expansions presents itself
naturally in the setting of the method of stationary phase or steepest descent, and
in the domain of expansions of solutions of differential equations. The idea here
is to replace the series expansion of a function, as in (1.1.2), by several different
series, each with different scales.

Put more precisely, by acompound asymptotic expansionof a functionf , we
mean a finite sum of Poincaré-type series expansions

f (x) ∼ A1(x)

∞∑
n=0

a1nφ1n(x)+ A2(x)

∞∑
n=0

a2nφ2n(x)

+ · · · + Ak(x)

∞∑
n=0

aknφkn(x) (x → x0),

where, for 1≤ m ≤ k, the sequences{φmn} are asymptotic scales, the coefficient
functionsAm(x) are continuous, and forN1,N2, . . . , Nk ≥ 0, we have

f (x) = A1(x)

{ N1∑
n=0

a1nφ1n(x)+O(φ1,N1+1(x))

}

+ A2(x)

{ N2∑
n=0

a2nφ2n(x)+O(φ2,N2+1(x))

}

+ · · · + Ak(x)

{ Nk∑
n=0

aknφkn(x)+O(φk,Nk+1(x))

}
(x → x0).
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It is entirely possible that some of the seriesAj(x)
∑
ajnφjn(x) could, by virtue

of the coefficient functionAj(x), or choice of scale{φjn}, beo(φmn) for some
m �= j , and so be absorbed into the error terms implied in other series in the
compound expansion. However, in some numerical work, the retention of such
negligible terms, when measured against the other scales in the expansion, can
add to the numerical accuracy of asymptotic approximations off , especially for
values ofx that are at some distance fromx0. This, in turn, extends the utility of
such expansions.

In some circumstances, it may be possible to embed the scales{φmn} in a larger
scale, say{ψν}, and so collapse the sum of Poincaré expansions into a single-series
expansion involving this larger scale{ψν}. Success in this direction depends in part
on the coefficient functionsAj(x).

Example 2. Steepest descent method. An integral of the form

I (λ) =
∫
C

g(z)eλf (z)dz,

is said to be ofLaplace typeif the functionsf andg are holomorphic in a region
containing the contourC, and the integral converges for someλ. In the most
common setting,C is an infinite contour, and the parameterλ is large in modulus.
Thus, we require that the integralI (λ) exist for allλ sufficiently large in some
sector.

The idea behind the steepest descent method is deceptively simple: deform the
integration contourC into a sum of contours,C1, C2, . . . , Ck, so that along each
of the contoursCn, thephasefunctionf (z) has a single pointzn – a saddleor
saddle point†– at whichf ′(zn) vanishes, and asz varies along the contourCn,
λ[f (z) − f (zn)] ≤ 0, with this difference tending to−∞ as|z| → ∞ along the
contour. If this deformation is possible, the contoursC1, C2, . . . , Ck are termed
steepest descent contours, and the integral can be recast as

I (λ) =
k∑

n=1

eλf (zn)
∫
Cn

g(z)eλ[f (z)−f (zn)]dz.

In the case wheref ′′(zn) �= 0 for all saddle pointszn, each integral in the sum can
be represented as a Gaussian integral, namely

eλf (zn)
∫
Cn

g(z)eλ[f (z)−f (zn)]dz = eλf (zn)
∫ ∞

−∞
g(z(t))e−|λ|t

2
z′(t) dt.

The transformationz �→ t will map one branch of the steepest descent curve from
zn to∞ into the positive realt axis, and the remainder of the steepest descent curve
will be mapped into the negative realt axis. By splitting the integral into integrals

† Saddle points of Fourier-type integrals are often referred to as stationary points.
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taken over negative and positive realt axes separately, a further reduction to a sum
of two Laplace transforms can be achieved, to each of which Watson’s lemma can
then be applied.

For a concrete example, we consider the Pearcey integral

P(x, y) =
∫ ∞

−∞
exp{i(t4 + xt2 + yt)} dt,

where, for the purpose of illustration, we will assume|x| and|y| are both large,
with x < 0 andy > 0. We will also replacex by−x and takex > 0. Thus, we
consider

P(−x, y) = x
1
2

∫ ∞

−∞
exp{ix2(u4 − u2 + yx−3/2u)} du, (1.1.15)

where we have applied the simple change of variablet = x
1
2u. Denoting the phase

function of this integral by

ψ(u) = u4 − u2 + yx−3/2u,

we have

ψ ′(u) = 4(u3− 1
2u+ 1

4yx
−3/2)

= 4(u3− (u1+ u2 + u3)u
2 + (u1u2 + u1u3+ u2u3)u− u1u2u3),

where the roots ofψ ′(u) = 0 are indicated byu1, u2 andu3. Becauseψ ′(u) is a real
cubic polynomial, we always have one real zero. Ifx is sufficiently large compared
toy, we can ensure that the other two zeros ofψ ′(u) are also real, and that all three
are distinct. Additionally, the elementary theory of equations furnishes us with∑

ui = 0,
∑
i<j

uiuj = − 1
2, u1u2u3 = − 1

4yx
−3/2,

from which we deduce that oneui < 0, and the other two are positive. Let us label
these so thatu1 < 0 < u2 < u3.

