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Introduction

1.1 Introduction to Asymptotics
Before venturing into our examination of Mellin-Barnes integrals, we present an
overview of some of the basic definitions and ideas found in asymptotic analysis.
The treatment provided here is not intended to be comprehensive, and several
high quality references exist which can provide a more complete treatment than is
given here: in particular, we recommend the tracts by Olver (1974), Bleistein &
Handelsman (1975) andWong (1989) as particularly good treatments of asymptotic
analysis, each with their own strengths.†

1.1.1 Order Relations

Let us begin our survey by defining the Landau symbols O and o and the notion
of asymptotic equality.
Let f and g be two functions defined in a neighbourhood of x0. We say that

f (x) = O(g(x)) as x → x0 if there is a constantM for which

|f (x)| ≤ M |g(x)|
for x sufficiently close to x0. The constantM depends only on how close to x0 we
wish the bound to hold. The notationO(g) is read as ‘big-oh of g’, and the constant
M , which is often not explicitly calculated, is termed the implied constant.
In a similar fashion, we define f (x) = o(g(x)) as x → x0 to mean that

|f (x)/g(x)| → 0

† Olver provides a good balance between techniques used in both integrals and differential equa-
tions; Bleistein & Handelsman present a relatively unified treatment of integrals through the use of
Mellin convolutions; andWong develops the theory and application of (Schwartz) distributions in the
setting of developing expansions of integrals.
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2 1. Introduction

as x → x0, subject to the proviso that g(x) be nonzero in a neighbourhood of x0.
The expression o(g) is read as ‘little-oh of g’, and from the preceding definition,
it is immediate that f = o(g) implies that f = O(g) (merely take the implied
constant to be any (arbitrarily small) positive number).
The last primitive asymptotic notion required is that of asymptotic equality.

We write

f (x) ∼ g(x)

as x → x0 to mean that

lim
x→x0

f (x)

g(x)
= 1,

provided, of course, that g is nonzero sufficiently close to x0. The tilde here is read
‘is asymptotically equal to’. An equivalent formulation of asymptotic equality is
readily available: for x → x0,

f (x) ∼ g(x) iff f (x) = g(x){1+ o(1)}.
Example 1. The function log x satisfies the order relation log x = O(x − 1) as
x → ∞, since the ratio (log x)/(x−1) is bounded for all large x. In fact, it is also
true that log x = o(x − 1) for large x, and for x → 1, log x ∼ x − 1.

Example 2. Stirling’s formula is a well-known asymptotic equality. For large n,
we have

n! ∼ (2π)
1
2 e−nnn+

1
2 .

This result follows from the asymptotic expansion of the gamma function, a result
carefully developed in §2.1.

Example 3. The celebrated Prime Number Theorem is an asymptotic equality. If
we denote by π(x) the number of primes less than or equal to x, then for large
positive x we have the well-known result

π(x) ∼ x

log x
.

With the aid of Gauss’ logarithmic integral,†

li(x) =
∫ x

2

dt

log t

we also have the somewhat more accurate form

π(x) ∼ li(x) (x → ∞).

† We note here that li(x) is also used to denote the same integral, but taken over the interval
(0, x), with x > 1. With this larger interval, the integral is a Cauchy principal value integral.
The notation in this example appears to be in use by some number theorists, and is also sometimes
written Li(x).
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1.1. Introduction to Asymptotics 3

That both forms hold can be seen from a simple integration by parts:

li(x) = x

log x
− 2

log 2
+

∫ x

2

dt

(log t)2
.

An application of l’Hôpital’s rule reveals that the resulting integral on the right-
hand side is o(x/ log x), from which the x/ log x form of the Prime Number
Theorem follows.
A number of useful relationships exist for manipulating the Landau symbols.

The following selections are all easily obtained from the above definitions, and are
not established here:

(a) O(O(f )) = O(f ) (e) O(f )+O(f ) = O(f )

(b) o(o(f )) = o(f ) (f) o(f )+ o(f ) = o(f )

(c) O(fg) = O(f ) ·O(g) (g) o(f )+O(f ) = O(f )

(d) O(f ) · o(g) = o(fg) (h) O(o(f )) = o(O(f )) = o(f ).

(1.1.1)

It is easy to deduce linearity of Landau symbols using these properties, and it is
a simple matter to establish asymptotic equality as an equivalence relation. In the
transition to calculus, however, some difficulties surface.
A moment’s consideration reveals that differentiation is, in general, often badly

behaved in the sense that if f = O(g), then it does not necessarily follow that
f ′ = O(g′), as the example f (x) = x + sin ex aptly illustrates: for large, real x,
we have f = O(x), but the derivative of f is not bounded (i.e., not O(1)).
The situation for integration is a good deal better. It is possible to formulate

many results concerning integrals of order estimates, but we content ourselves
with just two.

Example 4. For functions f and g of a real variable x satisfying f = O(g) as
x → x0 on the real line, we have∫ x

x0

f (t) dt = O

(∫ x

x0

|g(t)| dt
)

(x → x0).

A proof can be fashioned along the following lines: for f (t) = O(g(t)), letM be
the implied constant so that |f (t)| ≤ M |g(t)| for t sufficiently close to x0, say
|t − x0| ≤ η. (For x0 = ∞, a suitable interval would be t ≥ N for some large
positive N .) Then

−M |g(t)| ≤ f (t) ≤ M |g(t)| (|t − x0| ≤ η),

whence the result follows upon integration.

Example 5. If f is an integrable function of a real variable x, and f (x) ∼ xν ,
Re(ν) < −1 as x → ∞, then∫ ∞

x

f (t) dt ∼ − xν+1

ν + 1
(x → ∞).
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4 1. Introduction

A proof of this claim follows from f (x) = xν{1+ ψ(x)} where ψ(x) = o(1) as
x → ∞, for then ∫ ∞

x

f (t) dt = − xν+1

ν + 1
+

∫ ∞

x

tνψ(t) dt.

But ψ(t) = o(1) implies that for ε > 0 arbitrarily small, there is an x0 > 0
for which |ψ(t)| < ε whenever t > x0. Thus, the remaining integral may be
bounded as ∣∣∣∣

∫ ∞

x

tνψ(t) dt

∣∣∣∣ < ε

∫ ∞

x

|tν | dt (x > x0).

Accordingly, we find∫ ∞

x

f (t) dt = − xν+1

ν + 1
+ o

(
xν+1

ν + 1

)
= − xν+1

ν + 1
{1+ o(1)},

from which the asymptotic equality is immediate. ✷

It is in the complex plane that we find differentiation of order estimates becomes
better behaved. This is due, in part, to the fact that the Cauchy integral theorem
allows us to represent holomorphic functions as integrals which, as we have noted,
are better behaved in the setting of Landau symbols. A standard result in this
direction is the following:

Lemma 1.1. Let f be holomorphic in a region containing the closed annular
sector S = {z : α ≤ arg(z − z0) ≤ β, |z − z0| ≥ R ≥ 0}, and suppose
f (z) = O(zν) (resp. f (z) = o(zν)) as z → ∞ in the sector, for fixed real ν.
Then f (n)(z) = O(zν−n) (resp. f (n) = o(zν−n)) as z → ∞ in any closed annular
sector properly interior to S with common vertex z0.

The proof of this result follows from the Cauchy integral formula for f (n), and
is available in Olver (1974, p. 9).

1.1.2 Asymptotic Expansions

Let a sequence of continuous functions {φn}, n = 0, 1, 2, . . . , be defined on some
domain, and let x0 be a (possibly infinite) limit point of this domain. The sequence
{φn} is termed an asymptotic scale if it happens that φn+1(x) = o(φn(x)) as
x → x0, for every n. If f is some continuous function on the common domain of
the asymptotic scale, then by an (infinite) asymptotic expansion of f with respect
to the asymptotic scale {φn} is meant the formal series∑∞

n=0 anφn(x), provided the
coefficients an, independent of x, are chosen so that for any nonnegative integerN ,

f (x) =
N∑
n=0

anφn(x)+O(φN+1(x)) (x → x0). (1.1.2)

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521790018 - Asymptotics and Mellin-Barnes Integrals
R. B. Paris and D. Kaminski
Excerpt
More information

http://www.cambridge.org/0521790018
http://www.cambridge.org
http://www.cambridge.org


1.1. Introduction to Asymptotics 5

In this case we write

f (x) ∼
∞∑
n=0

anφn(x) (x → x0).

Such a formal series is uniquely determined in view of the fact that the coefficients
an can be computed from

aN = lim
x→x0

1

φN(x)

{
f (x)−

N−1∑
n=0

anφn(x)

}
(N = 0, 1, 2, . . . ).