We mention here that the theory of equations also provides a trigonometric form
for the rootsui , namely,

u1 = −√2/3 · sin(φ + 1
3π),

u2 = √2/3 · sinφ,
u3 = √2/3 · sin

(
1
3π − φ

)
,

(1.1.16)

where the angleφ is given by

sin(3φ) = y
(

2
3x

)3/2
(1.1.17)

which, under the hypothesis ofy( 2
3x)

−3/2 < 1, can be guaranteed to be real.
The zeros displayed in (1.1.16) undergo a confluence when the angleφ tends
to 1

6π . The curve this value ofφ defines is the so-called caustic in the real
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plane:y = ( 2
3x)

3/2. The saddlesui are therefore, successively, the locations of a
local minimum, a local maximum and a local minimum ofψ(u).

For realx andy, we may rotate the contour of integration in (1.1.15) onto the
line from∞e9πi/8 to ∞eπi/8 through an application of Jordan’s lemma. Since
there are three real saddle points for(−x, y) satisfyingφ < 1

6π , we may further
representP(−x, y) as a sum of three contour integrals,

P(−x, y) = x
1
2

3∑
j=1

∫
�j

eix
2ψ(u)du, (1.1.18)

where the contours�j are the steepest descent curves:�1, beginning at∞e9πi/8,
ending at∞e5πi/8 and passing throughu1 < 0; �2, beginning at∞e5πi/8, ending
at∞e−3πi/8 and passing throughu2 > 0; and�3, beginning at∞e−3πi/8, ending
at∞eπi/8 and passing throughu3 > u2. Along these contours, the phaseiψ(u) is
real and decreases to−∞ as we move along the�j away from the saddle points
so that each integral is effectively a Gaussian integral. The general situation is
depicted in Fig.1.3.

Let us set

dj = {(−)j (1− 6u2
j )}

1
2 (j = 1,2,3).

In accordance with the steepest descent methodology mentioned previously, we
setψ(u)− ψ(uj ) = (−)j+1d2

j v
2, to find at each saddle pointuj ,

v = (u− uj )

{
1+ 4uj (u− uj )

6u2
j − 1

+ (u− uj )
2

6u2
j − 1

}1/2

whence reversion yields the expansion, for eachj ,

u− uj =
∞∑
k=1

bk,j v
k,

Re (  )

Im (  )

u

u

u u u1 2 3

Γ

Γ

Γ

1

2

3

Fig. 1.3. Steepest descent curves through the saddlesu1, u2 andu3.
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convergent in a neighbourhood ofv = 0. We observe thatb1,j = 1 for eachj =
1,2,3. Substitution into each term in (1.1.18) followed by termwise integration
will furnish ∫

�j

eix
2ψ(u)du ∼ eix

2ψ(uj )+(−)j+1πi/4 π
1
2

xdj
Sj (x, φ),

whereSj (x, φ) denotes the formal asymptotic sum

Sj (x, φ) =
∞∑
k=0

(2k + 1)b2k+1,j
�(k + 1

2)

�( 1
2)

(
(−)j+1i

)k
(djx)

−2k.

It then follows that

P(−x, y) ∼
√
π

x

3∑
j=1

eix
2ψ(uj )+(−)j+1πi/4

dj
Sj (x, φ)

for largex. This is evidently a compound asymptotic expansion with each con-
stituent asymptotic series corresponding to a single saddle point ofP(−x, y). We
shall meet the Pearcey integral again in Chapter 8, in a less restricted setting.�

There also arise situations in which functions depending on parameters other
than the asymptotic one may possess asymptotic expansions which not only depend
on such auxiliary parameters, but may also undergo discontinuous changes of scale
as these parameters vary. Such a discontinuity in the scale can occur, even if the
function involved is holomorphic in the control parameter. In more specific terms,
let us suppose that a functionF(λ;µ) has asymptotic parameterλ and control
parameterµ. Forλ→ λ0, andµ < µ0, say, one might have an asymptotic form

F(λ;µ) ∼ A1(λ;µ)
∞∑
n=0

a1n(µ)φ
−
1n + · · · + Ak(λ;µ)

∞∑
n=0

akn(µ)φ
−
kn,

where{φ−jn} (1≤ j ≤ k) are asymptotic scales in the variableλ, while forµ > µ0,
a different expansion might hold, say

F(λ;µ) ∼ B1(λ;µ)
∞∑
n=0

b1n(µ)φ
+
1n + · · · + Br(λ;µ)

∞∑
n=0

brn(µ)φ
+
rn,

for different scales{φ+jn} (1≤ j ≤ r) in λ. For the valueµ = µ0, a third expansion
may hold, involving yet another scale{φjn} (1≤ j ≤ s),

F(λ;µ0) ∼ C1(λ)

∞∑
n=0

c1nφ1n + · · · + Cs(λ)

∞∑
n=0

csnφsn (λ→ λ0).

Distinct forms such as these may apply, even ifF is analytic in a neighbour-
hood ofµ0, and the limiting forms of the expansions may not exist asµ→ µ±0 ,