The formal series so obtained is also referred to as an asymptotic expansion of
Poincaré type, or an asymptotic expansion in the sense of Poincaré or, more simply,
a Poincaré expansion. Examples of asymptotic scales and asymptotic expansions
built with them are easy to come by. The most commonplace is the asymptotic
power series: an asymptotic power series is a formal series

∞∑
n=0

an(x − x0)
νn ,

where the appropriate asymptotic scale is the sequence {(x − x0)
νn}, n =

0, 1, 2, . . . , and the νn are constants for which (x − x0)
νn+1 = o

(
(x − x0)

νn
)

as x → x0. Any convergent Taylor series expansion of an analytic function f
serves as an example of an asymptotic power series, with x0 a point in the domain
of analyticity of f , νn = n for any nonnegative integer n, and the coefficients in
the expansion are the familiar Taylor coefficients an = f (n)(x0)/n!.
Asymptotic expansions, however, need not be convergent, as the next two

examples illustrate.

Example 1. Watson’s lemma. A well-known result of Laplace transform theory
is that the Laplace transform of a piecewise continuous function on the interval
[0,+∞) is o(1) as the transform variable growswithout bound. By imposingmore
structure on the small parameter behaviour of the function being transformed, a
good deal more can be said about the growth at infinity of the transform.

Lemma 1.2. Let g(t) be an integrable function of the variable t > 0 with
asymptotic expansion

g(t) ∼
∞∑
n=0

ant
(n+λ−µ)/µ (t → 0+)

for some constants λ > 0, µ > 0. Then, provided the integral converges for
all sufficiently large x, the Laplace transform of g, L[g; x], has the asymptotic
behaviour

L[g; x] ≡
∫ ∞

0
e−xtg(t) dt ∼

∞∑
n=0

�

(
n+ λ

µ

)
an

x(n+λ)/µ
(x → ∞).
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6 1. Introduction

Proof . To see this, let us put, for positive integer N and t > 0,

gN(t) = g(t)−
N−1∑
n=0

ant
(n+λ−µ)/µ

so that the Laplace transform has a finite expansion with remainder given by

L[g; x] =
N−1∑
n=0

�

(
n+ λ

µ

)
an

x(n+λ)/µ
+

∫ ∞

0
e−xtgN(t) dt. (1.1.3)

Since gN(t) = O(t(N+λ−µ)/µ), there are constants KN and tN for which

|gN(t)| ≤ KN t
(N+λ−µ)/µ (0 < t ≤ tN ).

Use of this in the remainder term in our finite expansion (1.1.3) allows us to write∣∣∣∣
∫ tN

0
e−xtgN(t) dt

∣∣∣∣ ≤ KN

∫ tN

0
e−xt t (N+λ−µ)/µdt

< �

(
N + λ

µ

)
KN

x(N+λ)/µ . (1.1.4)

By hypothesis, L[g; x] exists for all sufficiently large x, so the Laplace transform
of gN must also exist for all sufficiently large x, by virtue of (1.1.3). LetX be such
that L[gN ; x] exists for all x ≥ X, and put

GN(t) =
∫ t

tN

e−XvgN(v) dv.

The functionGN so defined is a bounded continuous function on [tN ,∞), whence
the bound

LN = sup
[tN ,∞)

|GN(t)|

exists. Then for x > X, we have∫ ∞

tN

e−xtgN(t) dt =
∫ ∞

tN

e−(x−X)t e−XtgN(t) dt

= (x −X)

∫ ∞

tN

e−(x−X)tGN(t) dt

after one integration by parts. After applying the uniform bound LN to the integral
that remains, we arrive at∣∣∣∣

∫ ∞

tN

e−xtgN(t) dt
∣∣∣∣ ≤ (x −X)LN

∫ ∞

tN

e−(x−X)t dt = LNe
−(x−X)tN (1.1.5)

for x > X.
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1.1. Introduction to Asymptotics 7

Together, (1.1.4) and (1.1.5) yield∣∣∣∣
∫ ∞

0
e−xtgN(t) dt

∣∣∣∣ < �

(
N + λ

µ

)
KN

x(N+λ)/µ + LNe
−(x−X)tN

which, since LNe−(x−X)tN is o(x−ν) for any positive ν, establishes the asymptotic
expansion for L[g; x].
As a simple illustration of the use of Watson’s lemma, consider the Laplace

transform of (1 + t)
1
2 . From the binomial theorem, we have the convergent

expansion as t → 0

(1+ t)
1
2 = 1+ 1

2 t − 1
8 t
2 +

∞∑
n=3

(−)n−1 1 · 3 · 5 · · · (2n− 3)

2nn! tn.

Since (1+t) 12 is of algebraic growth, its Laplace transform clearly exists for x > 0,
and Watson’s lemma produces the asymptotic expansion

L[(1+ t)
1
2 ; x] ∼ 1

x
+ 1

2x2
− 1

4x3
+

∞∑
n=3

(−)n−1 1 · 3 · 5 · · · (2n− 3)

2nxn+1

as x → ∞. The resulting asymptotic series is divergent, since the ratio of the
(n+1)th to nth terms in absolute value is (2n−1)/(2x)which, for fixed x, tends to
∞ with n. The reason for this divergence is a simple consequence of our applying
the binomial expansion for (1 + t)

1
2 (valid in 0 ≤ t ≤ 1) in the Laplace integral

beyond its interval of convergence.

Example 2. The confluent hypergeometric function†U(1; 1; z) (which equals the
exponential integral ezE1(z)) has the integral representation

U(1; 1; z) =
∫ ∞

0

e−t dt
t + z

(1.1.6)

for z not a negative number or zero. In fact, it is relatively easy to show that this
integral representation converges uniformly in the closed annular sector Sε,δ =
{z : |z| ≥ ε, | arg z| ≤ π − δ} for every positive ε and every positive δ < π . Such
a demonstration can proceed along the following lines.
Put θ = arg z for z ∈ Sε,δ and observe that for any nonnegative t , |t + z|2 =

t2 + |z|2 + 2|z|t cos θ ≥ t2 + |z|2 − 2|z|t cos δ ≥ |z|2 sin2 δ. Thus, the integrand
of (1.1.6) admits the simple bound

e−t |t + z|−1 ≤ e−t |z|−1 cosec δ
whence we have, upon integrating the bound,

|U(1; 1; z)| ≤ |z|−1 cosec δ

† An alternative notation for this function is <(1; 1; z).
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8 1. Introduction

for z ∈ Sε,δ . The uniform convergence of the integral follows, from which we see
that U(1; 1; z) is holomorphic in the z plane cut along the negative real axis.
Through repeated integration by parts, differentiating in each case the factor

(t + z)−k appearing at each step, we arrive at

U(1; 1; z) =
n∑

k=1
(−)k−1(k − 1)!z−k + Rn(z), (1.1.7)

where the remainder term Rn(z) is

Rn(z) = (−)nn!
∫ ∞

0

e−t

(t + z)n+1
dt. (1.1.8)

Evidently, each term produced in the series in (1.1.7) is a term from the asymptotic
scale {z−j }, j = 1, 2, . . . , so that if we can show that for anyn,Rn(z) = O(z−n−1),
we will have established the asymptotic expansion

U(1; 1; z) ∼
∞∑
k=1

(−)k−1(k − 1)!z−k, (1.1.9)

for z → ∞ in the sector | arg z| ≤ π − δ < π .
To this end, we observe that the bound used in establishing the uniform con-

vergence of the integral (1.1.6), namely 1/|t + z| ≤ 1/|z| sin δ, can be brought to
bear on (1.1.8) to yield

|Rn(z)| ≤ n!
(|z| sin δ)n+1 .

The expansion (1.1.9) is therefore an asymptotic expansion in the sense of Poincaré.
It is, however, quite clearly a divergent series, as ratios of consecutive terms in
the asymptotic series diverge to ∞ as (n!/|z|n+1)/((n − 1)!/|z|n) = n/|z|, as
n → ∞, irrespective of the value of z. Nevertheless, the divergent character of
this asymptotic series does not detract from its computational utility. ✷

In Tables† 1.1 and 1.2, we have gathered together computed and approxi-
mate values of U(1; 1; z), with approximate values derived from the finite series
approximation

Sn(z) =
n∑

k=1
(−)k−1(k − 1)!z−k,

obtained by truncating the asymptotic expansion (1.1.9) after n terms. It is appar-
ent from the tables that the calibre of even modest approximations to U(1; 1; z)
becomes quite good once |z| is of the order of 100, and is good to two or more
significant digits for values of |z| as small as 10. This naturally leads one to

† In Tables 1.1 and 1.2 we have adopted the convention of writing x(y) in lieu of the more cumbersome
x × 10y .
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1.1. Introduction to Asymptotics 9

Table 1.1. Computed and approximate values of
U(1; 1; z) for real values of z

z U(1; 1; z) S5(z) S10(z)

10 0.915633(−1) 0.916400(−1) 0.915456(−1)
50 0.196151(−1) 0.196151(−1) 0.196151(−1)
100 0.990194(−2) 0.990194(−2) 0.990194(−2)

Table 1.2. Computed and approximate values of
U(1; 1; z) for imaginary values of z

z U(1; 1; z)
10i 0.948854(−2)− 0.981910(−1)i
50i 0.399048(−3)− 0.199841(−1)i
100i 0.999401(−4)− 0.999800(−2)i
z S5(z)

10i 0.940000(−2)− 0.982400(−1)i
50i 0.399040(−3)− 0.199841(−1)i
100i 0.999400(−4)− 0.999800(−2)i
z S10(z)

10i 0.950589(−2)− 0.982083(−1)i
50i 0.399048(−3)− 0.199841(−1)i
100i 0.999401(−4)− 0.999800(−2)i

wonder how the best approximation can be obtained, in view of the utility of
these finite approximations and the divergence of the full asymptotic expansion:
how can we select n so that the approximation furnished by Sn(z) is the best
possible?
The strategy we detail here, called optimal truncation, is easily stated: for a

fixed z, the successive terms in the asymptotic expansion will reach a minimum
in absolute value, after which the terms must necessarily increase without bound
given the divergent character of the full expansion; see Fig. 1.1. It is readily
shown that the terms in Sn(z) attain their smallest absolute value when k ∼ |z|
(except when |z| is an integer, in which case there are two equally small terms
corresponding to k = |z|− 1 and k = |z|). If the full series is truncated just before
this minimum modulus term is reached, then the finite series that results is the
optimally truncated series, and will yield the best approximation to the original
function, in the present case, U(1; 1; z).
To see that this is so, observe for U(1; 1; z) that for z > 0 the remainder in the

approximation after n terms of the asymptotic series,

Rn(z) = U(1; 1; z)− Sn(z) = (−)nn!
∫ ∞

0

e−t dt
(t + z)n+1

,
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10 1. Introduction
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Fig. 1.1. Magnitude of the terms ak = (−)k−1�(k)z−k in the expansionSn(z) against ordinal
number k when z = 10.

is of the sign opposite to that in the last term in Sn(z) and further, is of the same sign
as the first term left in the full asymptotic series after excising Sn(z). In absolute
value, we also have

|Rn(z)| = n!
zn+1

∫ ∞

0

e−t dt
(1+ t/z)n+1

<
n!
zn+1

,

so the remainder term is numerically smaller in absolute value than the modulus of
the first neglected term. Since the series Sn(z) is an alternating series, it follows that
Sn(z) is alternately bigger than U(1; 1; z) and less than U(1; 1; z) as n increases.
The sum Sn(z) will therefore be closest in value to U(1; 1; z) precisely when we
truncate the full expansion just before the numerically smallest term (in absolute
value) in the full expansion. From the preceding inequality, it is easy to note that
the remainder term will then be bounded by this minimal term.
To see the order of the remainder term at optimal truncation, we substitute n ∼ z

(� 1) in the above bound forRn(z), and employ Stirling’s formula to approximate
the factorial, to find

|Rn(z)| < n!
zn+1

� (2π)
1
2
e−nnn+ 1

2

zn+1
�

(
2π

z

) 1
2

e−z.

This shows that at optimal truncation the remainder term for U(1; 1; z) is of order
z− 1

2 e−z as z → +∞ and consequently that evaluation of the function by this
scheme will result in an error that is exponentially small in z; these results can be
extended to deal with complex values of z – see Olver (1974, p. 523) for a more
detailed treatment. We remark that this principle is found to apply to a wide range
of asymptotic series yielding in each case an error term at optimal truncation that
is typically exponentially small in the asymptotic variable.
We observe that not all asymptotic series present the regular behaviour of the

coefficients depicted in Fig. 1.1. In certain compound expansions, with coefficients
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